JP3237719B2 - Power regeneration controller - Google Patents

Power regeneration controller

Info

Publication number
JP3237719B2
JP3237719B2 JP15027692A JP15027692A JP3237719B2 JP 3237719 B2 JP3237719 B2 JP 3237719B2 JP 15027692 A JP15027692 A JP 15027692A JP 15027692 A JP15027692 A JP 15027692A JP 3237719 B2 JP3237719 B2 JP 3237719B2
Authority
JP
Japan
Prior art keywords
power supply
signal
power
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15027692A
Other languages
Japanese (ja)
Other versions
JPH05344736A (en
Inventor
拡 田久保
雅和 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15027692A priority Critical patent/JP3237719B2/en
Priority to DE19934319254 priority patent/DE4319254A1/en
Priority to CN 93106965 priority patent/CN1079849A/en
Publication of JPH05344736A publication Critical patent/JPH05344736A/en
Application granted granted Critical
Publication of JP3237719B2 publication Critical patent/JP3237719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/06Controlling the motor in four quadrants

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、自己消弧可能な半導
体スイッチング素子とこれに逆並列接続されたダイオー
ドとからなるアームをブリッジ接続し、電力の交流電源
への回生を可能にした電力回生制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric power regeneration device in which a self-extinguishing semiconductor switching device and an arm composed of a diode connected in anti-parallel to the switching device are bridge-connected to enable the regeneration of electric power to an AC power supply. It relates to a control device.

【0002】[0002]

【従来の技術】図6は電力回生機能を持った電圧形3相
インバータ装置の従来例を示すブロック図である。同図
において、1は3相交流電源、2は交流電源1の内部イ
ンダクタンス、3は交流リアクトル、4は変流器(C
T)、5はコンバータ部51,インバータ部52および
平滑コンデンサ53などからなるインバータ装置(単
に、インバータまたは電力変換装置ともいう)、6は誘
導電動機(IM:以下、単にモータともいう)、7は電
源電圧検出器、8は点弧信号発生器、9は設定器、10
は比較器、11はラッチ回路、12はアンドゲート、1
3はベース駆動回路である。コンバータ部51は自己消
弧可能な半導体スイッチング素子としてのトランジスタ
T1〜T6に対し、整流素子としてのダイオードD1〜
D6を逆並列接続したものをブリッジ接続して構成され
る。なお、インバータ部52も同様に構成される。
2. Description of the Related Art FIG. 6 is a block diagram showing a conventional example of a voltage-type three-phase inverter device having a power regeneration function. In the figure, 1 is a three-phase AC power supply, 2 is an internal inductance of the AC power supply 1, 3 is an AC reactor, 4 is a current transformer (C
T), 5 is an inverter device (simply referred to as an inverter or a power conversion device) including a converter unit 51, an inverter unit 52, a smoothing capacitor 53, etc., 6 is an induction motor (IM), and 7 is an induction motor. Power supply voltage detector, 8 is an ignition signal generator, 9 is a setting device, 10
Is a comparator, 11 is a latch circuit, 12 is an AND gate, 1
3 is a base drive circuit. Converter unit 51 has diodes D1 to rectifiers D1 to T6 as self-extinguishing semiconductor switching elements T1 to T6.
D6 is connected in a reverse-parallel connection to form a bridge connection. Note that the inverter unit 52 is similarly configured.

【0003】このような構成において、まず交流電源1
から負荷側(インバータ部52)へ電力を供給する場合
は、電源1からの交流はコンバータ部51のダイオード
ブリッジによって全波整流され、平滑コンデンサ53に
直流電力として蓄えられる。この電力はインバータ部5
2において任意の3相交流に変換され、モータ6に供給
される。一方、負荷であるモータ6からの電力を電源1
側に回生する場合は、インバータ部52を経て平滑コン
デンサ53に充電されたモータ6からの電力は、コンバ
ータ部51のトランジスタT1〜T6を介して電源1側
に回生される。このときのコンバータ部51のトランジ
スタT1〜T6の点弧順序について、図7を参照して説
明する。
In such a configuration, first, an AC power supply 1
When power is supplied from the power supply 1 to the load side (inverter unit 52), the AC from the power supply 1 is full-wave rectified by the diode bridge of the converter unit 51 and stored in the smoothing capacitor 53 as DC power. This power is supplied to the inverter unit 5
In 2, it is converted into an arbitrary three-phase alternating current and supplied to the motor 6. On the other hand, electric power from the motor 6 as a load is
In the case of regenerating to the power supply side, the electric power from the motor 6 charged in the smoothing capacitor 53 via the inverter unit 52 is regenerated to the power supply 1 side via the transistors T1 to T6 of the converter unit 51. The firing order of transistors T1 to T6 of converter unit 51 at this time will be described with reference to FIG.

