JPH0258687B2 - - Google Patents

Info

Publication number
JPH0258687B2
JPH0258687B2 JP56191435A JP19143581A JPH0258687B2 JP H0258687 B2 JPH0258687 B2 JP H0258687B2 JP 56191435 A JP56191435 A JP 56191435A JP 19143581 A JP19143581 A JP 19143581A JP H0258687 B2 JPH0258687 B2 JP H0258687B2
Authority
JP
Japan
Prior art keywords
thin film
water
magnetic
metal thin
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56191435A
Other languages
Japanese (ja)
Other versions
JPS5894131A (en
Inventor
Kunio Hibino
Mikio Murai
Takashi Fujita
Masatoshi Takao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56191435A priority Critical patent/JPS5894131A/en
Publication of JPS5894131A publication Critical patent/JPS5894131A/en
Publication of JPH0258687B2 publication Critical patent/JPH0258687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/722Protective coatings, e.g. anti-static or antifriction containing an anticorrosive material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds

Landscapes

  • Lubricants (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属薄膜型磁気記録媒体、特に磁性層
表面の改質を行ない、耐食性および滑性を向上さ
せた金属薄膜型磁気記録媒体に関するものであ
る。 真空蒸着法またはメツキ法で作製した金属薄膜
型磁気記録媒体は高密度記録に適しているといわ
れている。特に、近年はオーデイオ用テープやビ
デオ用テープとしての用途が期待されている。し
かし、一般的に、強磁性金属薄膜は、腐食し易
く、これを避けるために磁性体自体の合金化の方
法や磁性層上に高分子化合物などの被膜を形成す
る方法などが採用されている。しかし合金化の場
合、磁気特性の観点からは、耐食性の良い合金が
必ずしも良い特性をもつていると言えないのが普
通である。また、磁性層表面に高分子化合物など
の耐食性のある被膜を形成することは、効果はあ
るが、電磁変換特性の観点からは、被膜層が厚く
なるため好ましいとは言えない。被膜層の厚みの
許され得る範囲は、たかだか500Åであり、望ま
しくは200Å程度である。この程度の膜厚を有す
る耐食性被膜を均一にしかも量産性良く形成する
ことは、非常な困難を伴う。また、この程度の厚
みでは完全に水分の侵入を妨げることは困難であ
る。 また、金属薄膜型磁気記録媒体においては、金
属同士の接触のために、滑性が不十分であり、さ
らに、ヘツドとの間で、スムーズな接触を得るこ
とが困難であり、出力変動が大きくなるなどの欠
点を持つている。 本発明では、このような従来品の問題点を水溶
性の高分子界面活性剤を強磁性金属からなる磁性
層に吸着させることによつて解決したもので、こ
れにより十分な耐食性と滑性を持つた金属薄膜型
磁気記録媒体を得ることができたものである。 本発明でいう水溶性の高分子界面活性剤とは、
イオン性高分界面活性剤、すなわち、陰イオン性
高分子界面活性剤、陽イオン性高分子界面活性剤
をいう。たとえばポリアクリル酸、あるいは、ス
チレン、エチレン、イソブチレンなどとの共重合
物など、およびその塩などのカルボン酸型高分子
界面活性剤、ポリビニルアルコールの硫酸エステ
ル塩など硫酸エステル型高分子界面活性剤、ナフ
タレンスルフオン酸ホルマリン縮合物、ポリスチ
レンスルフオン酸、α−オレフインスルフオン酸
などのスルフオン酸塩などのスルフオン酸型高分
子界面活性剤、ポリビニルアミンなどのアミン型
高分子界面活性剤、ポリビニルピリジンの4級ア
ンモニウム塩などの4級アンモニウム塩型高分子
界面活性剤などが本発明に適用できる。 本発明における水溶性高分子界面活性剤は、水
溶液の濃度として、10g/〜0.0001g/が有
効であり、より望ましくは、1g/〜0.001
g/である。高分子界面活性剤の濃度が10g/
を超えると、高分子界面活性剤を吸着させたあ
との水洗工程で未吸着の高分子界面活性剤を十分
に洗い流すことができなくなり、ミセル状態で残
存することになる。未吸着の高分子界面活性剤が
残存していると、磁性金属薄膜の表面は十分な撥
水性を示さず、耐食性に悪影響を及ぼすだけでな
く、テープ走行時において容易にはがれやすく、
はがれたものが磁気ヘツド部にたまるなどして、
目づまりやドロツプアウトの原因となる。また、
濃度が0.0001g/未満になると磁性金属薄膜上
に均一な吸着被膜の形成ができず、不十分な耐食
性しか得られない。 つぎに本発明の製造方法について説明する。10
g/〜0.0001g/の高分子界面活性剤の水溶
液を、磁性金属薄膜上に各種のコーテイング方法
によつて、塗布する。つぎに、浸漬法、流下法、
スプレー法などによつて、多量の純水で水洗し、
未吸着の高分子界面活性剤を洗い流す。コーテイ
ング液の10倍以上の水で洗うことが望ましい。ま
た、水洗を完全にするため、水洗工程を繰り返し
ても良い。水洗後、各種ブレードで水分を除く磁
性薄膜表面に傷などをつけないため、エアーナイ
フ方式が有効である。水切りを行なつた後、乾燥
を行なう。 このようにして、磁性金属薄膜上に、良好な滑
性と耐食性をもつた高分子界面活性剤の被膜が得
られる。 つぎに、本発明の実施例について説明する。 実施例 1 ポリエチレンテレフタレートフイルム(以下、
PETフイルムと称す)上に強制的に酸素を導入
し、コバルト(80%)ニツケル(20%)の強磁性
合金薄膜を真空蒸着法で作製した。この強磁性合
金薄膜にポリビニル硫酸カリウム(和光純薬工業
(株)製)の0.05g/の濃度の水溶液をデイツピン
グ法によつて塗布した。その後、多量の純水で洗
浄してから乾燥空気を吹きつけ、洗浄水を除き、
80℃の熱風で乾燥させた。得られた磁性薄膜を試
料Aとする。 実施例 2 強制的に酸素を導入し、PETフイルム上に真
空蒸着法で作製したコバルト(80%)ニツケル
(20%)の強磁性合金薄膜に、高分子界面活性剤
であるナフタレンスフオン酸ナトリウムホルマリ
ン縮合物(花王アトラス(株)製「デモールN」)の
1.0g/の濃度の水溶液をデイツピング法によ
