JPH0258851A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0258851A
JPH0258851A JP21128388A JP21128388A JPH0258851A JP H0258851 A JPH0258851 A JP H0258851A JP 21128388 A JP21128388 A JP 21128388A JP 21128388 A JP21128388 A JP 21128388A JP H0258851 A JPH0258851 A JP H0258851A
Authority
JP
Japan
Prior art keywords
suspension
solvent
adhesion
flattened
recessed parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21128388A
Other languages
Japanese (ja)
Inventor
Akira Tabuchi
明 田渕
Yuji Furumura
雄二 古村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21128388A priority Critical patent/JPH0258851A/en
Publication of JPH0258851A publication Critical patent/JPH0258851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a semiconductor device having a flattened surface at a comparatively low temperature and in a simple process by a method wherein a solvent which contains fine particles having a sufficiently small particle diameter to recessed parts, does not have an adhesion to protrusions and has an adhesion to the recessed parts is selected as a solvent in a suspension, the suspension is applied on the whole surface and the solvent is evaporated. CONSTITUTION:A solvent which does not have an adhesion to protrusions 30 and has an adhesion to recessed parts 31 is selected as a solvent in a suspension. Thereby, the suspension never applies on the upper surfaces of the protrusions 30, but stays only in the recessed parts 31: even if a method such as high- temperature annealing, etchback or the like is not used, the surface can be favorably flattened. Moreover, compared to a conventional SOG method, which has no selectivity for the protrusions and the recessed parts, and to a method using a suspension in which glass fine powder particles are used, the surface can be favorably flattened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板上に形成された配線と配線との間の溝ま
たは、素子分離のための溝に絶縁膜を埋込んで表面を平
坦化する半導体集積回路の製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a method of flattening the surface by burying an insulating film in a groove between wirings formed on a substrate or in a groove for element isolation. The present invention relates to a method for manufacturing semiconductor integrated circuits.

近年、半導体集積回路の高集積化が進み、これに伴なっ
て回路の微細化及び多層配線化の開発が盛んに行なわれ
ている。そこで、多層配線を行なうために、基板上に形
成された配線と配線との間の溝を平坦にしておく必要が
ある。また、微細化のため、素子と素子を分離するため
の穴(トレンチ)をあけることも行われ、それを平坦に
埋め込むことが必要とされている。
2. Description of the Related Art In recent years, semiconductor integrated circuits have become highly integrated, and along with this, development of circuit miniaturization and multilayer wiring has been actively conducted. Therefore, in order to perform multilayer wiring, it is necessary to flatten the grooves between the wirings formed on the substrate. Further, for miniaturization, holes (trenches) are also formed to separate elements, and it is necessary to fill the holes evenly.

〔従来の技術〕[Conventional technology]

従来の平坦化方法としては、例えば以下に■〜■で示す
4つの方法がある。その−例として、■ポリシリコン配
線の上にCVD法(気相成長法)にて3 p 3 G(
Boron Phospho 5ilicate Gl
ass)膜を堆積し、これを約900℃前後の高温アニ
ールで溶かして表面の凹凸を平坦化し、その復に蒸着ス
パッタ等によって例えばアルミニウム配線を行なう方法
がある。
As conventional planarization methods, there are, for example, four methods shown below. As an example, ■ 3 p 3 G (
Boron Phospho 5ilicate Gl
There is a method of depositing an ass) film, melting it by high-temperature annealing at about 900° C. to flatten surface irregularities, and then forming, for example, aluminum wiring by vapor deposition sputtering or the like.

他の例として、■5OG(、スピン・オン・グラス)に
よって表面に液体ガラスを塗布して凹部に液体ガラスを
溜め、乾燥によって液体を蒸発させて表面を平坦化する
方法がある。
Another example is a method in which liquid glass is applied to the surface using 5OG (spin-on glass), the liquid glass is collected in the recesses, and the liquid is evaporated by drying to flatten the surface.

