JPS5943914B2 - Protection method of controlled rectifier - Google Patents

Protection method of controlled rectifier

Info

Publication number
JPS5943914B2
JPS5943914B2 JP53096778A JP9677878A JPS5943914B2 JP S5943914 B2 JPS5943914 B2 JP S5943914B2 JP 53096778 A JP53096778 A JP 53096778A JP 9677878 A JP9677878 A JP 9677878A JP S5943914 B2 JPS5943914 B2 JP S5943914B2
Authority
JP
Japan
Prior art keywords
phase
rectifier
commutation
circuit
commutation failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53096778A
Other languages
Japanese (ja)
Other versions
JPS5523778A (en
Inventor
博 池田
忠幸 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53096778A priority Critical patent/JPS5943914B2/en
Publication of JPS5523778A publication Critical patent/JPS5523778A/en
Publication of JPS5943914B2 publication Critical patent/JPS5943914B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 本発明は、大容盪の制御整流装置で単位制御整流器を複
数台並列接続して主回路を構成している制御整流装置の
転流失敗時の保護方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection method in the event of commutation failure in a large-capacity controlled rectifier in which a plurality of unit control rectifiers are connected in parallel to form a main circuit. be.

第1図に従来一般に使用されている制御整流装置の主回
路構成図を示す。
FIG. 1 shows a main circuit configuration diagram of a conventionally commonly used controlled rectifier.

図中1は交流母線、2は整流器用変圧器、3は整流器用
変圧器の2次電圧を整流する単位制御整流器、4は負荷
を示している。単位制御整流器3は一定の点弧順序すな
わ 。ちU相、Z相、V相、X相、W相、Y相の順序で
くク返し点弧し、整流動作を行なつている。U相からり
相へ点弧相が移る時、点弧相が順次変わつて行く現象を
転流と呼んでいる。今単位制御整流器3の点弧角をα、
転流重なヤ角をuとすると、1800−α−uを転流余
裕角γと呼んでいるが、該γがある値より小さくなると
制御整流素子の特性上転流不能となる。この現象は転流
失敗と呼ばれている。転流失敗が起こる、と直流出力電
圧は零となヤ、何ら保護を行なわないと転流失敗をくク
返し、永久に自己復帰しない場合があることが知られて
いる。第2図に従来使用されている転流失敗保護方式の
ブロック図を示す。
In the figure, 1 is an AC bus, 2 is a rectifier transformer, 3 is a unit control rectifier that rectifies the secondary voltage of the rectifier transformer, and 4 is a load. The unit control rectifier 3 has a constant firing order. The U-phase, Z-phase, V-phase, X-phase, W-phase, and Y-phase are repeatedly fired in the order of rectification. When the ignition phase shifts from the U phase to the U phase, the phenomenon in which the ignition phase changes sequentially is called commutation. Now the firing angle of unit control rectifier 3 is α,
If the commutation overlap angle is u, then 1800-α-u is called commutation margin angle γ, and when γ becomes smaller than a certain value, commutation becomes impossible due to the characteristics of the control rectifying element. This phenomenon is called commutation failure. It is known that when a commutation failure occurs, the DC output voltage drops to zero, and if no protection is provided, the commutation failure may repeat and the system may not recover permanently. FIG. 2 shows a block diagram of a conventional commutation failure protection system.

図中5は転流失敗検出回路、□は位相制御回路で、U相
、z相、V相、X相、W相、Y相の点弧タイミングを発
生する。8は位相制御回路Tからの出力と、転流失敗検
出回路5からの出力の反転信号を受け、正常時は、位相
制御回路1からの信号を出力し、転流失敗時は、位相制
御回路□からの信号をカットするインヒピツト回路、6
は位相制御回路□からの信号により、現在点弧している
相を判別し、転流失敗時に点弧する相を決定し待機して
おり、転流失敗検出回路5から信号を受けると、転流失
敗時点弧相に’、点弧タイミングを発生する転流失敗時
点弧相決定回路、9はインヒビツト回路8の出力信号と
転流失敗時点弧相決定回路6の出力信号とのオアを取る
オア回路、10はインタフェイスである。
In the figure, 5 is a commutation failure detection circuit, and □ is a phase control circuit, which generates the ignition timing of U phase, Z phase, V phase, X phase, W phase, and Y phase. 8 receives the inverted signal of the output from the phase control circuit T and the output from the commutation failure detection circuit 5, and outputs the signal from the phase control circuit 1 during normal operation, and when the commutation failure occurs, the output from the phase control circuit Inhibit circuit that cuts the signal from 6
determines the currently firing phase based on the signal from the phase control circuit □, determines the phase to fire in the event of commutation failure, and waits. 9 is an OR circuit that takes the OR between the output signal of the inhibit circuit 8 and the output signal of the commutation failure timing determining circuit 6. The circuit 10 is an interface.