【0004】図7(イ)は3相交流電源R,S,Tの相
電圧VR ,VS ,VT を示し、同(ロ)〜(ト)はトラ
ンジスタT1〜T6の点弧タイミング(点弧信号)、同
(チ)は区間をそれぞれ示している。すなわち、 区間 R−S相に回生を行なう(トランジスタT
1,T5を点弧)。 区間 R−T相に回生を行なう(トランジスタT
1,T6を点弧)。 区間 S−T相に回生を行なう(トランジスタT
2,T6を点弧)。 区間 S−R相に回生を行なう(トランジスタT
2,T4を点弧)。 区間 T−R相に回生を行なう(トランジスタT
3,T4を点弧)。 区間 T−S相に回生を行なう(トランジスタT
3,T5を点弧)。 となり、電源相電圧の最も高い相間にインバータ部52
からの電力を回生させる動作を行なう。
FIG. 7A shows phase voltages V R , V S , and V T of the three-phase AC power supplies R, S, T, and (B) to (G) show the ignition timing (T) of the transistors T1 to T6. (Firing signal) and (h) indicate sections, respectively. That is, regeneration is performed in the section RS phase (transistor T
1, T5 is fired). Regeneration in the section RT phase (transistor T
1, T6 is fired). Regeneration in the section ST phase (transistor T
2, T6 is fired). Regeneration in section SR phase (transistor T
2, T4 is fired). Regeneration in section TR phase (transistor T
3, T4 is fired). Regeneration in section TS phase (transistor T
3, T5 is fired). And the inverter unit 52 between the phases having the highest power supply phase voltage.
The operation for regenerating the electric power from the power supply is performed.

【0005】電源電圧検出器7は電源相電圧の位相を検
出し、点弧信号発生器8はこの出力にもとづき各トラン
ジスタT1〜T6に分配すべき点弧信号を発生するの
で、ベース駆動回路13ではこの点弧信号を増幅して各
トランジスタT1〜T6を駆動する。このとき、トラン
ジスタT1〜T6は電力を電源側へ回生するときだけ駆
動するようにしても良く、常時駆動するようにしても良
い。なお、回生時のみ駆動する場合は、平滑コンデンサ
53の電圧を検出して回生が必要な場合か否かを判断す
ることが別途必要となる。また、交流リアクトル3は交
流電源1とインバータ5との協調を図るために設けら
れ、交流電源1に流れる高調波成分を低減するととも
に、コンバータ部51のダイオードおよびトランジスタ
の電流責務を軽減する。
The power supply voltage detector 7 detects the phase of the power supply phase voltage, and the ignition signal generator 8 generates an ignition signal to be distributed to each of the transistors T1 to T6 based on this output. Then, the ignition signal is amplified to drive the transistors T1 to T6. At this time, the transistors T1 to T6 may be driven only when power is regenerated to the power supply side, or may be driven constantly. In the case of driving only during regeneration, it is necessary to detect the voltage of the smoothing capacitor 53 and determine whether regeneration is necessary or not. The AC reactor 3 is provided for coordination between the AC power supply 1 and the inverter 5, reduces harmonic components flowing through the AC power supply 1, and reduces the current duty of the diode and transistor of the converter unit 51.

【0006】ところで、上記のような装置では、回生電
力が何らかの原因によって急増したり、あるいは交流電
源1が何らかの原因により瞬間的に停電(単に、瞬停と
もいう)すると、トランジスタT1〜T6のコレクタ電
流が急増し(過電流状態)、これらが破壊するおそれが
ある。そこで、従来は交流電源側に変流器(CT)4を
設けて電源電流(回生電流)を監視し、設定器9に設定
されている電流レベルを越えて回生電流が流れたら、一
定のヒステリシス幅を持った比較器10の出力を高レベ
ルから低レベルに反転させ、アンドゲート12を閉じる
ことにより点弧信号発生器8からの点弧信号を阻止し、
トランジスタT1〜T6をオフ(遮断)して回生動作を
停止させ、トランジスタの破壊を防止するようにしてい
る。このとき、比較器10の出力は、ラッチ回路11に
一時的に保持される。
In the above-described apparatus, if the regenerative power increases rapidly for some reason or if the AC power supply 1 momentarily loses power for some reason (also referred to simply as a momentary power failure), the collectors of the transistors T1 to T6 are removed. The current may increase rapidly (overcurrent state), and these may be destroyed. Therefore, conventionally, a current transformer (CT) 4 is provided on the AC power supply side to monitor the power supply current (regeneration current), and when the regenerative current flows beyond the current level set in the setting unit 9, a constant hysteresis is provided. The output of the comparator 10 having a width is inverted from the high level to the low level, and the firing signal from the firing signal generator 8 is blocked by closing the AND gate 12;
The transistors T1 to T6 are turned off (cut off) to stop the regenerative operation, thereby preventing the transistors from being destroyed. At this time, the output of the comparator 10 is temporarily held in the latch circuit 11.

