JPH0258772B2 - - Google Patents

Info

Publication number
JPH0258772B2
JPH0258772B2 JP56103533A JP10353381A JPH0258772B2 JP H0258772 B2 JPH0258772 B2 JP H0258772B2 JP 56103533 A JP56103533 A JP 56103533A JP 10353381 A JP10353381 A JP 10353381A JP H0258772 B2 JPH0258772 B2 JP H0258772B2
Authority
JP
Japan
Prior art keywords
region
base
base region
type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56103533A
Other languages
Japanese (ja)
Other versions
JPS586167A (en
Inventor
Kimimaro Yoshikawa
Isamu Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56103533A priority Critical patent/JPS586167A/en
Publication of JPS586167A publication Critical patent/JPS586167A/en
Publication of JPH0258772B2 publication Critical patent/JPH0258772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にバイポーラト
ランジスタを有する半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a method of manufacturing a semiconductor device having a bipolar transistor.

最近エレクトロニクスの応用分野が広がるにつ
れて、特性の異る種々のトランジスタを一枚の半
導体基板上に形成した半導体集積回路を製作する
ことが多くなつている。この傾向は特にバイポー
ラトランジスタを用いたリニア半導体集積回路
(以下LICと記す)において強くなつている。こ
のような半導体集積回路の製作において重要なこ
とは、いかにしてより少い工程で特性の異なる
種々のトランジスタを同一半導体基板上に形成す
るかということである。
Recently, as the field of application of electronics has expanded, semiconductor integrated circuits in which various transistors with different characteristics are formed on a single semiconductor substrate are increasingly being manufactured. This tendency is particularly strong in linear semiconductor integrated circuits (hereinafter referred to as LIC) using bipolar transistors. What is important in manufacturing such semiconductor integrated circuits is how to form various transistors with different characteristics on the same semiconductor substrate in fewer steps.

原理的には所要の特性を得るのに必要なトラン
ジスタの活性領域を適正に形成するためには、条
件を変えて何回でも選択的に不純物の導入を行え
ば良いわけであるが、実際問題としては、そう多
数回の処理を行なうことは難しく、不純物の導入
工程が増えれば増えるほど活性領域を適正に制御
できず、LICの品質及び製造歩留りが大幅に低下
する。従つて、各トランジスタの大きさを変えて
設計することにより、各トランジスタはなるべく
同一工程で製作できるように工夫されているが、
設計の自由度は必ずしも大きくはない。特に同一
の半導体基板上に通常のバイポーラトランジスタ
とIIL(Integrated Injection Logic)素子を同一
不純物導入工程で形成する場合には所望の特性を
得ることが極めて困難であつた。
In principle, in order to properly form the active region of a transistor necessary to obtain the desired characteristics, it is possible to selectively introduce impurities as many times as necessary by changing the conditions, but in practice However, it is difficult to perform such a process many times, and the more steps for introducing impurities, the more difficult it is to properly control the active region, and the quality and manufacturing yield of LIC decreases significantly. Therefore, by designing each transistor with a different size, efforts have been made to manufacture each transistor in the same process as much as possible.
The degree of freedom in design is not necessarily large. In particular, it has been extremely difficult to obtain desired characteristics when a normal bipolar transistor and an IIL (Integrated Injection Logic) element are formed on the same semiconductor substrate in the same impurity introduction process.

第1図は従来のバイポーラトランジスタとIIL
素子を有する半導体装置の一例を示す半導体チツ
プの模式的断面図である。
Figure 1 shows a conventional bipolar transistor and IIL
1 is a schematic cross-sectional view of a semiconductor chip showing an example of a semiconductor device having an element.