以下第2図により従来の転流失敗時の保護方式を説明す
る。
A conventional protection system in case of failure of commutation will be explained below with reference to FIG.

転流失敗検出回路5より転流失敗信号が発生すると位相
制御回路7からの点弧指令をィンヒビット回路8により
カットすると共に、該信号は転流失敗時点弧相決定回路
6に送られ、該回路より正規の点弧相の次の相に点弧指
令を発生する。該指令はオア回路9、インタフェイス1
0を介して、制御整流素子のゲートに送られろ。例えば
U相からり相に転流中に転流失敗が発生すると、転流失
敗時点弧相決定回路6からはW相へ点弧指令が発生し、
W相とz相が通電しバイパスペア状態となる。転流失敗
検出回路5からの出力信号を正常時ば0”,転流失敗時
は“l゛とすると、転流失敗時からの61″の信号の発
生期間を180流としておくと、転流失敗信号が00″
にもどると、再び、位相制御回路からの点弧タイミング
によジ点弧が始まジ、もとの状態にもどる。以上説明し
た転流失敗時の保護動作における、単位制御整流器の相
電圧波形と、直流出力波形を第3図に示す。第4図に6
単位制御整流器を2台並列に接続し、12相整流を行な
つている1制御整流装置の主回路構成図を示す。
When a commutation failure signal is generated from the commutation failure detection circuit 5, the firing command from the phase control circuit 7 is cut by the inhibit circuit 8, and the signal is sent to the firing phase determination circuit 6 at the time of commutation failure. An ignition command is generated in the next phase of the more regular ignition phase. The command is OR circuit 9, interface 1
0 to the gate of the controlled rectifier. For example, if a commutation failure occurs during commutation to the U phase and the starting phase, a firing command is issued to the W phase from the firing phase determination circuit 6 at the time of commutation failure,
The W phase and the Z phase are energized and enter a bypass pair state. If the output signal from the commutation failure detection circuit 5 is 0'' when normal and 1 when commutation fails, and the period during which the signal 61'' is generated from the time of commutation failure is 180 flows, then commutation Failure signal is 00''
When it returns to normal, ignition starts again according to the ignition timing from the phase control circuit, and the original state is restored. FIG. 3 shows the phase voltage waveform of the unit control rectifier and the DC output waveform in the protection operation in the event of commutation failure described above. 6 in Figure 4
The main circuit configuration diagram of a single-control rectifier in which two unit-control rectifiers are connected in parallel and performs 12-phase rectification is shown.

図中第1図と同一機能のものは同一符号で記した。とこ
ろで、第4図に示すような制御整流装置に前述したよう
な転流失敗時の制御整流装置の保護方式を用いると、転
流失敗した方の単51J御整流器に電流が集中するとい
う不具合が発生する。
Components in the figure that have the same functions as those in FIG. 1 are designated by the same reference numerals. By the way, if the above-mentioned protection method for a controlled rectifier in the event of commutation failure is used in a controlled rectifier as shown in FIG. Occur.