【0007】回生電流の転流動作につき図8,図9を参
照して説明する。ここで、R相電圧が最も高く、S相電
圧が一番低い状態(図7の区間参照)にあるとする。
すなわち、トランジスタT1,T5がオンで、その他の
トランジスタはオフである。この場合の通常の回生電流
が流れる経路は図8に実線R1で示すように、直流電源
としてのコンデンサ53→トランジスタT1→交流リア
クトル3→交流電源1→交流リアクトル3→トランジス
タT5→コンデンサ53となる。ここで、何らかの原因
により過電流状態になったとすると、CT4の出力信号
が電流に比例して大きくなり、比較器10が高レベルか
ら低レベルに反転することから、過電流状態が検出され
る。この過電流を抑制すべく全てのトランジスタT1〜
T6に遮断信号が与えられると、交流リアクトル3の電
流は図9に点線R2で示すように、ダイオードD4→交
流リアクトル3→交流電源1→交流リアクトル3→ダイ
オードD2に転流し、逆に直流電源としてのコンデンサ
53を充電する動作となる。
The commutation operation of the regenerative current will be described with reference to FIGS. Here, it is assumed that the R-phase voltage is the highest and the S-phase voltage is the lowest (see the section in FIG. 7).
That is, the transistors T1 and T5 are on, and the other transistors are off. In this case, the path through which the normal regenerative current flows is, as shown by the solid line R1 in FIG. 8, a capacitor 53 as a DC power supply → transistor T1 → AC reactor 3 → AC power supply 1 → AC reactor 3 → transistor T5 → capacitor 53. . Here, if an overcurrent state occurs for some reason, the output signal of CT4 increases in proportion to the current, and the comparator 10 is inverted from the high level to the low level, so that the overcurrent state is detected. In order to suppress this overcurrent, all the transistors T1 to T1
When a cutoff signal is given to T6, the current of AC reactor 3 is commutated to diode D4 → AC reactor 3 → AC power supply 1 → AC reactor 3 → Diode D2 as shown by dotted line R2 in FIG. This is an operation of charging the capacitor 53 as.

【0008】[0008]

【発明が解決しようとする課題】 すなわち、コンバー
タ部51の入力点A,B間の電圧VABは、VAB≒Edで
なければならないが、ダイオードD4,D2が導通して
いるため、直流電源としてのコンデンサ53の端子電圧
がそのままA,B点に現れ、VAB≒−Edと、逆転して
しまう。このため、交流電源とインバータとの接続点
C,D間の電圧VCDも大幅に減少するという問題があ
る。このC,D点は他機器との接続点でもあるため、こ
のような電源変動は小さくしなければならない。つま
り、C,D点の電位VCDは交流リアクトル3と電源内部
インダクタンス2との分圧比で決定されるため、容量比
によってはVCD<0となる場合が発生する。このため、
電源変動を小さくすべく交流リアクトル3の容量を大き
く選定しなければならず、大型化およびコスト高になる
というわけであるしたがって、この発明の課題は負荷変
動や瞬停が発生しても、インバータと交流電源との接続
点の電位変動を小さくして運転を継続できるようにする
ことにある。
That is, the voltage V AB between the input points A and B of the converter section 51 must be V AB ≒ Ed, but since the diodes D 4 and D 2 are conducting, the DC power supply , The terminal voltage of the capacitor 53 appears at points A and B as it is, and reverses to V AB ≒ −Ed. For this reason, there is a problem that the voltage V CD between the connection points C and D between the AC power supply and the inverter is greatly reduced. Since these points C and D are also connection points with other devices, such power fluctuations must be reduced. That is, since the potential V CD at the points C and D is determined by the voltage dividing ratio between the AC reactor 3 and the power supply internal inductance 2, V CD <0 may occur depending on the capacitance ratio. For this reason,
The capacity of the AC reactor 3 must be selected to be large in order to reduce power supply fluctuations, which results in an increase in size and cost. To reduce the potential fluctuation at the connection point between the power supply and the AC power supply so that the operation can be continued .

【0009】[0009]

【課題を解決するための手段】 このような課題を解決
するため、この発明では、整流ダイオードを逆並列接続
された自己消弧形半導体素子をブリッジ接続してなるコ
ンバータ部と、直流電源部とを備えた電力変換装置に対
し、前記コンバータ部から交流電源への回生電流を検出
する電流検出手段と、この電流検出手段からの出力信号
を基準値と比較する比較手段と、この比較手段の出力に
応じ、前記回生電流が基準値を越えたときは、前記コン
バータ部の上側または下側アーム素子のいずれかに対
、これら素子の通常のオン期間内で当該素子へのオン
信号を遮断し、前記通常のオン期間内で一定時間経過後
前記回生電流が前記基準値を下回っていれば前記遮断を
解除して当該素子を再度オンする信号を出力する信号発
生手段と、を設けたことを特徴としている。なお、この
発明においては、前記比較手段にヒステリシスを持た
せ、前記一定時間をそのヒステリシスによって決定する
ことができる。同様に、前記比較手段の出力側にタイマ
を設け、前記一定時間をこのタイマによって決定するこ
とができる。
Means for Solving the Problems In order to solve such a problem, according to the present invention, a converter section in which a self-extinguishing type semiconductor element in which a rectifier diode is connected in anti-parallel is bridge-connected, and a DC power supply section is provided. A power conversion device comprising: a current detection unit for detecting a regenerative current from the converter unit to the AC power supply; a comparison unit for comparing an output signal from the current detection unit with a reference value; and an output of the comparison unit. When the regenerative current exceeds a reference value, either of the upper and lower arm elements of the converter section is turned on during the normal ON period of these elements.
After the signal is cut off and a certain time elapses within the normal ON period
If the regenerative current is below the reference value, the cutoff is performed.
Signal generating means for outputting a signal for releasing and turning on the element again . In the present invention, the comparing means may be provided with hysteresis, and the predetermined time may be determined by the hysteresis. Similarly, a timer can be provided on the output side of the comparing means, and the predetermined time can be determined by the timer.