また他の例として、■第5図(A)に示すように凹凸の
表面にCVD法によって絶縁膜1を形成して更にその表
面にSOG膜2を形成し、その後に同図(B)に示すよ
うにエツチングによってCVD絶縁g11及び5OGI
I!2を除去して平坦化するいわゆエッチバックによる
方法がある。
As another example, as shown in FIG. 5(A), an insulating film 1 is formed by the CVD method on the uneven surface, and an SOG film 2 is further formed on the surface, and then as shown in FIG. 5(B). CVD insulation g11 and 5OGI by etching as shown
I! There is a so-called etch-back method in which 2 is removed and planarized.

更に他の例として、■絶縁物質の微粉末粒子を溶媒に混
合した懸濁液を凹凸の表面に塗布して表面を平坦化する
方法がある。このものは、例えば特開昭58−1894
3号公報(発明の名称「平坦化された集積回路構造体の
製造方法」)に開示されている如く、構造体表面上に付
着されたガラスを流動させて表面の不規則な部分に埋込
み、表面を平坦化する方法、又、特開昭54−1408
84号公報(発明の名称「半導体装置の製造方法」)に
開示されている如く、リフトオフの隙間にシリカ(Sf
Oz>粉末の懸濁液を塗布して表面を平坦化する方法で
ある。
As another example, there is a method (2) in which a suspension of fine powder particles of an insulating material mixed in a solvent is applied to an uneven surface to flatten the surface. This one is, for example, published in Japanese Unexamined Patent Publication No. 58-1894.
As disclosed in Publication No. 3 (title of the invention ``Method for manufacturing a flattened integrated circuit structure''), glass adhered to the surface of the structure is made to flow and embedded in irregular parts of the surface, Method for flattening the surface, also disclosed in Japanese Patent Application Laid-Open No. 1408-1983
As disclosed in Publication No. 84 (title of invention "Method for manufacturing semiconductor device"), silica (Sf
This is a method in which a suspension of powder is applied to flatten the surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記■に示す方法は、一般にBPSG膜が軟化する温度
は高いのでこれからの集積度の高い集積回路においては
、基板中のソース、ドレインの不純物をその高い集積度
の集積回路について、不必要に拡散させてしまう虞れが
あり、高集積化、微細化には不利である問題点があった
。又、BPSG膜を軟化させても、表面を良好に平坦に
するには高いアニール温度又は高I11度のボロン、リ
ンのBPSG膜を必要とし、このために高濃度のボロン
、リンの8PSGを使ってより低いアニール温度で平坦
化しようとすると、膜の表面の荒れを生じ易い。また、
BPSGは、仮にボロン、リンを高濃度にしても、平坦
にするには、700℃以上のアニール温度を必要とし、
特にアルミニウム等の低融点物質を堆積した後の平坦化
方法として使用できず、使用範囲が狭い問題点があった
Since the temperature at which the BPSG film softens is generally high, the method shown in (2) above will unnecessarily diffuse source and drain impurities in the substrate in highly integrated circuits of the future. This poses a problem that is disadvantageous for high integration and miniaturization. In addition, even if the BPSG film is softened, a high annealing temperature or a high I of 11 degrees is required for the BPSG film of boron and phosphorus in order to obtain a good surface flatness. If planarization is attempted at a lower annealing temperature, the surface of the film tends to become rough. Also,
BPSG requires an annealing temperature of 700°C or higher to make it flat even if the boron and phosphorus concentrations are high.
In particular, it cannot be used as a planarization method after depositing a low-melting point substance such as aluminum, and there is a problem that the scope of use is narrow.

又、前記■に示す方法は、配線部分である凸部にも液体
ガラスが塗布されてしまうため、あくまでも凹凸の差を
少なめにするだけであり、表面を良好に平坦化できない
問題点があった。
In addition, the method shown in (1) above has the problem that the liquid glass is also applied to the convex portions that are the wiring portions, so it only reduces the difference in unevenness, and the surface cannot be flattened well. .