つて塗布し、多量の純水で洗浄した後、乾燥空気
を吹きつけ、洗浄水を除き、80℃の熱風で乾燥さ
せた。得られた磁性薄膜を試料Bとする。 実施例 3 強制的に酸素を導入し、PETフイルム上に真
空蒸着法で作製したコバルト(80%)ニツケル
(20%)の強磁性合金薄膜に高分子界面活性剤で
あるカルボン酸型高分子活性剤(花王アトラス(株)
製「デモールP」)の0.1g/の濃度の水溶液を
デイツピング法によつて塗布し、多量の純水で洗
浄した後、乾燥空気を吹きつけ、洗浄水を除き、
80℃の熱風で乾燥させた。得られた磁性薄膜を試
料Cとする。 実施例 4 強制的に酸素を導入し、PETフイルム上に真
空蒸着法で作製したコバルト(80%)−ニツケル
(20%)の強磁性合金薄膜に高分子界面活性剤で
あるα−オレフインスルホン酸ナトリウム(ライ
オン油脂(株)製「リポラン1400」)の0.03g/の
濃度の水溶液をデイツピング法によつて塗布し、
多量の純水で洗浄した後、乾燥空気を吹きつけ、
洗浄水を除き、80℃の熱風で乾燥させた。得られ
た磁性薄膜を試料Dとする。 実施例 5 強制的に酸素を導入し、PETフイルム上に真
空蒸着法で作製したコバルト(80%)−ニツケル
(20%)の強磁性合金薄膜に、高分子界面活性剤
であるα−オレフインスルホン酸ナトリウム(花
王アトラス(株)製「ソフトデタージエントW」)の
0.002g/の濃度の水溶液をデイツピング法に
よつて塗布し、多量の純水で洗浄した後、乾燥空
気を吹きつけ、洗浄水を除き、80℃の熱風で乾燥
させた。得られた磁性薄膜を試料Eとする。 実施例 6 強制的に酸素を導入し、PETフイルム上に真
空蒸着法で作製したコバルト(80%)−ニツケル
(20%)の強磁性合金薄膜に、ポリアクリル酸ソ
ーダ(ラジカル重合法で合成したポリアクリル酸
をケン化して得たもの)の0.06g/の濃度の水
溶液をデイツピング法によつて塗布し、多量の純
水で洗浄した後、乾燥空気を吹きつけ、洗浄水を
除き、80℃の熱風で乾燥させた。得られた磁性薄
膜を試料Fとする。 実施例1〜6で作製した試料A〜Fの揆水性、
耐食性、滑性を調べた。比較のため未処理試料に
ついても調べた。 撥水性は水に対する接触角、耐食性は温度60
℃、相対湿度90%における環境試験、滑性は鏡面
仕上げしたステンレス鋼SUS304のブロツク上で
の10g荷重下での摩擦係数を測定した。結果を下
表に示す。
The present invention relates to a metal thin film magnetic recording medium, and particularly to a metal thin film magnetic recording medium in which the surface of the magnetic layer is modified to improve corrosion resistance and slipperiness. Metal thin film magnetic recording media manufactured by vacuum evaporation or plating are said to be suitable for high-density recording. In particular, in recent years, it has been expected to be used as audio tape and video tape. However, in general, ferromagnetic metal thin films are prone to corrosion, and to avoid this, methods such as alloying the magnetic material itself or forming a film of a polymer compound on the magnetic layer are adopted. . However, in the case of alloying, it is common that alloys with good corrosion resistance cannot necessarily be said to have good properties from the viewpoint of magnetic properties. Furthermore, although forming a corrosion-resistant coating such as a polymer compound on the surface of the magnetic layer is effective, it is not preferable from the viewpoint of electromagnetic conversion characteristics because the coating layer becomes thick. The allowable range of the thickness of the coating layer is at most 500 Å, preferably about 200 Å. It is extremely difficult to uniformly form a corrosion-resistant coating having such a thickness and with good mass productivity. Further, with such a thickness, it is difficult to completely prevent moisture from entering. In addition, metal thin film magnetic recording media have insufficient lubricity due to metal-to-metal contact, and furthermore, it is difficult to obtain smooth contact with the head, resulting in large output fluctuations. It has drawbacks such as: The present invention solves these problems with conventional products by adsorbing a water-soluble polymeric surfactant to a magnetic layer made of ferromagnetic metal, thereby providing sufficient corrosion resistance and lubricity. It was possible to obtain a metal thin film type magnetic recording medium having the following characteristics. The water-soluble polymeric surfactant as used in the present invention is