【0010】[0010]

【作用】 負荷からの回生電流を監視し、それが所定の
レベルを越えたら正極側または負極側自己消弧半導体素
子を、これら素子の通常のオン期間内で一定時間だけオ
フすることにより、負荷からの回生電力の増大や瞬停が
発生しても、インバータと交流電源との接続点の電位変
動が大きくならないようにし、運転の継続を図る。
The regenerative current from the load is monitored, and when the regenerative current exceeds a predetermined level, the positive-side or negative-side self-extinguishing semiconductor element is turned off for a certain period of time within the normal ON period of these elements. It is increased and instantaneous stop of the regenerative power is generated from, as the potential variation at the connection point between the inverter and the AC power supply is not increased, Ru FIG continuous operation.

【0011】[0011]

【実施例】図1はこの発明の実施例を示すブロック図で
ある。同図において、9A,9Bは設定器、10A,1
0Bは比較器、11はラッチ回路、12A,12Bはア
ンドゲート、13A,13Bはベース駆動回路である。
これは、図6に示す従来例において、ベース駆動回路を
正極側トランジスタ駆動用13Aと負極側トランジスタ
駆動用13Bとに分割し、ベース駆動回路13Bは従来
と同様にしてその遮断制御を行なう一方、ベース駆動回
路13Aについては、電源電流を設定器9Aに設定され
る設定値と比較して停止制御を行なうようにしたもの
で、その他の点は図6と同様なので、以下ではその相違
点について主として説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 9A and 9B are setting devices, 10A and 1
0B is a comparator, 11 is a latch circuit, 12A and 12B are AND gates, and 13A and 13B are base drive circuits.
This is because, in the conventional example shown in FIG. 6, the base drive circuit is divided into a positive-side transistor drive 13A and a negative-side transistor drive 13B, and the base drive circuit 13B performs the cutoff control in the same manner as in the related art. The base drive circuit 13A performs stop control by comparing the power supply current with the set value set in the setter 9A, and the other points are the same as in FIG. explain.

【0012】いま、電力回生時に何らかの原因によって
回生電力が急増したり、あるいは交流電源に瞬停が生じ
ると、回生電流が急増する。そこで、CT4によってこ
の電流を監視し、比較器10AにおいてCT4からの出
力を設定器9Aにて設定される設定値と比較し、前者
(回生電流)の方が大きくなると比較器10Aの出力は
高レベルから低レベルに反転する。この反転信号は過電
流発生信号として、アンドゲート12Aにおいて電源電
圧検出器7から点弧信号発生器8を経てトランジスタT
1〜T6に分配される点弧信号と論理積がとられた後、
ベース駆動回路13Aに与えられて正極側トランジスタ
T1〜T3に対する遮断信号となる。
Now, if the regenerative electric power suddenly increases for some reason or the instantaneous stoppage of the AC power occurs at the time of electric power regeneration, the regenerative current rapidly increases. Therefore, this current is monitored by CT4, and the output from CT4 is compared with the set value set by setter 9A in comparator 10A. If the former (regenerative current) becomes larger, the output of comparator 10A becomes high. Invert from level to low. This inverted signal is used as an overcurrent generation signal in the AND gate 12A from the power supply voltage detector 7 through the ignition signal generator 8 to the transistor T.
After ANDing with the firing signal distributed to 1 to T6,
The signal is supplied to the base drive circuit 13A and becomes a cutoff signal for the positive side transistors T1 to T3.

【0013】以上の動作について、図9と同様の条件、
つまりR相電圧が最も高くS相電圧が一番低い状態で、
回生電力の急増または交流電源の瞬停が生じた場合を考
えると、この場合の回生電流は図2に点線R3で示すよ
うに、 交流リアクトル3→交流電源1→交流リアクトル3→ト
ランジスタT5→ダイオードD4 の如き経路で転流する。すなわち、従来は全トランジス
タを遮断(オフ)するようにしているため、A,B点間
の電位VABは、VAB≒−Edとなっていたが、この実施
例の場合はVAB≒0となり、交流リアクトル3と電源の
内部インダクタンス2との分圧により決定されるV
CDを、VCD>0とすることができ、その結果、電源変動
を小さくすることが可能となる。
For the above operation, the same conditions as in FIG.
In other words, with the R-phase voltage being the highest and the S-phase voltage being the lowest,
Considering the case where the regenerative power suddenly increases or the instantaneous interruption of the AC power occurs, the regenerative current in this case is as shown by a dotted line R3 in FIG. 2, AC reactor 3 → AC power supply 1 → AC reactor 3 → transistor T5 → diode It is commutated along a route such as D4. That is, conventionally, all transistors are cut off (turned off), so that the potential V AB between points A and B is V AB ≒ −Ed. In this embodiment, V AB ≒ 0. And V determined by the voltage division between the AC reactor 3 and the internal inductance 2 of the power supply.
CD can satisfy V CD > 0, and as a result, power supply fluctuation can be reduced.