又、前記■に示す方法は、工程が複雑で、コスト高とな
る問題点の伯、一般に一枚一枚のウェハに対して僅かな
から膜質が異なることからエツチング速度がCVD絶縁
膜1とSOG膜2とで一致しないことがあり、結果的に
表面に溝ができてしまって表面を良好に平坦化できない
問題点があった。
In addition, the method shown in (2) above has the problem that the process is complicated and the cost is high.Generally, the etching rate is different from that of the CVD insulating film 1 and the SOG film because the film quality differs slightly for each wafer. There was a problem that the surface did not match the film 2, and as a result, grooves were formed on the surface, making it impossible to flatten the surface well.

又、前記■に示す方法は、凹凸の両方に懸濁液を塗布し
て絶縁膜を形成するものであり、表面を平坦化するため
には例えば第6図に示すように凹凸両方を含むかなり厚
い絶縁膜3の形成が必要であり、表面を良好に平坦化で
きない問題点があった。
In addition, in the method shown in (1) above, an insulating film is formed by applying a suspension to both the concave and convex surfaces, and in order to flatten the surface, it is necessary to apply a suspension to both the concave and convex surfaces, as shown in Figure 6, for example. There was a problem that it was necessary to form a thick insulating film 3, and the surface could not be flattened well.

本発明は、比較的低温で、簡単な工程で表面を良好に平
坦化できる半導体装置の製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can achieve good surface planarization at relatively low temperatures and through simple steps.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明方法の原理図を示す。同図中、30は凸
部、31は凹部である。34は懸濁液で、凹部31に対
して十分に小さな粒径を有する微粒子32を含み、凸部
30を構成する物質に対して付着性をもたず、凹部31
に対して付着性をもつ溶媒33を選定している。本発明
は、この懸濁液34を、凸部30及び凹部31がある表
面全面に塗布する工程と、該塗布した懸濁液34の溶媒
33を蒸発させる工程とを含む。
FIG. 1 shows a diagram of the principle of the method of the invention. In the figure, 30 is a convex portion and 31 is a concave portion. Reference numeral 34 denotes a suspension, which contains fine particles 32 having a sufficiently small particle size relative to the concave portions 31, has no adhesion to the substance constituting the convex portions 30, and is
A solvent 33 is selected that has adhesion to. The present invention includes a step of applying this suspension 34 to the entire surface where the convex portions 30 and recesses 31 are located, and a step of evaporating the solvent 33 of the applied suspension 34.

〔作用〕[Effect]

本発明では、懸濁液の溶媒を、凸部30に対して付着性
をもたず、凹部31に対して付着性をもつものに選定し
ている。これにより、懸濁液は凸部30の上面には載る
ことはなく、凹部31のみに溜り、従来例のような高温
アニールやエッチバック等の方法を用いないでも表面を
良好に平坦化でき、又、凸部及び凹部に対して選択性を
もたせていない従来のSOGによる方法やガラス微粉末
粒子を用いた懸濁液を用いた方法に比して表面を良好に
平坦化できる。
In the present invention, the solvent for the suspension is selected to be one that does not adhere to the convex portions 30 but has adhesive properties to the concave portions 31. As a result, the suspension does not rest on the upper surface of the convex portion 30, but accumulates only in the concave portion 31, and the surface can be flattened well without using methods such as high-temperature annealing or etch-back as in conventional examples. Furthermore, the surface can be flattened better than the conventional method using SOG, which does not have selectivity for convex portions and concave portions, or the method using a suspension using fine glass powder particles.

〔実施例〕〔Example〕

第2図は本発明方法の第1実施例の製造工程図を示す。 FIG. 2 shows a manufacturing process diagram of a first embodiment of the method of the present invention.

第2図(A)において、シリコン基板10の表面に酸化
シリコンl1lJ11を形成し、その表面にポリシリコ
ンによる配I!(g!厚例えば5(101〜1〜1μl
1l)12をバターニング形成する。
In FIG. 2(A), silicon oxide l1lJ11 is formed on the surface of a silicon substrate 10, and a polysilicon layer I! (g! Thickness e.g. 5 (101~1~1μl
1l) Form 12 into butter.