Refers to ionic polymer surfactants, that is, anionic polymer surfactants and cationic polymer surfactants. For example, carboxylic acid type polymeric surfactants such as polyacrylic acid or copolymers with styrene, ethylene, isobutylene, etc., and salts thereof; sulfuric acid ester type polymeric surfactants such as sulfuric ester salts of polyvinyl alcohol; Sulfonic acid type polymeric surfactants such as naphthalene sulfonic acid formalin condensate, polystyrene sulfonic acid, sulfonic acid salts such as α-olefin sulfonic acid, amine type polymeric surfactants such as polyvinylamine, and polyvinylpyridine. Quaternary ammonium salt type polymeric surfactants such as quaternary ammonium salts can be applied to the present invention. The water-soluble polymer surfactant in the present invention has an effective aqueous solution concentration of 10g/~0.0001g/, more preferably 1g/~0.001g/.
g/. The concentration of polymeric surfactant is 10g/
If the amount exceeds 1, the unadsorbed polymer surfactant will not be sufficiently washed away in the washing step after adsorbing the polymer surfactant, and will remain in a micelle state. If unadsorbed polymeric surfactant remains, the surface of the magnetic metal thin film will not exhibit sufficient water repellency, which will not only have a negative effect on corrosion resistance, but will also easily peel off during tape running.
Peeled items may accumulate in the magnetic head, etc.
This may cause clogging or dropouts. Also,
If the concentration is less than 0.0001g/, a uniform adsorption film cannot be formed on the magnetic metal thin film, resulting in insufficient corrosion resistance. Next, the manufacturing method of the present invention will be explained. Ten
g/~0.0001 g/aqueous solution of a polymeric surfactant is applied onto the magnetic metal thin film by various coating methods. Next, the immersion method, the flowing method,
Rinse with a large amount of pure water using a spray method, etc.
Wash away unadsorbed polymer surfactant. It is recommended to wash with 10 times more water than the coating solution. Furthermore, the washing process may be repeated to ensure complete washing. After washing with water, the air knife method is effective because it does not damage the surface of the magnetic thin film, which removes moisture using various blades. After draining, dry. In this way, a polymer surfactant coating having good lubricity and corrosion resistance is obtained on the magnetic metal thin film. Next, examples of the present invention will be described. Example 1 Polyethylene terephthalate film (hereinafter referred to as
A ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) was fabricated using a vacuum evaporation method by forcibly introducing oxygen onto a PET film (referred to as PET film). This ferromagnetic alloy thin film is coated with polyvinyl potassium sulfate (Wako Pure Chemical Industries, Ltd.)
Co., Ltd., at a concentration of 0.05 g/ml, was applied by dipping. After that, wash with a large amount of pure water and blow dry air to remove the washing water.
Dry with hot air at 80°C. The obtained magnetic thin film is referred to as sample A. Example 2 A ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) produced by vacuum evaporation on a PET film was coated with sodium naphthalene sulfonate, a polymeric surfactant, by forcibly introducing oxygen. Formalin condensate (“Demol N” manufactured by Kao Atlas Co., Ltd.)
An aqueous solution with a concentration of 1.0 g/ml was applied by a dipping method, washed with a large amount of pure water, and dried air was blown to remove the washing water, followed by drying with hot air at 80°C. The obtained magnetic thin film is referred to as sample B. Example 3 Oxygen was forcibly introduced into a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) produced by vacuum evaporation on a PET film. agent (Kao Atlas Co., Ltd.)
An aqueous solution of 0.1 g/ml of Demol P (manufactured by Demol P) was applied by the dipping method, washed with a large amount of pure water, and then blown with dry air to remove the washing water.
Dry with hot air at 80°C. The obtained magnetic thin film is designated as sample C. Example 4 α-olefin sulfonic acid, a polymeric surfactant, was applied to a cobalt (80%)-nickel (20%) ferromagnetic alloy thin film produced by vacuum evaporation on a PET film with forced introduction of oxygen. An aqueous solution of sodium (Liporan 1400 manufactured by Lion Oil Co., Ltd.) with a concentration of 0.03 g/was applied by the dipping method,
After washing with a large amount of pure water, blow dry air,
The washing water was removed and it was dried with hot air at 80°C. The obtained magnetic thin film is designated as sample D. Example 5 Oxygen was forcibly introduced into a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) produced by vacuum evaporation on a PET film, and α-olefin sulfone, a polymeric surfactant, was applied. acid sodium (“Soft Detergent W” manufactured by Kao Atlas Co., Ltd.)
An aqueous solution with a concentration of 0.002 g/ml was applied by a dipping method, washed with a large amount of pure water, and dried air was blown to remove the washing water, followed by drying with hot air at 80°C. The obtained magnetic thin film is designated as sample E. Example 6 Sodium polyacrylate (synthesized by radical polymerization) was coated on a cobalt (80%)-nickel (20%) ferromagnetic alloy thin film made by vacuum evaporation on a PET film with forced introduction of oxygen. (obtained by saponifying polyacrylic acid) at a concentration of 0.06 g/ml was applied by the dipping method, washed with a large amount of pure water, blown with dry air, removed the washing water, and heated at 80°C. dried with hot air. The obtained magnetic thin film is designated as sample F. Water repellency of samples A to F produced in Examples 1 to 6,
Corrosion resistance and lubricity were investigated. An untreated sample was also examined for comparison. Water repellency is the contact angle of water, and corrosion resistance is the temperature of 60
An environmental test was conducted at 90% relative humidity at 90% relative humidity, and the lubricity was measured by measuring the friction coefficient under a 10g load on a mirror-finished stainless steel SUS304 block. The results are shown in the table below.

【表】 本発明によれば、強磁性金属からなる磁性層の
表面に高分子界面活性剤を吸着させているので、
金属薄膜型磁気記録媒体の撥水性が向上し、耐食
性が向上している。また、その摩擦係数も低下し
ており、滑性のすぐれた磁気記録媒体を得ること
ができる。
[Table] According to the present invention, since the polymer surfactant is adsorbed on the surface of the magnetic layer made of ferromagnetic metal,
Metal thin film magnetic recording media have improved water repellency and corrosion resistance. In addition, the coefficient of friction is also reduced, making it possible to obtain a magnetic recording medium with excellent lubricity.

Claims (1)

【特許請求の範囲】[Claims] 1 コバルト合金の強磁性金属薄膜から成る磁性
層の表面に水溶性高分子界面活性剤の水溶液を塗
布した後、水洗によつて前記磁性層の表面に未吸
着の前記水溶性高分子界面活性剤を取り除いたこ
とを特徴とする金属薄膜型磁気記録媒体。
1. After applying an aqueous solution of a water-soluble polymer surfactant to the surface of a magnetic layer made of a ferromagnetic metal thin film of a cobalt alloy, washing with water removes the unadsorbed water-soluble polymer surfactant on the surface of the magnetic layer. A metal thin film type magnetic recording medium characterized in that the .
JP56191435A 1981-11-28 1981-11-28 Metallic thin film type magnetic recording medium Granted JPS5894131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191435A JPS5894131A (en) 1981-11-28 1981-11-28 Metallic thin film type magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191435A JPS5894131A (en) 1981-11-28 1981-11-28 Metallic thin film type magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5894131A JPS5894131A (en) 1983-06-04
JPH0258687B2 true JPH0258687B2 (en) 1990-12-10

Family

ID=16274565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191435A Granted JPS5894131A (en) 1981-11-28 1981-11-28 Metallic thin film type magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5894131A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350914A (en) * 1986-08-20 1988-03-03 Matsushita Electric Ind Co Ltd Vapor deposition type thin film recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143114A (en) * 1978-04-27 1979-11-08 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5589375A (en) * 1978-12-27 1980-07-05 Asahi Glass Co Ltd Antistatic agent for reproducing and recording material
JPS5589376A (en) * 1978-12-27 1980-07-05 Asahi Glass Co Ltd Antistaic agent composition for reproducing and recording material
JPS55144079A (en) * 1979-04-27 1980-11-10 Asahi Glass Co Ltd Surface-treating agent for record-reproductive material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143114A (en) * 1978-04-27 1979-11-08 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5589375A (en) * 1978-12-27 1980-07-05 Asahi Glass Co Ltd Antistatic agent for reproducing and recording material
JPS5589376A (en) * 1978-12-27 1980-07-05 Asahi Glass Co Ltd Antistaic agent composition for reproducing and recording material
JPS55144079A (en) * 1979-04-27 1980-11-10 Asahi Glass Co Ltd Surface-treating agent for record-reproductive material

Also Published As

Publication number Publication date
JPS5894131A (en) 1983-06-04

Similar Documents

Publication Publication Date Title
JPH0258687B2 (en)
JPH03232996A (en) Improvement of resistance to low temperature corrosion of anodically oxidized aluminum
JPH028366B2 (en)
JPS5819737A (en) Metallic thin film magnetic recording medium and its production
US5092924A (en) Composition and process for coating metallic surfaces
JPS589218A (en) Manufacture of magnetic recording medium
US3524762A (en) Polyester film coated with werner chrome complexes and chloral
SU850758A1 (en) Method of treatment of gold-coated articles
US2853406A (en) Metal coating
JPS5843039B2 (en) Transfer printing method
JPS589216A (en) Metallic thin film type magnetic recording medium
JPH0239018B2 (en)
JPH0596514A (en) Method of post-treating wooden material containing ionic surface-active agent
JPS62282917A (en) Polyester film for magnetic recording medium
US4927716A (en) Surface treatment for recording media
EP3127966B1 (en) Protective coating composition for chromium surfaces
JPS639022A (en) Production of magnetic recording medium
KR100470638B1 (en) A method for manufacturing pre-phosphated anti-finger treatment steel sheet with good corrosion resistance property and anti-alkalinity
JPS62182283A (en) Surface treating solution for stainless steel
JPS6227153B2 (en)
JPH09195062A (en) Production of hot dip galvanized steel sheet excellent in corrosion resistance, blackening resistance and scratching resistance
JPS61252236A (en) Formation of magnetic film
JPH01242637A (en) Coating of resin molding
JPH0681158A (en) Surface treatment of copper and copper alloy
JP3310468B2 (en) Pretreatment method for etching material