第1図に示すように、P型シリコン基板3の表
面に高濃度のN型不純物を選択的に導入してN+
型埋込領域4を形成し、N+型埋込領域4を含む
表面にN型のエピタキシヤル層5を形成する。次
に、エピタキシヤル層5の表面に選択的にP型不
純物を導入してP型シリコン基板に達する素子分
離領域20を設けてそれぞれN+型埋込領域4を
含む第1及び第2の素子形成領域1,2を区画す
る。次に、第1及び第2の素子形成領域1,2の
それぞれに同時にP型不純物を選択的に導入して
第1の素子形成領域1にバイポーラトランジスタ
のベース領域6と第2の素子形成領域2にIIL素
子のベース領域12及びインジエクタ領域13を
形成する。次に、第1及び第2の素子形成領域
1,2に同時にN型不純物を選択的に導入してベ
ース領域6内にバイポーラトランジスタのエミツ
タ領域7およびベース領域6の近傍にコレクタコ
ンタクト領域11を形成すると同時に、ベース領
域12内にIIL素子の第1コレクタ領域14及び
第2のコレクタ領域15並びにベース領域12の
近傍にインジエクタ領域13を形成する。次に、
全面に酸化シリコン膜21を堆積して選択的に開
孔し、バイポーラトランジスタのベース領域6と
接続するベース電極9と、エミツタ領域7と接続
するエミツタ電極10と、コレクタコンタクト領
域8と接続するコレクタ電極11を設けてバイポ
ーラトランジスタを形成すると共にIIL素子のベ
ース領域12に接続するベース電極12と、第1
コレクタ領域14及び第2コレクタ領域15のそ
れぞれに接続する第1コレクタ電極18及び第2
コレクタ電極19並びにインジエクタ領域13に
接続するインジエクタ電極17を設けてIIL素子
を形成して半導体装置を構成する。
As shown in FIG. 1, N +
A type buried region 4 is formed, and an N type epitaxial layer 5 is formed on the surface including the N + type buried region 4. Next, a P-type impurity is selectively introduced into the surface of the epitaxial layer 5 to provide an element isolation region 20 that reaches the P-type silicon substrate, thereby forming the first and second elements each including an N + type buried region 4. Forming regions 1 and 2 are defined. Next, P-type impurities are simultaneously introduced selectively into each of the first and second element formation regions 1 and 2 to form a bipolar transistor base region 6 and a second element formation region in the first element formation region 1. 2, the base region 12 and injector region 13 of the IIL element are formed. Next, N-type impurities are simultaneously introduced selectively into the first and second element formation regions 1 and 2 to form a collector contact region 11 in the base region 6 in the vicinity of the emitter region 7 and base region 6 of the bipolar transistor. At the same time, an injector region 13 is formed in the base region 12 in the vicinity of the first collector region 14 and second collector region 15 of the IIL element and the base region 12. next,
A silicon oxide film 21 is deposited on the entire surface and holes are selectively opened to form a base electrode 9 connected to the base region 6 of the bipolar transistor, an emitter electrode 10 connected to the emitter region 7, and a collector connected to the collector contact region 8. An electrode 11 is provided to form a bipolar transistor, and a base electrode 12 is connected to the base region 12 of the IIL element;
A first collector electrode 18 and a second collector electrode connected to the collector region 14 and the second collector region 15, respectively.
A semiconductor device is constructed by providing a collector electrode 19 and an injector electrode 17 connected to the injector region 13 to form an IIL element.

このような構造のLICにおいて最も問題となる
ことはIIL素子を低圧動作させるためにバイポー
ラトランジスタの耐圧を大きくすることが困難な
ことである。
The biggest problem with such a structured LIC is that it is difficult to increase the withstand voltage of the bipolar transistor in order to operate the IIL element at a low voltage.

バイポーラトランジスタの耐圧を大きくするた
めにはそのベース幅Wb1を大きく且つその不純物
濃度を上げる必要があるが、同一の不純物導入工
程でIIL素子を形成するとIIL素子の縦型トランジ
スタ即ち逆方向NPNトランジスタ(以下逆トラ
ンジスタと記す)のベース幅Wb2も大となり且つ
電子の注入効率が小さくなる結果、その電流増幅
率βuが小さくなり動作特性が低下する。
In order to increase the withstand voltage of a bipolar transistor, it is necessary to increase its base width W b1 and increase its impurity concentration, but if an IIL element is formed in the same impurity introduction process, a vertical transistor of an IIL element, that is, a reverse NPN transistor. The base width W b2 of the transistor (hereinafter referred to as an inverse transistor) also increases and the electron injection efficiency decreases, resulting in a decrease in the current amplification factor βu and a decrease in operating characteristics.