次に、配線(凸部)12と配線(凸部)12との間の溝
(凹部)13を絶縁層14で埋込む。
Next, the grooves (concave portions) 13 between the wirings (convex portions) 12 are filled with an insulating layer 14 .

ここで、絶縁層14を形成する方法について説明する。Here, a method for forming the insulating layer 14 will be explained.

例えば平均粒径70η−+(1!!1部13の幅(数1
0001.1)に比して十分に小さい)の酸化シリコン
くガラス粉末でもよい)を例えば純水の溶媒に混合し、
懸濁液を作る。この場合、溶媒は凸部である配線12を
構成する物質(ポリシリコン)に対して破水性を有し、
かつ、凹部13を構成する物質く酸化シリコン)に対し
て付着性を有するものを選定する。このように、溝を埋
込む絶縁層14を形成する際の懸濁液の溶媒を、凸部に
対して破水性、凹部に対して付着性をもつものに選定し
た点に本発明の特徴がある。
For example, the average particle diameter 70η-+(1!!1 part 13 width (several 1
0001.1), which is sufficiently small compared to 0001.1), is mixed with a solvent of pure water, for example.
Make a suspension. In this case, the solvent has water-breaking properties for the material (polysilicon) constituting the wiring 12, which is the convex portion,
In addition, a material that has adhesion to the material constituting the recess 13 (silicon oxide) is selected. As described above, the present invention is characterized in that the solvent for the suspension used in forming the insulating layer 14 for filling the grooves is selected to have water-breaking properties in the convex portions and adhesive properties in the concave portions. be.

このように懸濁液の溶媒を凸部12に対して破水性のあ
るものに選んだために凸部12の上面には懸濁液は載る
ことはなく、凹部13のみに溜る。
Since the solvent for the suspension is selected to have water-breaking properties for the convex portions 12, the suspension does not rest on the upper surface of the convex portions 12, but accumulates only in the concave portions 13.

次に、溶媒を乾燥によって蒸発させると凹部13には酸
化シリコン微粒子が堆積され、表面は良好に平坦化され
る。この場合、乾燥によって絶縁層14表面が凸部12
の表面よりも僅かに低くなることが考えられるが、その
場合は再び懸濁液を少し塗布してこれを乾燥させればよ
い。
Next, when the solvent is dried and evaporated, silicon oxide fine particles are deposited in the recesses 13, and the surface is well flattened. In this case, drying causes the surface of the insulating layer 14 to
It may be slightly lower than the surface of the surface, but in that case, just apply a small amount of the suspension again and let it dry.

次に、表面に第2図(B)に示す如く、CVD法(又は
蒸着、スパッタ)にて酸化シリコン膜(又はP S G
 膜でもよい)15を形成する。この場合、第2図(A
)に示す工程において表面を良好に平坦化できているの
で、後工程において形成される上層配線との絶縁性が良
好で、かつ、緻密で平坦な酸化シリコン膜15を形成で
きる。
Next, as shown in FIG. 2(B), a silicon oxide film (or PSG
(It may be a film) 15 is formed. In this case, Fig. 2 (A
Since the surface can be flattened well in the process shown in ), it is possible to form a dense and flat silicon oxide film 15 that has good insulation from the upper layer wiring formed in the subsequent process.

このように本実施例によれば、前述の従来例■に比して
低温で製造できるので基板中のソース、ドレインの不純
物を不必要に拡散されてしまったり、表面の荒れも生じ
ることはい。又、前述の従来例■、■に比して表面を良
好に平坦化でき、更に、前述の従来例■のようにエッチ
バックによって平坦化しているわけではないので、この
点からも表面を良好に平坦化でき、しがも従来例■より
も少ない工程で!1lT1できる。
As described above, according to this embodiment, since it can be manufactured at a lower temperature than the conventional example (2) described above, impurities in the source and drain in the substrate are not unnecessarily diffused, and the surface is not roughened. In addition, the surface can be better flattened than the conventional examples (■) and (2) described above, and furthermore, unlike the conventional example (■) described above, the surface is not flattened by etch-back, so from this point of view as well, the surface can be flattened better. It can be flattened with fewer steps than the conventional method ■! I can do 1lT1.