たとえば、従来の保護方式では単位匍脚整流器3一1が
転流失敗したとすると、単位制御整流器3−1はバイパ
スペア状態とな)直流出力零となるが、単位制御整流器
3−2はいわゆるインバータ電圧(第3図の直流出力波
形で示した負の電圧)を発生しているため、負荷の電流
はほとんどすべて単位制御整流器3−1に流れる。この
ため該整流器の電流値が転流失敗時よジ増加するので、
一定時間後に復帰させようとしても再び転流失敗を起こ
し電流制御が不能になるとともに、単位制御整流器3−
1のバイパスペア相が過電流になるという不具合が発生
する。特に負荷が大きなインダクタンスの場合とか、大
きなフォーシンク電圧を必要とするため、単位制御整流
器を並列に接続すると共にカスケードに接続し力率改善
のため個別に点弧角湘脚している場合は上記不具合が著
しい。本発明の目的は単位制御整流器を複数台並列に接
続し12相以上を構成している制御整流装置において、
一つの単位制御整流器が転流失敗した場合でも、スムー
ズに転流失敗から復帰できる制御整流装置の保護方式を
提供することにある。以下本発明を図面を参照して説明
する。第5図に本発明の一実施例のプロツク図を示す。
図中第2図と同一機能のプロツクには同一符号を記した
。11−1と11−2は、他の単位匍脚整流装置が転流
失敗した場合、転流失敗信号により点弧角αを逆変換領
域(αが90失〜1800)から順変換領域(αが00
〜90失)に移す機能を付加した位相制御回路である。
For example, in the conventional protection system, if the unit leg rectifier 3-1 fails in commutation, the unit control rectifier 3-1 will be in a bypass pair state), and the DC output will be zero, but the unit control rectifier 3-2 will be in the so-called bypass pair state. Since an inverter voltage (negative voltage shown by the DC output waveform in FIG. 3) is generated, almost all of the load current flows to the unit control rectifier 3-1. For this reason, the current value of the rectifier increases when commutation fails, so
Even if an attempt is made to recover after a certain period of time, commutation failure occurs again, current control becomes impossible, and the unit control rectifier 3-
A problem occurs in which the bypass pair phase 1 becomes overcurrent. In particular, when the load is a large inductance or a large sink voltage is required, unit control rectifiers are connected in parallel and connected in cascade, and the firing angle is adjusted individually to improve the power factor. The problem is significant. The object of the present invention is to provide a controlled rectifier in which a plurality of unit controlled rectifiers are connected in parallel to form 12 or more phases.
An object of the present invention is to provide a protection system for a controlled rectifier that can smoothly recover from commutation failure even when one unit controlled rectifier fails in commutation. The present invention will be explained below with reference to the drawings. FIG. 5 shows a block diagram of an embodiment of the present invention.
In the figure, blocks having the same functions as those in FIG. 2 are denoted by the same reference numerals. 11-1 and 11-2 change the firing angle α from the inverse conversion area (α is 90 to 1800) to the forward conversion area (α is 00
This is a phase control circuit with an added function to shift the phase to 90%.

5−1,5−2,6−1,81〜86,91〜96,1
0−1,10−2は第2図の5,6,8,9および10
の機能に対応しているので説明は省略する。
5-1, 5-2, 6-1, 81-86, 91-96, 1
0-1, 10-2 are 5, 6, 8, 9 and 10 in Figure 2
Since it corresponds to the function of , the explanation will be omitted.

第6図に第5図の位相制御回路11−1,11−2の一
実施例のプロツク図を示す。12は基準値と検出値の偏
差により点弧角を制御する信号Ecを発生する制御回路
、13は他単位匍脚整流器の転流失敗時の点弧角制御信
号発生回路、14は点弧進み角優先回路、15は同期電
源回路、16は同期電源回路15の出力信号と点弧進み
角優先回路14の出力信号とを比較し一致点で点弧タイ
ミング指令を発生するコンパレータ、17はコンパレー
タ16の出力を点弧相にふジ分けるロジツク制御回路、
18は他の単位制御整流器の転流失敗信号、19は信号
18が111のとき閉となるアナログスイツチである。
FIG. 6 shows a block diagram of an embodiment of the phase control circuits 11-1 and 11-2 shown in FIG. 12 is a control circuit that generates a signal Ec to control the firing angle based on the deviation between the reference value and the detected value; 13 is a firing angle control signal generation circuit when commutation of another unit leg rectifier fails; 14 is a firing advance 15 is a synchronous power supply circuit; 16 is a comparator that compares the output signal of the synchronous power supply circuit 15 with the output signal of the ignition advance angle priority circuit 14 and generates an ignition timing command at a point of agreement; 17 is a comparator 16; Logic control circuit that divides the output into ignition phases,
18 is a commutation failure signal of another unit control rectifier, and 19 is an analog switch that is closed when the signal 18 is 111.