【0014】以上の動作を波形図で示すのが図3であ
る。同図(イ)は電源相(R相)電流と比較レベルとの
関係、(ロ)は比較器10Aの出力波形、(ハ)はトラ
ンジスタに対する点弧信号波形、(ニ)は点弧信号発生
器8の出力をそれぞれ示している。すなわち、CT4に
て検出される電源相電流(CT4の出力)が比較器10
Aの反転レベルL1以上になると、比較器10Aの出力
は同図(ロ)のように高レベルから低レベルに反転す
る。この低レベルの信号はアンドゲート12Aにおい
て、同図(ニ)に示す如き点弧信号発生器8からの点弧
信号と論理積がとられ、その結果、同図(ハ)の如き信
号がベース駆動回路13Aを介して正極側トランジスタ
T1〜T3に与えられ、この場合は正極側トランジスタ
T1が遮断されることになる。
FIG. 3 is a waveform diagram showing the above operation. 14A shows the relationship between the power supply phase (R phase) current and the comparison level, FIG. 14B shows the output waveform of the comparator 10A, FIG. 14C shows the firing signal waveform for the transistor, and FIG. The output of the unit 8 is shown. That is, the power supply phase current (output of CT4) detected at CT4 is
When the output level of the comparator A becomes equal to or higher than the inversion level L1, the output of the comparator 10A is inverted from a high level to a low level as shown in FIG. This low-level signal is ANDed with the ignition signal from the ignition signal generator 8 as shown in FIG. 3D in the AND gate 12A, and as a result, the signal as shown in FIG. The signal is supplied to the positive-side transistors T1 to T3 via the drive circuit 13A. In this case, the positive-side transistor T1 is cut off.

【0015】その後、回生電流が同図(イ)のように比
較器10Aの復帰レベルL2まで減衰すると、比較器1
0Aは同図(ロ)のように再び高レベルとなり、トラン
ジスタT1は同図(ハ)のように再びスイッチング動作
を開始する。このように、回生電流を同図(イ)のよう
に一定の範囲内に抑制しつつ回生動作が続行されるた
め、直流電源電圧が上昇することもない。このとき、比
較器10Aは反転レベルと復帰レベルのヒステリシスを
持つ比較器が用いられることになる。こうして過電流が
抑制され、電源接続点C,D点の電位変動も最小限に抑
えられるが、過電流状態がさらに進んだ場合は従来と同
様に、設定器9Bおよび比較器10Bによってこのこと
を検出し、その出力を高レベルから低レベルに反転させ
る。この信号はラッチ回路11にラッチされ、アンドゲ
ート12A,12Bを遮断するため、トランジスタT1
〜T6の全てが消弧され、その破壊が防止される。した
がって、比較器10Bの比較基準電圧は、比較器10A
のそれよりも高く設定されていることになる。
Thereafter, when the regenerative current attenuates to the return level L2 of the comparator 10A as shown in FIG.
0A goes high again as shown in FIG. 2B, and the transistor T1 starts switching operation again as shown in FIG. As described above, the regenerative operation is continued while the regenerative current is suppressed within a certain range as shown in FIG. 2A, and therefore the DC power supply voltage does not increase. At this time, a comparator having a hysteresis of the inversion level and the return level is used as the comparator 10A. In this way, the overcurrent is suppressed and the potential fluctuations at the power supply connection points C and D are also minimized. However, when the overcurrent state has further progressed, this is determined by the setting unit 9B and the comparator 10B as in the related art. Detect and invert its output from high to low. This signal is latched by the latch circuit 11 and cuts off the AND gates 12A and 12B.
〜T6 are all extinguished, and their destruction is prevented. Therefore, the comparison reference voltage of the comparator 10B is
It will be set higher than that of.