第3図は本発明方法の第2実施例の製造工程図を示す。FIG. 3 shows a manufacturing process diagram of a second embodiment of the method of the present invention.

第3図(A)に示す配線12を形成するまでは第2図に
示す第1実施例と同じである。次に、この表面に第3図
(B)に示すように酸化シリコン膜11aを形成する。
The process is the same as the first embodiment shown in FIG. 2 until the wiring 12 shown in FIG. 3(A) is formed. Next, a silicon oxide film 11a is formed on this surface as shown in FIG. 3(B).

この場合、凸部12の側壁にも酸化シリコンll111
aが付着するようにし、凹部13における酸化シリコン
膜11aの膜厚は第3図(A)に示す工程におけるそれ
よりも僅かに厚くなる。続いて、同図(C)において、
異方性エツチング(RIE)で凸部12の上面に付着さ
れている酸化シリコン膜を除去する。この異方性エツチ
ングで凹部13における酸化シリコンIt!11aも僅
かに除去され、第3図(A)に示す工程におけるそれと
ほぼ同じになる。
In this case, silicon oxide ll111 is also applied to the side wall of the convex portion 12.
The thickness of the silicon oxide film 11a in the recess 13 is slightly thicker than that in the step shown in FIG. 3(A). Next, in the same figure (C),
The silicon oxide film attached to the upper surface of the convex portion 12 is removed by anisotropic etching (RIE). This anisotropic etching results in silicon oxide It! in the recess 13. 11a is also slightly removed, which is almost the same as in the step shown in FIG. 3(A).

次に、同図(D)において、前述の第1実施例と同様の
懸濁液16aを塗布して凹部13に埋込む。このとき、
凸部12の側壁にも酸化シリコン1111aが付着して
いるので、懸濁液16aは凹部底面は勿論のこと、凸部
12の側壁にも良好に付着し、−h、凸部12の上面に
は酸化シリコン膜11aはないので破水性のために付着
しない。
Next, in FIG. 2D, a suspension 16a similar to that of the first embodiment described above is applied and filled into the recess 13. At this time,
Since the silicon oxide 1111a is also attached to the side wall of the convex portion 12, the suspension 16a adheres well not only to the bottom surface of the concave portion but also to the side wall of the convex portion 12, and -h, to the top surface of the convex portion 12. Since there is no silicon oxide film 11a, it does not adhere due to water-breaking properties.

このように、懸濁液16aは凹部底面及び凸部側壁の両
方に密着できるため、特に、凹部13の径がごく小さい
微細化パターンに最適である。次に、同図(E)におい
て、溶媒を乾燥によって蒸発させると凹部13には酸化
シリコン微粒子が堆積されて絶縁1fW16が形成され
、表面は良好に平坦化される。
In this manner, the suspension 16a can be brought into close contact with both the bottom surface of the recess and the side wall of the convex portion, which is particularly suitable for fine patterns in which the diameter of the recess 13 is extremely small. Next, in FIG. 5E, when the solvent is dried and evaporated, silicon oxide fine particles are deposited in the recesses 13 to form an insulation 1fW16, and the surface is well flattened.

第4図は本発明方法の第3実施例の製造工程図を示す。FIG. 4 shows a manufacturing process diagram of a third embodiment of the method of the present invention.

このものはトレンチアイソレージコンに適用されるもの
である。第4図(A)において、シリコン基板17にト
レンチ18を形成し、次に、同図(B)において、全面
に酸化シリコン膜19を形成する。ここで、トレンチ1
8aの中にレジスト膜(図示せず)を埋込んで異方性エ
ツチングを行ない、レジスト膜を除去すると、同図(C
)に示す如く、トレンチ18の中のみに酸化シリコン膜
19aが残る。
This is applied to trench isolation controllers. In FIG. 4(A), a trench 18 is formed in the silicon substrate 17, and then, in FIG. 4(B), a silicon oxide film 19 is formed on the entire surface. Here, trench 1
When a resist film (not shown) is embedded in 8a and anisotropic etching is performed and the resist film is removed, the same figure (C
), the silicon oxide film 19a remains only in the trench 18.