次に本発明の作用を第4図、第5図、第6図によ)説明
する。
Next, the operation of the present invention will be explained with reference to FIGS. 4, 5, and 6.

簡単のために、主回路構成は第4図の単位制御整流器2
並列の場合で説明するが、本発明は単位制御整流器が複
数個並列の場合にも適用できる。第5図において、正常
運転時は転流失敗検出回路の出力信号ばO゛であり、単
位制御整流器3−1,3−2は位相制御回路11−1,
11−2の点弧タイミングによジ位相制御されている。
第4図の単位制御整流器3−1が転流失敗すると該整流
器の転流失敗検出回路の出力は“1”となク、転流失敗
した単位制御整流器は従来の保護方式と同一に制御され
バイバスペア状態となる。同時に転流失敗検出回路5−
1の出力信号は他方の健全運転中の単位1U御整流器3
−2の位相制御回路11−2に送られる。位相制御回路
11−2は、第6図に示すように他の単位制御整流器の
転流失敗信号18が゛1゜゛になるとアナログスイツチ
19が閉となる。このため点弧進み角優先回路14によ
シ正常時の制御回路12からの出力がカツトされ、転流
失敗時点弧角制御信号が選択され、ロジツク制御回路1
7よジ点弧信号が発生する。転流失敗時点弧角は90ジ
よジ小さな適当な値に設定しておけば、転流失敗信号1
8からの信号をうけて制御整流器3−2は、逆変換領域
から1頃変換領域に瞬時に移行できる。従来方式で述べ
たように、転流失敗信号を転流失敗時からある設定時間
後に正常状態、本発明では“O”にすれば6再び単位匍
脚整流器3−2は、制御回路12の出力信号Ecによジ
決定される点弧角で運転され、単位Fbl脚整流器3−
1は転流失敗から復帰することができる。以上の説明の
動作を行なつた場合の単位制御整流器3−1,3−2の
相電圧波形及び直流出力波形を第7図に示す。
For simplicity, the main circuit configuration is the unit control rectifier 2 shown in Figure 4.
Although the description will be given in the case of parallel units, the present invention can also be applied to the case where a plurality of unit control rectifiers are connected in parallel. In FIG. 5, during normal operation, the output signal of the commutation failure detection circuit is O'', and the unit control rectifiers 3-1, 3-2 are connected to the phase control circuit 11-1,
The phase is controlled by the firing timing of 11-2.
When the unit control rectifier 3-1 in Fig. 4 fails in commutation, the output of the commutation failure detection circuit of the rectifier becomes "1", and the unit control rectifier in which commutation has failed is controlled in the same manner as in the conventional protection system. It becomes a bypass spare state. At the same time, commutation failure detection circuit 5-
The output signal of 1 is the unit 1U control rectifier 3 which is in normal operation.
-2 phase control circuit 11-2. In the phase control circuit 11-2, as shown in FIG. 6, when the commutation failure signal 18 of the other unit control rectifier reaches ``1'', the analog switch 19 closes. Therefore, the ignition advance angle priority circuit 14 cuts off the output from the control circuit 12 during normal operation, selects the ignition angle control signal at the time of commutation failure, and selects the output from the control circuit 12 when the commutation fails.
7 The ignition signal is generated. If the arc angle at the time of commutation failure is set to an appropriate value smaller than 90 degrees, the commutation failure signal 1
In response to the signal from 8, the controlled rectifier 3-2 can instantly shift from the inverse conversion region to the 1 conversion region. As described in the conventional method, if the commutation failure signal is set to the normal state after a certain set time from the time of commutation failure, and is set to "O" in the present invention, the unit leg rectifier 3-2 returns to the output of the control circuit 12. The unit Fbl leg rectifier 3- is operated at the firing angle determined by the signal Ec.
1 can recover from commutation failure. FIG. 7 shows the phase voltage waveforms and DC output waveforms of the unit control rectifiers 3-1 and 3-2 when the above-described operation is performed.