【0016】図4はこの発明の他の実施例を示す構成
図、図5はその動作を説明するための各部波形図であ
る。図4からも明らかなように、この実施例は図1に示
すものに対し、比較器10Aの出力を一定時間保持する
タイマ14を設けた点が特徴である。その相違点につい
て、図5も参照して説明する。いま、電源相電流が過電
流状態となり、CT4の出力が比較器10Aの反転レベ
ルに達すると、比較器10Aの出力は図5(ロ)に示す
ように高レベルから低レベルに反転する。その出力(低
レベル信号)はタイマ14に与えられて図5(ハ)のよ
うに、一定時間Tだけ保持される。タイマ14の出力は
アンドゲート12Aに与えられ、ここで図5(ホ)の如
き点弧信号発生器8からの出力信号と論理積がとられ、
図5(ニ)に示すような信号が正極側トランジスタT1
〜T3に与えられる。
FIG. 4 is a block diagram showing another embodiment of the present invention, and FIG. 5 is a waveform diagram of each part for explaining the operation. As is clear from FIG. 4, this embodiment is different from the embodiment shown in FIG. 1 in that a timer 14 for holding the output of the comparator 10A for a certain time is provided. The difference will be described with reference to FIG. Now, when the power supply phase current is in an overcurrent state and the output of CT4 reaches the inversion level of the comparator 10A, the output of the comparator 10A is inverted from a high level to a low level as shown in FIG. The output (low-level signal) is given to the timer 14 and held for a certain time T as shown in FIG. The output of the timer 14 is supplied to an AND gate 12A, where it is ANDed with the output signal from the ignition signal generator 8 as shown in FIG.
A signal as shown in FIG.
To T3.

【0017】すなわち、ここでもトランジスタT1が遮
断されるが、トランジスタT5は導通しているので、回
生電流は図2と同じく、 交流リアクトル3→交流電源1→交流リアクトル3→ト
ランジスタT5→ダイオードD4 の如き経路で転流することになる。その後、タイマ14
にて規定される一定時間Tが経過すると、再びその出力
は高レベルに復帰し、正極側トランジスタの動作が開始
される。したがって、図5(イ)に示すように回生電流
は或る一定範囲に抑制されつつ回生動作が続行されるの
で、直流電源電圧が上昇することもなく、電源接続点
C,D点の電位変動も最小限に抑えられることになる。
なお、過電流状態がさらに進んだ場合は図1の場合と同
様に、設定器9Bおよび比較器10Bによってこのこと
を検出し、その出力を高レベルから低レベルに反転させ
る。この信号はラッチ回路11にラッチされ、アンドゲ
ート12A,12Bを遮断するため、トランジスタT1
〜T6の全てが消弧され、その破壊が防止される。
That is, the transistor T1 is also cut off here, but the transistor T5 is conducting, so that the regenerative current is the same as in FIG. 2, ie, the AC reactor 3, the AC power source 1, the AC reactor 3, the transistor T5, and the diode D4. It will be diverted along such a route. After that, the timer 14
After the elapse of the predetermined time T defined by the above, the output returns to the high level again, and the operation of the positive electrode side transistor is started. Therefore, as shown in FIG. 5A, the regenerative operation is continued while the regenerative current is suppressed to a certain range, so that the DC power supply voltage does not increase and the potential fluctuations at the power supply connection points C and D do not occur. Will also be minimized.
When the overcurrent state further advances, as in the case of FIG. 1, this is detected by the setter 9B and the comparator 10B, and the output is inverted from a high level to a low level. This signal is latched by the latch circuit 11 and cuts off the AND gates 12A and 12B.
〜T6 are all extinguished, and their destruction is prevented.

【0018】上記では、自己消弧形半導体素子としてト
ランジスタを用いたが、これに限らずMOS−FET
(電界効果トランジスタ)やIGBT(絶縁ゲート形バ
イポーラトランジスタ)などの半導体素子を使用するこ
とができる。また、交流電源を3相としたが、単相また
は3相以上の多相とすることもできる。さらには、比較
器10Aの出力で正極側トランジスタを遮断するように
したが、負極側トランジスタを遮断するようにしても、
同様の効果を得ることができる。
In the above, a transistor is used as the self-extinguishing type semiconductor element. However, the present invention is not limited to this.
Semiconductor devices such as (field effect transistors) and IGBTs (insulated gate bipolar transistors) can be used. Further, although the AC power supply has three phases, it may be a single phase or three or more phases. Furthermore, although the positive-side transistor is turned off by the output of the comparator 10A, the negative-side transistor may be turned off.
Similar effects can be obtained.

【0019】[0019]

【発明の効果】 この発明によれば、負荷からの回生電
流が或る一定値以上となったら、コンバータ部の正極側
または負極側自己消弧半導体素子の動作を、これら素子
の通常のオン期間内で一定時間停止するようにしたの
で、電力変換装置の交流電源への接続点の電位変動を小
さくして運転を継続することができる。これにより、コ
ンバータ部の交流リアクトル容量を小さくでき、その結
果、電力変換装置も小形かつ安価なものとし得る利点が
得られる。また、正極側または負極側自己消弧形半導体
素子の動作を一定時間停止させる回路に対し、全自己消
弧形半導体素子を遮断するための回路を併設するように
したので、消弧形半導体素子を過電流状態から保護する
ことが可能となる。
According to the present invention, when the regenerative current from the load exceeds a certain fixed value, the operation of the positive-side or negative-side self-extinguishing semiconductor elements of the converter section is controlled by these elements.
Is stopped for a fixed time within the normal ON period, the operation can be continued while reducing the potential fluctuation at the connection point of the power converter to the AC power supply. As a result, the AC reactor capacity of the converter unit can be reduced, and as a result, there is obtained an advantage that the power converter can be small and inexpensive. In addition, a circuit for shutting off all self-extinguishing semiconductor elements is provided in addition to a circuit for stopping the operation of the positive-side or negative-side self-extinguishing type semiconductor elements for a certain period of time. Can be protected from an overcurrent state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1の場合の回生電流経路を説明するための回
路図である。
FIG. 2 is a circuit diagram for explaining a regenerative current path in the case of FIG.