次に、この表面に酸化シリコン微粒子と溶媒との懸濁液
を塗布すると、同図(D)に示す如く、トレンチ18a
にのみ懸濁液が埋込まれる。この場合、溶媒は、シリコ
ン基板17に対しては破水性、トレンチ18内の酸化シ
リコン膜19aに対しては付着性のあるものを選定する
。続いて、懸濁液の溶媒を乾燥によって蒸発させると、
トレンチ18aに酸化シリコン微粒子の絶縁物20が埋
込まれ、シリコン基板17上には絶縁物は形成されず、
表面は良好に平坦化される。このように、径の掻く小さ
いトレンチアイソレーション構造においても、表面を良
好に平坦化できる。
Next, when a suspension of silicon oxide fine particles and a solvent is applied to this surface, trenches 18a are formed as shown in FIG.
The suspension is embedded only in the In this case, a solvent is selected that has water breaking properties for the silicon substrate 17 and adhesive properties for the silicon oxide film 19a in the trench 18. Subsequently, the solvent of the suspension is evaporated by drying,
An insulator 20 of silicon oxide fine particles is embedded in the trench 18a, and no insulator is formed on the silicon substrate 17.
The surface is well flattened. In this way, even in a trench isolation structure with a small diameter, the surface can be satisfactorily flattened.

なお、上記実施例では懸濁液の溶媒として純水を用いた
が、これに限定されるものではなく、凸部に対して付着
性をもたず、凹部に対して付着性をもつ溶媒を選定すれ
ばよい。
Although pure water was used as the solvent for the suspension in the above example, the solvent is not limited to this, and a solvent that does not adhere to convex portions but adheres to concave portions may also be used. Just choose.

〔発明の効果〕 以上説明した如く、本発明によれば、比較的低温で、し
かも簡単な工程により、表面を良好に平坦化できる。
[Effects of the Invention] As explained above, according to the present invention, the surface can be satisfactorily flattened at a relatively low temperature and through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の原理図、 第2図は本発明方法の第1実施例の製造工程図、第3図
は本発明方法の第2実施例の製造工程図、第4図は本発
明方法の第3実施例の製造工程図、第5図は従来方法の
一例の製造工程図、第6図は従来方法の他の例を説明す
る構成図である。 14.16.20は絶縁層、 18.18aはトレンチ、 30は凸部、 31は凹部、 32は微粒子、 33は溶媒、 34は懸濁液 を示す。 特許出願人 富 士 通 株式会社 図において、 10.17はシリコン基板、 11.11a、15.19.19aは酸化シリコン膜、 12はポリシリコン配線(凸部)、 13は溝(凹部)、 *1図 、(A) 第5図 if!6!!1 第3図 手続補正書 平成元年 6月22日 1、事件の表示 昭和63年 2、発明の名称 半導体装置の製造方法 3 補正をする者 事件との関係 住所 〒221 名称 (552) 代表者 4、代理人 住所 〒102 東京都千代田区麹町5丁目7番地 第211283号
Figure 1 is a diagram of the principle of the method of the present invention, Figure 2 is a diagram of the manufacturing process of the first embodiment of the method of the invention, Figure 3 is a diagram of the manufacturing process of the second embodiment of the method of the invention, and Figure 4 is a diagram of the present invention. FIG. 5 is a manufacturing process diagram of a third embodiment of the inventive method, FIG. 5 is a manufacturing process diagram of an example of the conventional method, and FIG. 6 is a configuration diagram illustrating another example of the conventional method. 14, 16, and 20 are insulating layers, 18.18a are trenches, 30 are convex portions, 31 are concave portions, 32 are fine particles, 33 are solvents, and 34 are suspension liquids. Patent applicant Fujitsu Ltd. In the diagram, 10.17 is a silicon substrate, 11.11a, 15.19.19a are silicon oxide films, 12 is a polysilicon wiring (convex part), 13 is a groove (concave part), * Figure 1, (A) Figure 5 if! 6! ! 1 Figure 3 Written amendment June 22, 1989 1. Indication of the case 1986 2. Name of the invention Method for manufacturing semiconductor devices 3. Person making the amendment Address related to the case 221 Name (552) Representative 4. Agent address: 211283, 5-7 Kojimachi, Chiyoda-ku, Tokyo 102