以下第7図について説明する。U,,L,Wl,Xl,
Yl,Zlは単位制御整流器3−1の相電圧6U2,V
2,W2,X2,Y2,W2は単位制御整流器3−2の
相電圧である。第7図は一例として単位匍脚整流器3−
1,3−2を点弧角α=1500付近で運転中単位制御
瞥流器3−1で,相からW1相へ転流中、転流失敗が発
生した場合を示した。単位制御整流器3−1はU1相に
点弧指令が入D、,相からU1相へ転流し、U1相とX
1相が通電伏態いわゆるバイパスペア状態となジ直流出
力電圧は零となつている。単位匍脚整流器3−2は単位
制御整流器3−1から転流失敗信号を受け、点弧角が1
50かから30敗に急速に進められるので、V2相、X
2相通電状態から、W2相、2相への点弧指令が発生す
るが、すでにU2相の300になつているため、続いて
U2相への点弧指令が発生し、Y2相、U2相通電状態
となジ、出力電圧は第7図に示すような正の電圧が発生
している。
FIG. 7 will be explained below. U,,L,Wl,Xl,
Yl, Zl are the phase voltages 6U2, V of the unit control rectifier 3-1
2, W2, X2, Y2, and W2 are phase voltages of the unit control rectifier 3-2. FIG. 7 shows a unit leg rectifier 3- as an example.
1 and 3-2 are operated at around the firing angle α=1500, and a commutation failure occurs during commutation from the phase to the W1 phase in the unit control flow device 3-1. In the unit control rectifier 3-1, the ignition command is input to the U1 phase, commutation occurs from the D phase to the U1 phase, and the U1 phase and X
One phase is in the energized state, so-called bypass pair state, and the direct current output voltage is zero. The unit leg rectifier 3-2 receives a commutation failure signal from the unit control rectifier 3-1, and the firing angle is 1.
You can quickly progress from 50 to 30 losses, so V2 phase,
From the 2-phase energized state, a firing command is issued to the W2 and 2 phases, but since it has already reached 300 for the U2 phase, a firing command to the U2 phase is subsequently generated, and the firing command is issued to the Y2 and U2 phases. When the power is turned on, a positive output voltage as shown in FIG. 7 is generated.