また、逆トランジスタのベース領域12の不純
物濃度を低くすると逆トランジスタの電流増幅率
βuは大きくなるがインジエクタ領域13、N型
エピタキシヤル層5、ベース領域12で構成する
横型トランジスタの正孔の注入効率が小さくなる
結果その利得が小さくなつてしまうことになる。
Furthermore, if the impurity concentration of the base region 12 of the reverse transistor is lowered, the current amplification factor βu of the reverse transistor increases, but the hole injection efficiency of the lateral transistor composed of the injector region 13, the N-type epitaxial layer 5, and the base region 12 increases. As a result, the gain becomes smaller.

すなわち、このLICの機能を最大限に発揮する
ためには、 (A) バイポーラトランジスタのベース領域6は不
純物濃度が高く、かつベース幅Wb1も大きいこ
と、 (B) IIL素子の逆トランジスタのベース領域12
はその真性ベース領域(第1及び第2のコレク
タ領域14,15の下部)は不純物濃度が低く
且つベース幅Wb2が小さいこと、 (C) IIL素子の逆トランジスタのベース領域12
の真性ベース領域以外の部分は不純物濃度が高
く、且つその領域の深さが深いこと(グラフト
ベース構造)、 の三つの条件を同時に満足しなければならない。
That is, in order to maximize the functionality of this LIC, (A) the base region 6 of the bipolar transistor must have a high impurity concentration and the base width W b1 is also large; (B) the base region of the reverse transistor of the IIL element must have a high impurity concentration and a large base width W b1; Area 12
(C) The base region 12 of the reverse transistor of the IIL element has a low impurity concentration and a small base width W b2 in its intrinsic base region (the lower part of the first and second collector regions 14 and 15).
The following three conditions must be satisfied at the same time: the impurity concentration is high in the region other than the intrinsic base region, and the depth of the region is deep (graft base structure).

これらの条件を満たす構造のLICはベース領域
の不純物導入を2回に分けて行うことにより可能
であるが、工程数が増えるという問題以外にIIL
素子の横型トランジスタのベース幅Wb3の決定が
マスクの目合せずれにより不正確になる結果、
LICの品質及び製造歩留りが大幅に低下するとい
う問題点を有している。
LIC with a structure that satisfies these conditions is possible by introducing impurities into the base region in two steps, but in addition to the problem of increasing the number of steps, IIL
As a result, the determination of the base width W b3 of the lateral transistor of the device becomes inaccurate due to misalignment of the mask.
The problem is that the quality and manufacturing yield of LIC are significantly reduced.

本発明の目的は、一回の不純物導入によりそれ
ぞれ不純物濃度及び深さの異なるベース領域を形
成して同一半導体基板上に高耐圧のバイポーラト
ランジスタと高電流増幅率のIIL素子を同一工程
で形成できる半導体装置の製造方法を提供するこ
とにある。
An object of the present invention is to form base regions with different impurity concentrations and depths by introducing impurities once, so that a high breakdown voltage bipolar transistor and a high current amplification IIL element can be formed in the same process on the same semiconductor substrate. An object of the present invention is to provide a method for manufacturing a semiconductor device.