【図3】図1の動作を説明するための各部波形図であ
る。
FIG. 3 is a waveform chart of each part for explaining the operation of FIG. 1;

【図4】この発明の他の実施例を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】図4の動作を説明するための各部波形図であ
る。
FIG. 5 is a waveform chart of each part for explaining the operation of FIG. 4;

【図6】回生電流制御装置の従来例を示す構成図であ
る。
FIG. 6 is a configuration diagram showing a conventional example of a regenerative current control device.

【図7】図6の電源電圧とトランジスタの点弧タイミン
グを説明するための説明図である。
FIG. 7 is an explanatory diagram for describing a power supply voltage and a firing timing of a transistor in FIG. 6;

【図8】図6における通常時の回生電流径路を説明する
ための回路図である。
FIG. 8 is a circuit diagram for explaining a regenerative current path in a normal state in FIG. 6;

【図9】図6におけるトランジスタ遮断時の回生電流径
路を説明するための回路図である。
FIG. 9 is a circuit diagram for explaining a regenerative current path when a transistor is turned off in FIG. 6;

【符号の説明】[Explanation of symbols]

1…3相交流電源、2…電源内部インダクタンス、3…
交流リアクトル、4…変流器(CT)、5…インバータ
装置(電力変換装置)、6…誘導電動機(IM:モー
タ)、7…電源電圧検出器、8…点弧信号発生器、9,
9A,9B…設定器、10,10A,10B…比較器、
11…ラッチ回路、12,12A,12B…アンドゲー
ト、13,13A,13B…ベース駆動回路、14…タ
イマ、51…コンバータ部、52…インバータ部、53
…平滑コンデンサ。
1 ... three-phase AC power supply, 2 ... power supply internal inductance, 3 ...
AC reactor, 4 current transformer (CT), 5 inverter device (power conversion device), 6 induction motor (IM: motor), 7 power supply voltage detector, 8 firing signal generator, 9,
9A, 9B: setting device, 10, 10A, 10B: comparator,
11: Latch circuit, 12, 12A, 12B: AND gate, 13, 13A, 13B: Base drive circuit, 14: Timer, 51: Converter unit, 52: Inverter unit, 53
... Smoothing capacitors.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02M 7/219 H02M 7/155 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H02M 7/219 H02M 7/155

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 整流ダイオードを逆並列接続された自己
消弧形半導体素子をブリッジ接続してなるコンバータ部
と、直流電源部とを備えた電力変換装置に対し、 前記コンバータ部から交流電源への回生電流を検出する
電流検出手段と、 この電流検出手段からの出力信号を基準値と比較する比
較手段と、 この比較手段の出力に応じ、前記回生電流が基準値を越
えたときは、前記コンバータ部の上側または下側アーム
素子のいずれかに対し、これら素子の通常のオン期間内
で当該素子へのオン信号を遮断し、前記通常のオン期間
内で一定時間経過後前記回生電流が前記基準値を下回っ
ていれば前記遮断を解除して当該素子を再度オンする
号を出力する信号発生手段と、を設けたことを特徴とす
る電力回生制御装置。
1. A power conversion apparatus comprising: a converter section in which a self-extinguishing type semiconductor element in which rectifier diodes are connected in anti-parallel and bridge-connected; and a DC power supply section. Current detecting means for detecting a regenerative current; comparing means for comparing an output signal from the current detecting means with a reference value; and the regenerative current exceeding a reference value according to an output of the comparing means.
When there was example, compared either upper or lower arm element of the converter part, within the normal on-period of the element
To shut off the ON signal to the element, the normal ON period
Within a certain period of time, the regenerative current falls below the reference value.
And a signal generating means for outputting a signal to turn off the element and turn on the element again if it is provided.
【請求項2】 前記比較手段にヒステリシスを持たせ、
前記一定時間をそのヒステリシスによって決定すること
を特徴とする請求項1に記載の電力回生制御装置。
2. The method according to claim 1, wherein the comparing means has hysteresis.
2. The power regeneration control device according to claim 1, wherein the predetermined time is determined based on the hysteresis.
【請求項3】 前記比較手段の出力側にタイマを設け、
前記一定時間をこのタイマによって決定することを特徴
とする請求項1に記載の電力回生制御装置。
3. A timer is provided on the output side of said comparing means,
The power regeneration control device according to claim 1, wherein the fixed time is determined by the timer.
JP15027692A 1992-06-10 1992-06-10 Power regeneration controller Expired - Fee Related JP3237719B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15027692A JP3237719B2 (en) 1992-06-10 1992-06-10 Power regeneration controller
DE19934319254 DE4319254A1 (en) 1992-06-10 1993-06-09 Regenerative power control for current regulator - blocks operation of upper or lower arm of rectifier stage when regenerative current is above given reference current
CN 93106965 CN1079849A (en) 1992-06-10 1993-06-09 Power inverter with power regenerative control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15027692A JP3237719B2 (en) 1992-06-10 1992-06-10 Power regeneration controller