主回路構成図第4図において、単位制御整流器3一1の
直流出力電圧は零、単位制御整流器3−2の直流出力電
圧は正であるから、負荷電流は、単位制御整流器3−2
,負荷4を通つて流れると共に、単位制御整流器3−2
,から3−1へ電流を流し込もうとするため、単位蒲u
御整流器3−1の重流は急速に減少する。前述したよう
に転流失敗はなんらかの不具合により転流余裕角γ二1
800−α−uがある値より小さくなると発生する。転
流重なう角uは制御整流素子に流れている電流が減少す
ると小さくなるので、単位制御整流器3−1の電流を減
少させるとスムーズに転流失敗から復帰させることがで
きる。単位制御整流器3−2からの出力電圧値の電圧時
間積の値によつては、単位制御整流器3−1はオフする
場合もあるが、この場合も同様に転流失敗から復帰させ
ることができる。以上の説明から明らかなように、従来
の転流失敗時の保護方式に他単位匍脚整流器転流失敗時
の点弧角設定回路と、アナログスイツチ及び点弧進み角
優先回路等の簡単な電子回路を追加し他の単位制御整流
器の転流失敗信号を受ければ、単位制御整流器を複数台
並列に接続して12相以上を構成している制御整流装置
においても転流失敗からスムーズに復帰し運転を継続す
ることができる。
In the main circuit configuration diagram in FIG. 4, the DC output voltage of the unit control rectifier 3-1 is zero, and the DC output voltage of the unit control rectifier 3-2 is positive, so the load current is
, through the load 4 and unit controlled rectifier 3-2.
, to flow the current from 3-1 to 3-1, the unit is u
The heavy current of the control rectifier 3-1 decreases rapidly. As mentioned above, commutation failure is caused by some kind of malfunction that causes the commutation margin angle γ21 to decrease.
This occurs when 800-α-u becomes smaller than a certain value. Since the commutation overlapping angle u becomes smaller as the current flowing through the control rectifier decreases, reducing the current of the unit control rectifier 3-1 allows smooth recovery from commutation failure. Depending on the value of the voltage-time product of the output voltage value from the unit control rectifier 3-2, the unit control rectifier 3-1 may be turned off, but in this case as well, it is possible to recover from commutation failure. . As is clear from the above explanation, in addition to the conventional protection system in the event of commutation failure, simple electronics such as a firing angle setting circuit in the event of commutation failure of the unit rectifier, an analog switch, and a firing advance angle priority circuit are used. If you add a circuit and receive commutation failure signals from other unit control rectifiers, you can smoothly recover from commutation failure even in controlled rectifiers that connect multiple unit control rectifiers in parallel to form 12 or more phases. You can continue driving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3相ブリツジ制御整流装置主回路構成図、第2
図は従来使用されている転流失敗時の制御整流装置の噸
方式のプロツク図、第3図は従来の保護方式を行なつた
場合の単位制御整流器の相電圧と直流出力電圧波形図、
第4図は単位制御整流器2台を並列接続した制御整流装
置の主回路構成図、第5図は本発明の一実施例を示すプ
ロツク図、第6図は本発明に使用する位相制御回路の一
実施例を示すプロツク図、第7図は本発明を説明するた
めの単位制御整流器の相電圧と直流出力電圧波形図であ
る。 1・・・・・・交流母線、2,2−1,2−2・・・・
・・整流器用変圧器、3,3−1,3−2・・・・・・
単位制御整流器、4・・・・・・負荷、5,5−1,5
−2・・・・・・転流失敗検出回路.6,6−1,6−
2・・・・・・転流失敗時点弧相決定回路、7・・・・
・・位相制御回路、8,8,,〜86・・・・・・イン
ヒビツト回路、9,91〜96・・・・・・オア回路、
10,]0−1・・・・・・インタフエイス11−1,
11−2・・・・・・本発明のための位相匍脚回路、1
2・・・・・・点弧角制御回路、13・・・・・・他単
位制御整流器転流失敗時点弧角制御信号発生回路、14
・・・・・・点弧進み角優先回路、16・・・・・・コ
ンパレータ、17・・・・・・ロジツク制御回路、18
・・・・・・他単位制御整流失敗信号、19・・・・−
・アナログスイツチ。
Figure 1 is the main circuit configuration diagram of the three-phase bridge control rectifier;
The figure is a block diagram of a conventionally used control rectifier method in the event of commutation failure, and Figure 3 is a diagram of the phase voltage and DC output voltage waveforms of a unit control rectifier when the conventional protection method is used.
Fig. 4 is a main circuit configuration diagram of a controlled rectifier in which two unit control rectifiers are connected in parallel, Fig. 5 is a block diagram showing an embodiment of the present invention, and Fig. 6 is a diagram of a phase control circuit used in the present invention. FIG. 7 is a block diagram showing one embodiment, and is a waveform diagram of phase voltage and DC output voltage of a unit control rectifier for explaining the present invention. 1... AC bus, 2, 2-1, 2-2...
... Rectifier transformer, 3, 3-1, 3-2...
Unit control rectifier, 4... Load, 5, 5-1, 5
-2... Commutation failure detection circuit. 6,6-1,6-
2...Signing phase determination circuit at the time of commutation failure, 7...
...Phase control circuit, 8,8,,~86...Inhibit circuit, 9,91-96...OR circuit,
10,]0-1...Interface 11-1,
11-2...Phase leg circuit for the present invention, 1
2... Firing angle control circuit, 13... Other unit control rectifier commutation failure time firing angle control signal generation circuit, 14
...Ignition advance angle priority circuit, 16...Comparator, 17...Logic control circuit, 18
...Other unit control rectification failure signal, 19...-
・Analog switch.