本発明の半導体装置の製造方法は、 (A) P型シリコン基板の一主面にN型不純物を選
択的に導入してN型埋込領域を形成し、前記N
型埋込領域を含む表面にN型エピタキシヤル層
を形成する工程、 (B) 前記N型エピタキシヤル層の表面にP型不純
物を選択的に導入して前記P型シリコン基板に
達する素子分離領域を設けてそれぞれに前記N
型埋込領域を含む第1及び第2の素子形成領域
を区画する工程、 (C) 前記第1及び第2の素子形成領域のそれぞれ
にP型不純物を選択的に同時に導入し、前記第
1の素子形成領域にバイポーラトランジスタ用
の第1のベース領域を形成すると同時に前記第
2の素子形成領域にIIL素子用の第2のベース
領域及びインジエクタ領域を設ける工程、 (D) 前記第1及び第2のベース領域を含む表面に
窒化シリコン膜を設け、前記第2のベース領域
上の前記窒化シリコン膜を選択的にエツチング
してコレクタ領域形成用の開孔部を設ける工
程、 (E) 前記開孔部の前記第2のベース領域の表面を
熱酸化し、熱処理により前記第1及び第2のベ
ース領域の押込みを行い前記第2のベース領域
の拡散深さを前記酸化膜直下で浅く前記窒化シ
リコン膜の直下で深く形成する工程、 (F) 前記窒化シリコン膜及び酸化膜を除去した後
全面に絶縁膜を形成して選択的に開孔し、N型
不純物を導入して前記第1のベース領域にバイ
ポーラトランジスタのエミツタ領域を形成し、
且つ前記第2のベース領域の浅い拡散領域上に
IIL素子のコレクタ領域を形成する工程、 を含んで構成される。
A method for manufacturing a semiconductor device according to the present invention includes: (A) selectively introducing an N-type impurity into one main surface of a P-type silicon substrate to form an N-type buried region;
(B) selectively introducing P-type impurities into the surface of the N-type epitaxial layer to form an element isolation region that reaches the P-type silicon substrate; and the above N
(C) selectively and simultaneously introducing P-type impurities into each of the first and second element forming regions; (D) forming a first base region for a bipolar transistor in the element formation region and simultaneously providing a second base region and an injector region for the IIL element in the second element formation region; (E) providing a silicon nitride film on the surface including the second base region, and selectively etching the silicon nitride film on the second base region to form an opening for forming a collector region; The surface of the second base region in the hole is thermally oxidized, and the first and second base regions are indented by heat treatment, and the diffusion depth of the second base region is made shallow just below the oxide film and the nitridation is performed. (F) After the silicon nitride film and oxide film are removed, an insulating film is formed on the entire surface, holes are selectively formed, and N-type impurities are introduced into the first silicon film. Forming the emitter region of the bipolar transistor in the base region,
and on the shallow diffusion region of the second base region.
The method includes a step of forming a collector region of an IIL element.

以下、本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第2図a〜fは本発明の一実施例を説明するた
めの工程順に示した半導体チツプの模式的断面図
である。但し、第1図に示した従来例と共通部分
については説明を簡略化するために断面図の一部
を省略している。
FIGS. 2a to 2f are schematic sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention. However, for the common parts with the conventional example shown in FIG. 1, a part of the cross-sectional view is omitted to simplify the explanation.

まず、第2図に示すように、第1図により説明
したと同様の工程により、比抵抗1Ω・cmのP型
シリコン基板の表面にN型不純物を選択的に導入
して層抵抗約20Ω/□のN+型埋込領域を複数形
成し、N+型埋込領域を含む表面に比抵抗約1
Ω・cmのN型エピタキシヤル層5を約10μmの厚
さに形成する。次に、エピタキシヤル層5の表面
に選択的にP型不純物を導入してP型シリコン基
板に達する素子分離領域50を設けてそれぞれに
N+型埋込領域を含むバイポーラトランジスタ形
成用の第1の素子形成領域31およびIIL素子形
成用の第2の素子形成領域32を区画し、第1及
び第2の素子形成領域31,32を含む表面に酸
化シリコン膜51を形成する。
First, as shown in FIG. 2, by the same process as explained in FIG. □ Multiple N + type buried regions are formed, and the surface including the N + type buried regions has a specific resistance of approximately 1.
An N-type epitaxial layer 5 of Ω·cm is formed to a thickness of about 10 μm. Next, P-type impurities are selectively introduced into the surface of the epitaxial layer 5 to provide element isolation regions 50 that reach the P-type silicon substrate.
A first element formation region 31 for forming a bipolar transistor including an N + type buried region and a second element formation region 32 for forming an IIL element are divided, and the first and second element formation regions 31 and 32 are separated. A silicon oxide film 51 is formed on the surface including the substrate.