Claims (1)

【特許請求の範囲】  凸部(30)及び凹部(31)がある表面を平坦化す
る半導体装置の製造方法において、 上記凹部(31)に対して十分に小さな粒径を有する微
粒子(32)を含み、上記凸部(30)を構成する物質
に対して付着性をもたず、上記凹部(31)に対して付
着性をもつ溶媒(33)を選定した懸濁液(34)を、
上記凸部(30)及び凹部(31)がある表面全面に塗
布する工程と、該塗布した懸濁液(34)の溶媒(33
)を蒸発させる工程とを含むことを特徴とする半導体装
置の製造方法。
[Claims] A method for manufacturing a semiconductor device in which a surface having convex portions (30) and concave portions (31) is planarized includes fine particles (32) having a sufficiently small particle size relative to the concave portions (31). A suspension (34) containing a selected solvent (33) that does not have adhesion to the substance constituting the convex portion (30) and has adhesion to the concave portion (31);
A step of coating the entire surface with the convex portions (30) and concave portions (31), and a step of applying the solvent (33) of the applied suspension (34).
) evaporating a semiconductor device.
JP21128388A 1988-08-25 1988-08-25 Manufacture of semiconductor device Pending JPH0258851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21128388A JPH0258851A (en) 1988-08-25 1988-08-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21128388A JPH0258851A (en) 1988-08-25 1988-08-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0258851A true JPH0258851A (en) 1990-02-28

Family

ID=16603368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21128388A Pending JPH0258851A (en) 1988-08-25 1988-08-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0258851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004438A (en) * 2007-06-19 2009-01-08 Asahi Kasei Electronics Co Ltd Trench embedding composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140884A (en) * 1978-04-24 1979-11-01 Nec Corp Manufacture of semiconductor device
JPS6376351A (en) * 1986-09-18 1988-04-06 Nec Corp Formation of multilayer interconnection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140884A (en) * 1978-04-24 1979-11-01 Nec Corp Manufacture of semiconductor device
JPS6376351A (en) * 1986-09-18 1988-04-06 Nec Corp Formation of multilayer interconnection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004438A (en) * 2007-06-19 2009-01-08 Asahi Kasei Electronics Co Ltd Trench embedding composition

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JP3262496B2 (en) Method of manufacturing integrated circuit having embedded conductor
JP2838992B2 (en) Method for manufacturing semiconductor device
JPH06283485A (en) Manufacture of semiconductor device
JPH0410222B2 (en)
JPH0258851A (en) Manufacture of semiconductor device
JP3127983B2 (en) Method for manufacturing semiconductor device
JPS59136934A (en) Manufacture of semiconductor device
JP2606315B2 (en) Method for manufacturing semiconductor device
JPH10340952A (en) Method for forming multilayer wiring in integrated circuit
JPH0265256A (en) Manufacture of semiconductor device
JPH06244286A (en) Manufacture of semiconductor device
JPS60245254A (en) Formation of interlayer insulation film
JPH11238852A (en) Capacitor of semiconductor device and its manufacture
JPS61260638A (en) Manufacture of semiconductor device
JPH0712040B2 (en) Method for manufacturing semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPH0220141B2 (en)
JPH0653189A (en) Method for flattening of film formation layer
JPH02156538A (en) Manufacture of semiconductor device
JP2782912B2 (en) Method for manufacturing semiconductor device
JPH0193147A (en) Manufacture of semiconductor device
JPH03237721A (en) Method of flattening multilayer wiring
JPH0122984B2 (en)
JP2002507066A (en) Method for applying an insulating cap film to an insulating laminate