Claims (1)

【特許請求の範囲】[Claims] 1 単位制御整流器を複数台並列に接続し、12相以上
を構成する制御整流装置において、ある特定の単位制御
整流器が転流失敗した時、該単位制御整流器をバイパス
ペアに投入すると同時に、他の健全な単位制御整流器の
点弧角を逆変換動作領域から順変換動作領域に移行した
後転流失敗した単位制御整流器をバイパスペアから解除
することを特徴とする制御整流装置の保護方式。
1. In a controlled rectifier in which multiple unit controlled rectifiers are connected in parallel to form 12 or more phases, when a particular unit controlled rectifier fails in commutation, the unit controlled rectifier is connected to the bypass pair, and at the same time the other unit controlled rectifiers are A protection method for a controlled rectifier, characterized in that a unit controlled rectifier in which commutation has failed is removed from a bypass pair after the firing angle of a healthy unit controlled rectifier is shifted from an inverse conversion operation area to a forward conversion operation area.
JP53096778A 1978-08-09 1978-08-09 Protection method of controlled rectifier Expired JPS5943914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53096778A JPS5943914B2 (en) 1978-08-09 1978-08-09 Protection method of controlled rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53096778A JPS5943914B2 (en) 1978-08-09 1978-08-09 Protection method of controlled rectifier

Publications (2)

Publication Number Publication Date
JPS5523778A JPS5523778A (en) 1980-02-20
JPS5943914B2 true JPS5943914B2 (en) 1984-10-25

Family

ID=14174085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53096778A Expired JPS5943914B2 (en) 1978-08-09 1978-08-09 Protection method of controlled rectifier

Country Status (1)

Country Link
JP (1) JPS5943914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157306U (en) * 1988-04-19 1989-10-30
JPH04314008A (en) * 1991-04-12 1992-11-05 Fujikura Ltd Optical fiber cable and multiple integrated connector for the same
JPH0664213U (en) * 1993-02-17 1994-09-09 日本電信電話株式会社 Optical connector ferrule

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394418A (en) * 1981-12-24 1983-07-19 Ppg Industries, Inc. Aqueous sizing composition and glass fibers made therewith for reinforcing thermosetting polymers
US4374177A (en) * 1981-12-24 1983-02-15 Ppg Industries, Inc. Aqueous sizing composition for glass fibers and sized glass fibers for thermoplastic reinforcement
JPH0528067Y2 (en) * 1984-12-29 1993-07-19

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157306U (en) * 1988-04-19 1989-10-30
JPH04314008A (en) * 1991-04-12 1992-11-05 Fujikura Ltd Optical fiber cable and multiple integrated connector for the same
JPH0664213U (en) * 1993-02-17 1994-09-09 日本電信電話株式会社 Optical connector ferrule

Also Published As

Publication number Publication date
JPS5523778A (en) 1980-02-20

Similar Documents

Publication Publication Date Title
CA2120213C (en) Power inverting apparatus
JP2760666B2 (en) Method and apparatus for controlling PWM converter
US4489371A (en) Synthesized sine-wave static generator
JP3447366B2 (en) Three-phase PWM voltage generation circuit
JP2598163B2 (en) Power converter
WO2023074636A1 (en) Power conversion device and control method
JPS5943914B2 (en) Protection method of controlled rectifier
JP2006340410A (en) Ac direct converter unit
JPS62104481A (en) Driving system for dc power source
US4309751A (en) Method and apparatus for controlling current type inverters
JP2003230275A (en) Protection method for pwm cycloconverter
JP4423949B2 (en) Control device for AC / AC direct conversion device
JP3177085B2 (en) Power converter
JPS6035892B2 (en) power converter
JPH11318025A (en) Semiconductor power conversion system
JP2925439B2 (en) Three-phase control rectification
JPS59220074A (en) Controlling method of cycloconverter
JPH0258872B2 (en)
JPH05236750A (en) Rectifier
JP2797937B2 (en) Inverter control device
JP2641852B2 (en) Frequency converter
JPH0947041A (en) Power converter
JP2001178192A (en) Speed control device for induction motor
JPS6117214B2 (en)
JPS586389B2 (en) Emergency operation method for reactive power compensation converter