次に、第2図bに示すように、フツ酸等により
酸化シリコン膜51を選択的にエツチングして開
孔部を設け、酸化シリコン膜51をマスクとして
ホウ素イオンを加速エネルギー20keV、ドーズ量
5×1014cm-2の条件でイオン注入し、第1の素子
形成領域31にベース領域36を形成すると同時
に第2の素子形成領域32にベース領域42及び
インジエクタ領域43をそれぞれ形成する。
Next, as shown in FIG. 2b, the silicon oxide film 51 is selectively etched with hydrofluoric acid or the like to form an opening, and boron ions are accelerated at an energy of 20 keV and a dose of 5 using the silicon oxide film 51 as a mask. Ion implantation is performed under conditions of ×10 14 cm -2 to form a base region 36 in the first element formation region 31 and at the same time form a base region 42 and an injector region 43 in the second element formation region 32.

次に、第2図cに示すように、CVD法により
全面に窒化シリコン膜52を0.5μmの厚さに堆積
し、ベース領域42の上の窒化シリコン膜52を
プラズマエツチングにより選択的にエツチングし
てコレクタ領域形成用の開孔部を設ける。
Next, as shown in FIG. 2c, a silicon nitride film 52 is deposited on the entire surface to a thickness of 0.5 μm by CVD, and the silicon nitride film 52 on the base region 42 is selectively etched by plasma etching. Then, an opening for forming a collector region is provided.

次に、第2図dに示すように、1000℃のスチー
ム酸素雰囲気中でベース領域42の表面を酸化
し、酸化シリコン膜53を数十nmの厚さに形成
する。ここで、酸化シリコン膜53がベース領域
42の内側に入り込んで形成され、且つ酸化シリ
コン膜53中にベース領域42から不純物拡散が
行なわれ、酸化膜直下のベース領域42の厚さが
薄くなると共に不純物濃度も低くなる。
Next, as shown in FIG. 2d, the surface of the base region 42 is oxidized in a steam oxygen atmosphere at 1000° C. to form a silicon oxide film 53 with a thickness of several tens of nanometers. Here, the silicon oxide film 53 is formed by penetrating inside the base region 42, and impurities are diffused from the base region 42 into the silicon oxide film 53, and the thickness of the base region 42 directly under the oxide film becomes thinner. The impurity concentration also becomes lower.

次に、第2図eに示すように、窒化シリコン膜
52及び酸化ベース膜51を順次除去したのち新
らたに酸化シリコン膜51を全面に再形成させて
1140℃の窒素等の不活性ガス雰囲気中で約1時間
の押し込み拡散を行う。
Next, as shown in FIG. 2e, after sequentially removing the silicon nitride film 52 and the oxide base film 51, a new silicon oxide film 51 is re-formed on the entire surface.
Intrusion diffusion is performed for about 1 hour in an inert gas atmosphere such as nitrogen at 1140°C.

なお、この場合必ずしも酸化シリコン膜の再形
成は必要ではなく、もとの酸化シリコン膜と窒化
シリコン膜のままこの押込拡散を行つても良い。
ここで、第1の素子形成領域31のベース領域3
6、及び第2の素子形成領域32のベース領域4
2及びインジエクタ領域43が最終的に形成され
る。この場合、上述のようにベース領域42のコ
レクタを形成すべき領域部分は厚さが薄く且つ不
純物濃度が他よりも低くなつているので、これら
の部分では、不純物の押込みが小さくなりいわゆ
るグラフトベース構造が得られる。
Note that in this case, it is not necessarily necessary to re-form the silicon oxide film, and this forced diffusion may be performed with the original silicon oxide film and silicon nitride film.
Here, the base region 3 of the first element formation region 31
6, and the base region 4 of the second element formation region 32
2 and an injector region 43 are finally formed. In this case, as described above, the portions of the base region 42 where the collector is to be formed are thin and have a lower impurity concentration than the other portions, so impurities are pushed into these portions less, resulting in a so-called graft base. structure is obtained.