Publications (2)

Publication Number Publication Date
JPH05344736A JPH05344736A (en) 1993-12-24
JP3237719B2 true JP3237719B2 (en) 2001-12-10

Family

ID=15493429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15027692A Expired - Fee Related JP3237719B2 (en) 1992-06-10 1992-06-10 Power regeneration controller

Country Status (3)

Country Link
JP (1) JP3237719B2 (en)
CN (1) CN1079849A (en)
DE (1) DE4319254A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19617048C1 (en) * 1996-04-18 1997-07-24 Elpro Ag Control method for power regulator of electric motor drives
DE19617054C2 (en) * 1996-04-29 2002-05-08 Semikron Elektronik Gmbh Overcurrent and short circuit protection
DE19739553A1 (en) 1997-09-09 1999-03-11 Siemens Ag Pre-charging circuit for a capacitor connected to the output of a line-guided converter
US7035064B2 (en) 1998-05-29 2006-04-25 Semikron Elektronik Gmbh Method and circuit arrangement with adaptive overload protection for power switching devices
US6084786A (en) * 1999-01-29 2000-07-04 Hamilton Sundstrand Corporation Converter system with power factor and DC ripple control
DE10151153A1 (en) * 2001-10-19 2003-04-30 Bombardier Transp Gmbh Device for charging batteries for electric vehicles has converter containing inverter for producing a.c. voltage from step-up device's D.C. output and rectifier coupled via transformer
JP5063379B2 (en) * 2008-01-11 2012-10-31 日立アプライアンス株式会社 POWER CONVERTER, POWER CONVERTER MODULE, AIR CONDITIONER AND REFRIGERATOR
RU2540110C2 (en) * 2013-04-23 2015-02-10 Общество с ограниченной ответственностью "Научно-производственный центр "Судовые электротехнические системы" (ООО "НПЦ "СЭС") Reversible frequency converter
CN104600677A (en) * 2015-01-14 2015-05-06 常州格力博有限公司 Short-circuit protection method for transistor in control circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172927A (en) * 1982-04-02 1983-10-11 株式会社日立製作所 Overload protecting device
US4475150A (en) * 1982-04-28 1984-10-02 General Electric Company Coordinated load commutated inverter protection system
DE3533174A1 (en) * 1985-09-13 1987-04-02 Licentia Gmbh Voltage follow-up of a current regulator
DE3682033D1 (en) * 1985-11-21 1991-11-21 Toshiba Kawasaki Kk CONTROL DEVICE FOR POWER CONVERTER.
US4719555A (en) * 1985-12-19 1988-01-12 Hitachi, Ltd. Electric power control apparatus with first and second fixed time intervals
DE3732592A1 (en) * 1987-09-28 1989-04-06 Asea Brown Boveri Control method and circuit arrangement for a bidirectional rectifier
JPH0710174B2 (en) * 1989-05-29 1995-02-01 三菱電機株式会社 PWM converter device
JP2903863B2 (en) * 1992-05-29 1999-06-14 三菱電機株式会社 Inverter device

Also Published As

Publication number Publication date
DE4319254A1 (en) 1993-12-16
CN1079849A (en) 1993-12-22
JPH05344736A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
US5729120A (en) Dynamic voltage regulation stabilization for AC power supply systems
JPS61112583A (en) Power converter
KR920001165B1 (en) Power source trasforming apparatus with protecting overvoltage
JPH09327176A (en) Ac/dc converter circuit
JP2011101473A (en) Power unit for motor drive
JP3237719B2 (en) Power regeneration controller
JPH10164854A (en) Power converter
JPS604654B2 (en) Short-circuit protection device for power converter equipment with DC circuit
JPH0669316B2 (en) Power regeneration control circuit for power converter
JP2663535B2 (en) Power supply for arc machining
JPS61244276A (en) Controller of power converter
JPS62135269A (en) Rush-current preventive circuit
JP3096236B2 (en) Power supply
JP3265410B2 (en) Power converter
JP2998213B2 (en) How to operate the power supply
JP4462390B2 (en) Inverter using current source
JPH0623159Y2 (en) Abnormality detection device for three-phase power supply
JP2712999B2 (en) Inverter device
JP2728682B2 (en) Uninterruptible power supply for computer
JPS5839296A (en) Controller for revolution of alternating current motor
JPH0515638U (en) Parallel operation protection device
JPS6116794Y2 (en)
JP3601255B2 (en) Inverter load short detection method
JPH0416637Y2 (en)
JPH077961A (en) Power converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees