JPS6227153B2 - - Google Patents

Info

Publication number
JPS6227153B2
JPS6227153B2 JP57213943A JP21394382A JPS6227153B2 JP S6227153 B2 JPS6227153 B2 JP S6227153B2 JP 57213943 A JP57213943 A JP 57213943A JP 21394382 A JP21394382 A JP 21394382A JP S6227153 B2 JPS6227153 B2 JP S6227153B2
Authority
JP
Japan
Prior art keywords
aluminum
film
organic
composite
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57213943A
Other languages
Japanese (ja)
Other versions
JPS59107055A (en
Inventor
Tetsuji Iwama
Tsuyoshi Katsumata
Koji Mitamura
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP21394382A priority Critical patent/JPS59107055A/en
Publication of JPS59107055A publication Critical patent/JPS59107055A/en
Publication of JPS6227153B2 publication Critical patent/JPS6227153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウム系複合材に係り、アルミ
ニウム又はアルミニウム合金の表面にTi又はZr
を主成分とする皮膜を形成し、該皮膜表面に有機
―無機複合体樹脂を被覆して、アルミニウム又は
アルミニウム合金、Ti又はZrを主成分とする皮
膜、Ti又はZrと有機―無機複合体樹脂中の無機
化合物成分とによる複合層及び有機―無機複合体
樹脂皮膜からなるサンドイツチ構造状のものとす
ることにより、容器、スイツチカバーあるいは熱
交換媒体、特にプレコート熱交換器用フイン材に
最適な、すなわち耐食性及び加工性に優れたもの
となるアルミニウム系複合材を提供することを目
的とする。 例えばアルミニウム又はアルミニウム合金(以
下単にアルミニウム)の板材を用いて熱交換器用
のフイン材を構成するには、該アルミニウムの板
材に深紋り、しごき、張出し等の加工が施され、
所定の形状に構成されている。そして、アルミニ
ウムを熱交換器用のフイン材に用いるには、例え
ばその耐食性の面よりアルミニウム表面に有機樹
脂をコーテイングしておくことがある。このよう
な有機樹脂被覆アルミニウムに所定の加工を施し
て構成した熱交換器用フイン材は所望の耐食性が
得られるものの、熱交換器用フイン材は、その表
面が親水性であることも要求されており、その為
単なる有機樹脂をアルミニウムにコーテイングす
るのではなく、有機―無機複合体樹脂をアルミニ
ウムにコーテイングしたものが好ましくなる。し
かし、アルミニウム表面に形成した有機―無機複
合体樹脂は、無機化合物の添加によつて表面の気
密性及び耐透湿度が劣下するものとなり、例えば
加工前における保管中に大気中の水分を吸着して
しまい、加工時に加工油の付着が悪くなり、潤滑
性不良となつて加工性が悪くなり、又、吸着され
た水分が複合体樹脂と素地アルミニウムとの界面
に浸透し、この水分が腐食性物質としても作用す
るようになり、耐食性が低下し、又、加工後にお
けるトリクレン及び弱アルカリ脱脂によつて複合
体樹脂が剥離することもある。 本発明は上記欠点を除去したものであり、以下
本発明に係るアルミニウム系複合材について説明
する。 例えば熱交換器用フイン材として用いられる所
定形状のアルミニウム材を脱脂水洗した後、該ア
ルミニウム材表面に、皮膜中に約0.05〜100mg/
m2、望ましくは約0.5〜5mg/m2程度のTi量又は
Zr量を有する皮膜を形成した後、この皮膜上に水
分がある場合には皮膜表面の水分をアルミニウム
の機械的性質が劣下しない程度の温度、通常300
℃以下、望ましくは約60〜200℃の温度で加熱乾
燥して除去し、そしてTi又はZrを主成分とする
皮膜表面に水溶性の有機―無機複合体樹脂を、例
えばリバースロール方式等で均一に塗布するもの
である。 このTi又はZrを主成分とする皮膜形成用の素
材としては、K2TiF6等のフツ化チタニウム塩溶
液、又はフツ化ジルコニウム塩溶液あるいは日本
パーカライジング(株)製の商品名B.T.3751(アル
カリリン酸塩及び/又はリン酸を基本成分とし
て、タンニンのチタン塩又はタンニン酸のチタン
塩を含有している化成処理剤を脱イオン水に溶解
させてPHを2.5〜4.5に調整したもの)等があり、
又、有機―無機複合体樹脂としては、シリカ―ア
クリル複合体―メラミン樹脂型塗料、シリカ―ウ
レタン複合体塗料といつたように、有機―無機複
合体樹脂の有機樹脂成分にはウレタン樹脂、不飽
和カルボン酸又はその誘導体(アクリル酸、メタ
クリル酸等のエステル、アミド、イミド、特にア
クリルメラミン樹脂)、オレフイン(ポリエチレ
ン、ポリプロピレン)、もしくはこれらの共重合
体のものが用いられ、有機―無機複合体樹脂の無
機化合物成分としては吸水性物質、例えばSiO4−
の基本構造を有するケイ酸塩を用いたものが用い
られる。 このようにして得られたものは、アルミニウム
表面上のTi又はZrを主成分(通常Fと共存す
る)とする下地皮膜と有機―無機複合体皮膜との
境に、下地皮膜と有機―無機複合体皮膜中の吸水
性の無機化合物成分とによる複合層が構成された
ものとなつており、この複合層の存在によつてア
ルミニウム系複合材を成形加工した場合でも、表
面の有機―無機複合体皮膜には亀裂等が起きず、
加工性が良好で、かつ耐食性にも優れ、さらには
水濡れ性も良好なものである。特に、下地皮膜で
あるTi又はZrと例えばSiO4− を主体とするものと
による複合層が約数+Å厚あれば、加工性及び耐
食性は優れており、このような複合層を構成する
にはTi又はZrを主成分とする皮膜を構成する層
の厚みが約10〜200Å、有機―無機複合体樹脂の
塗布層の厚みが約0.5〜3μmであることが必要
である。 尚、このようにして得られた本発明になるアル
ミニウム系複合材の皮膜をX線光電子分析
(ESCA)によつて調べると、例えば図面に示す
通り、Al,Al2O3,SiO4− ,Ti,Fの化合物と考
えられる複合層が共存していることがわかる。
尚、同図中、下のグラフは有機―無機複合体皮膜
表面のものであり、上のグラフは複合層のもので
ある。 以下、本発明の具体的実施例を述べる。 実施例 1 JIS1200―H24アルミニウム合金箔(コイル巾
500mm、コイル長さ3000m、コイル厚さ0.110mm)
を弱エツチング脱脂した後、日本パーカライジン
グ製ボンデライト#3751を用いてPH2.7に調整し
た浴で約35〜40℃にて約10〜12秒間浸漬し、Ti
を主成分とする化成皮膜(全Ti量3mg/m2)を
生成後、80℃で30秒間乾燥し、化成皮膜上又は皮
膜中の水分を除去する。 次に、上記化成皮膜上に、関西ペイント社製の
水分散型のシリカ―アクリル複合体―メラミン樹
脂型塗料(ASM4155改、アクリル―シリカ―メ
ラミン樹脂、固形分17.5%(SiO2含有量40%)、
イソプロピルアルコール9.8%、ジメチルアミノ
エタノール1.8%、上水70.8%)を乾燥後の厚さ
が約1.1〜1.6μ厚となるようリバースロール方式
で塗布し、塗布後約200〜220℃のメタル温度で20
秒間加熱乾燥する。 このようにしてアルミニウム箔表面にプレコー
ト処理の施された複合材料を、例えばしごき加工
を有するドローレスプレス加工することによつ
て、所定形状のフインを形成し、加工後フインの
組み立てを行ない、そしてトリクレン脱脂処理を
施し、加工工程中に付着した油の除去をし、フイ
ンピツチの小さな熱交換器を構成する。 実施例 2 JIS1200―H22アルミニウム合金箔に対して、
実施例1と同様にして化成皮膜を生成せしめ、次
いで有機―無機複合体樹脂を塗布する。 このようにしてアルミニウム箔表面にプレコー
ト処理の施された複合材料を、例えば紋り加工を
有するドロープレス加工することによつて、所定
形状のフインを形成し、加工後フインの組み立て
を行ない、そしてトリクレン脱脂処理を施し、加
工工程中に付着した油の除去をし、フインピツチ
の小さな熱交換器を構成する。 実施例 3 実施例1と同じ展伸材を弱エツチング脱脂した
後、1%フツ化ジルコニウムカリウム
(K2ZrF6)浴に温度60〜65℃で約16〜17秒間浸漬
し、展伸材表面にZrを主成分とする化成皮膜を生
成後、120℃で30秒間乾燥し、化成皮膜上又は皮
膜中の水分を除去する。 次に、上記化成皮膜上に、日本パーカライジン
グ製の水分散型のシリカ―ウレタン複合体塗料を
乾燥後の厚さが約1.1〜1.6μ厚となるようリバー
スロール方式で塗布し、塗布後約230〜240℃のメ
タル温度で約20秒間加熱乾燥する。 このようにしてアルミニウム箔表面にプレコー
ト処理の施された複合材料を、実施例1の加工と
同様にして熱交換器を構成する。 比較例 1 実施例1におけるTiを主成分とする化成皮膜
生成工程を省き、その他は実施例1と同様にして
熱交換器を構成する。 比較例 2 実施例1の展伸材を弱エツチング脱脂した後、
120℃で30秒間乾燥し、この展伸材表面に有機―
無機複合体樹脂とは異なる、例えばNPアルコー
トLX80―119(アクリル―メラミン樹脂型塗料、
日本ペイント社製)を2μ厚塗布し、200〜220℃
のメタル温度で30秒間加熱乾燥し、そして実施例
1と同様な加工を施して熱交換器を構成する。 上記のようにして得られるものについて、プレ
ス成形性、耐食性、加工後のトリクレン洗浄性等
について測定すると、表に示す通りである。
The present invention relates to aluminum-based composite materials, and includes Ti or Zr on the surface of aluminum or aluminum alloy.
Form a film mainly composed of aluminum or aluminum alloy, a film mainly composed of Ti or Zr, and coat the surface of the film with an organic-inorganic composite resin. By forming a sandwich structure consisting of a composite layer with an inorganic compound component and an organic-inorganic composite resin film, it is ideal for containers, switch covers, or heat exchange media, especially fin materials for pre-coated heat exchangers. The purpose of the present invention is to provide an aluminum-based composite material that has excellent corrosion resistance and workability. For example, in order to construct a fin material for a heat exchanger using a plate material of aluminum or an aluminum alloy (hereinafter simply referred to as aluminum), the aluminum plate material is subjected to processing such as deep marking, ironing, overhanging, etc.