次に、第2図fに示すように、酸化シリコン膜
51を選択的にエツチングして開孔し、N型不純
物を拡散して第1の素子形成領域31にエミツタ
領域37及びコレクタコンタクト領域38を形成
してバイポーラトランジスタを形成すると共に第
2の素子形成領域32に第1及び第2のコレクタ
領域44,45を形成してIIL素子を形成する。
次に、酸化シリコン膜51を選択的に開孔して、
アルミニウム層を堆積し、選択的にエツチング
し、バイポーラトランジスタのベース電極39、
エミツタ電極40、コレクタ電極41及びIIL素
子のベース電極46、インジエクタ電極47、第
1コレクタ電極48、第2コレクタ電極49をそ
れぞれ形成して半導体装置を構成する。
Next, as shown in FIG. 2F, the silicon oxide film 51 is selectively etched to form holes, and N-type impurities are diffused to form the emitter region 37 and collector contact region 38 in the first element forming region 31. are formed to form a bipolar transistor, and first and second collector regions 44 and 45 are formed in the second element forming region 32 to form an IIL element.
Next, holes are selectively opened in the silicon oxide film 51.
Depositing and selectively etching an aluminum layer to form the base electrode 39 of the bipolar transistor;
An emitter electrode 40, a collector electrode 41, a base electrode 46 of an IIL element, an injector electrode 47, a first collector electrode 48, and a second collector electrode 49 are formed to constitute a semiconductor device.

なお、ここで、ベース領域形成用の不純物導入
をイオン注入法の代りに熱拡散法を用いても良
い。
Note that here, instead of the ion implantation method, a thermal diffusion method may be used to introduce impurities for forming the base region.

このように、本実施例によれば、ベース領域上
に選択的に酸化膜を設けて熱処理し、酸化膜下の
不純物濃度と拡散深さをそれ以外の部分と異なる
ように制御できることを利用して、同一半導体基
板上に同一工程で形成したバイポーラトランジス
タとIIL素子を有する半導体装置のバイポーラト
ランジスタのベース領域の不純物濃度を高くする
とともにベース幅Wb1を大きくして高耐圧化を実
現し、且つIIL素子の逆トランジスタのベース領
域のうち第1及び第2のコレクタの直下の真性ベ
ース領域は、酸化シリコン膜の形成条件を制御す
ることによりその不純物濃度を低くするとともに
ベース幅Wb2を小さくすることができ、この真性
ベース領域以外の部分はバイポーラトランジスタ
のベース領域と同じ条件で同時に形成されるの
で、その不純物濃度は高く深さも深いいわゆるグ
ラフトベース構造が得られるので逆トランジスタ
の電流増幅率βuを大きくすることができるとい
う効果を有する。
As described above, according to this embodiment, an oxide film is selectively formed on the base region and heat treated, and the impurity concentration and diffusion depth under the oxide film can be controlled to be different from other parts. Therefore, in a semiconductor device having a bipolar transistor and an IIL element formed on the same semiconductor substrate in the same process, the impurity concentration in the base region of the bipolar transistor is increased and the base width W b1 is increased to achieve high breakdown voltage. In the base region of the reverse transistor of the IIL element, the impurity concentration of the intrinsic base region directly under the first and second collectors is reduced by controlling the formation conditions of the silicon oxide film, and the base width W b2 is reduced. Since the parts other than the intrinsic base region are formed simultaneously under the same conditions as the base region of the bipolar transistor, a so-called graft base structure with a high impurity concentration and a deep depth is obtained, so that the current amplification factor βu of the inverse transistor is This has the effect of increasing the .

また、IIL素子のインジエクタ領域はバイポー
ラトランジスタのベース領域と同一工程で形成さ
れ、その不純物濃度を高くし、深く拡散できるの
で横型トランジスタの利得を大きくすることがで
きる。更にベース領域の不純物導入は一回だけで
あり、マスクの目合せずれを生ずることなくベー
ス幅Wb3を正確に設定でき、品質の向上が得られ
る。
Further, the injector region of the IIL element is formed in the same process as the base region of the bipolar transistor, and the impurity concentration thereof can be increased and the impurity can be diffused deeply, so that the gain of the lateral transistor can be increased. Furthermore, since impurities are introduced into the base region only once, the base width W b3 can be accurately set without causing misalignment of the mask, resulting in improved quality.

以上説明したように本発明は、一回の不純物導
入によりそれぞれ不純物濃度及び深さの異なるベ
ース領域を形成して同一半導体基板上に高耐圧の
バイポーラトランジスタと高電流増幅率のIIL素
子を同一工程で形成できる半導体装置の製造方法
が実現できるという効果を有する。
As explained above, in the present invention, a high breakdown voltage bipolar transistor and a high current amplification IIL element are fabricated on the same semiconductor substrate in the same process by forming base regions with different impurity concentrations and depths by introducing impurities once. This has the effect that it is possible to realize a method for manufacturing a semiconductor device that can be formed using the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の一例を示す半導体
チツプの模式的断面図、第2図a〜fは本発明の
一実施例を説明するための工程順に示した半導体
チツプの模式的断面図である。 1,31…第1の素子形成領域、2,32…第
2の素子形成領域、3…P型シリコン基板、4…
N+型埋込領域、5,35…N型エピタキシヤル
層、6,12,36,42…ベース領域、7,3
7…エミツタ領域、8,38…コレクタコンタク
ト領域、9,16,39,46…ベース電極、1
0,40…エミツタ電極、11,41…コレクタ
電極、13,43…インジエクタ領域、14,4
4…第1コレクタ領域、15,45…第2コレク
タ領域、20,50…素子分離領域、21,5
1,53…酸化シリコン膜、52…窒化シリコン
膜、Wb1,Wb2,Wb3…ベース幅。
FIG. 1 is a schematic sectional view of a semiconductor chip showing an example of a conventional semiconductor device, and FIGS. be. DESCRIPTION OF SYMBOLS 1, 31... First element formation region, 2, 32... Second element formation region, 3... P-type silicon substrate, 4...
N + type buried region, 5, 35...N type epitaxial layer, 6, 12, 36, 42... base region, 7, 3
7... Emitter region, 8, 38... Collector contact region, 9, 16, 39, 46... Base electrode, 1
0,40...Emitter electrode, 11,41...Collector electrode, 13,43...Injector area, 14,4
4...First collector region, 15,45...Second collector region, 20,50...Element isolation region, 21,5
1, 53...Silicon oxide film, 52...Silicon nitride film, Wb1 , Wb2 , Wb3 ...Base width.

Claims (1)

【特許請求の範囲】 1 (A) P型シリコン基板の一主面にN型不純物
を選択的に導入してN型埋込領域を形成し、前
記N型埋込領域を含む表面にN型エピタキシヤ
ル層を形成する工程、 (B) 前記N型エピタキシヤル層の表面にP型不純
物を選択的に導入して前記P型シリコン基板に
達する素子分離領域を設けてそれぞれに前記N
型埋込領域を含む第1及び第2の素子形成領域
を区画する工程、 (C) 前記第1及び第2の素子形成領域のそれぞれ
にP型不純物を選択的に同時に導入し、前記第
1の素子形成領域にバイポーラトランジスタ用
の第1のベース領域を形成すると同時に前記第
2の素子形成領域にIIL素子用の第2のベース
領域及びインジエクタ領域を設ける工程、 (D) 前記第1及び第2のベース領域を含む表面に
窒化シリコン膜を設け、前記第2のベース領域
上の前記窒化シリコン膜を選択的にエツチング
してコレクタ領域形成用の開孔部を設ける工
程、 (E) 前記開孔部の前記第2のベース領域の表面を
熱酸化し、熱処理により前記第1及び第2のベ
ース領域の押込みを行い前記第2のベース領域
の拡散深さを前記酸化膜直下で浅く前記窒化シ
リコン膜の直下で深く形成する工程、 (F) 前記窒化シリコン膜及び酸化膜を除去した後
全面に絶縁膜を形成して選択的に開孔し、N型
不純物を導入して前記第1のベース領域にバイ
ポーラトランジスタのエミツタ領域を形成し、
且つ前記第2のベース領域の浅い拡散領域上に
IIL素子のコレクタ領域を形成する工程、 を含むことを特徴とする半導体装置の製造方法。
[Claims] 1 (A) N-type impurities are selectively introduced into one main surface of a P-type silicon substrate to form an N-type buried region, and an N-type impurity is formed on the surface including the N-type buried region. a step of forming an epitaxial layer; (B) selectively introducing P-type impurities into the surface of the N-type epitaxial layer to provide element isolation regions reaching the P-type silicon substrate;
(C) selectively and simultaneously introducing P-type impurities into each of the first and second element forming regions; (D) forming a first base region for a bipolar transistor in the element formation region and simultaneously providing a second base region and an injector region for the IIL element in the second element formation region; (E) providing a silicon nitride film on the surface including the second base region, and selectively etching the silicon nitride film on the second base region to form an opening for forming a collector region; The surface of the second base region in the hole is thermally oxidized, and the first and second base regions are indented by heat treatment, and the diffusion depth of the second base region is made shallow just below the oxide film and the nitridation is performed. (F) After the silicon nitride film and oxide film are removed, an insulating film is formed on the entire surface, holes are selectively formed, and N-type impurities are introduced into the first silicon film. Forming the emitter region of the bipolar transistor in the base region,
and on the shallow diffusion region of the second base region.
A method for manufacturing a semiconductor device, comprising the step of forming a collector region of an IIL element.
JP56103533A 1981-07-02 1981-07-02 Manufacture of semiconductor device Granted JPS586167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56103533A JPS586167A (en) 1981-07-02 1981-07-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56103533A JPS586167A (en) 1981-07-02 1981-07-02 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS586167A JPS586167A (en) 1983-01-13
JPH0258772B2 true JPH0258772B2 (en) 1990-12-10

Family

ID=14356504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56103533A Granted JPS586167A (en) 1981-07-02 1981-07-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS586167A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2921750B2 (en) * 1996-06-17 1999-07-19 キヤノン株式会社 Travel guide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928789A (en) * 1972-07-18 1974-03-14
JPS513873A (en) * 1974-06-29 1976-01-13 Tokyo Shibaura Electric Co Handotaisochino seizohoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928789A (en) * 1972-07-18 1974-03-14
JPS513873A (en) * 1974-06-29 1976-01-13 Tokyo Shibaura Electric Co Handotaisochino seizohoho

Also Published As

Publication number Publication date
JPS586167A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US4066473A (en) Method of fabricating high-gain transistors
JPH05347383A (en) Manufacture of integrated circuit
JPS62588B2 (en)
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JPS62277745A (en) Semiconductor integrated circuit
JP2940984B2 (en) Manufacturing method of BiCMOS type semiconductor integrated circuit
JPH0258772B2 (en)
US20050179060A1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JP3327658B2 (en) Manufacturing method of vertical bipolar transistor
JP2003258219A (en) Method for manufacturing optical semiconductor integrated circuit device
JPH10189755A (en) Semiconductor device and its manufacturing method
JP2575204B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JPS58142573A (en) Semiconductor integrated circuit and preparation thereof
JPH0778833A (en) Bipolar transistor and its manufacture
JPH0387059A (en) Semiconductor integrated circuit
JPH01160051A (en) Bipolar transistor
JPH07245313A (en) Manufacture of bipolar transistor
JPS62123762A (en) Manufacture of semiconductor device
JPH0550856B2 (en)
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPH0426222B2 (en)
JP2002343878A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6346769A (en) Manufacture of semiconductor device
JPS60235464A (en) Manufacture of semiconductor device