It is configured in a predetermined shape. When aluminum is used as a fin material for a heat exchanger, the surface of the aluminum may be coated with an organic resin, for example, in order to improve its corrosion resistance. Although the heat exchanger fin material made by subjecting such organic resin-coated aluminum to specified processing can provide the desired corrosion resistance, the surface of the heat exchanger fin material is also required to be hydrophilic. Therefore, instead of simply coating aluminum with an organic resin, it is preferable to coat aluminum with an organic-inorganic composite resin. However, the addition of inorganic compounds to the organic-inorganic composite resin formed on the aluminum surface deteriorates the airtightness and moisture permeability of the surface, and for example, it absorbs atmospheric moisture during storage before processing. This results in poor adhesion of machining oil during machining, resulting in poor lubricity and poor machinability.Also, adsorbed moisture penetrates the interface between the composite resin and the base aluminum, and this moisture causes corrosion. It also acts as a chemical substance, resulting in a decrease in corrosion resistance, and the composite resin may peel off due to trichlene and weak alkaline degreasing after processing. The present invention eliminates the above-mentioned drawbacks, and the aluminum-based composite material according to the present invention will be explained below. For example, after degreasing and washing an aluminum material of a predetermined shape used as a fin material for a heat exchanger with water, approximately 0.05 to 100 mg/kg of aluminum is applied to the surface of the aluminum material in a film.
m 2 , preferably about 0.5 to 5 mg/m 2 of Ti amount or
After forming a film with a Zr content, if there is moisture on this film, the water on the film surface is heated to a temperature that does not deteriorate the mechanical properties of aluminum, usually at 300°C.
℃ or less, preferably about 60 to 200℃, and then apply a water-soluble organic-inorganic composite resin uniformly on the surface of the film mainly composed of Ti or Zr using, for example, a reverse roll method. It is applied to As a material for forming a film containing Ti or Zr as a main component, titanium fluoride salt solution such as K 2 TiF 6 , zirconium fluoride salt solution, or product name BT3751 (alkaline phosphoric acid) manufactured by Nippon Parkerizing Co., Ltd. A chemical conversion agent containing salt and/or phosphoric acid as a basic component and a titanium salt of tannin or a titanium salt of tannic acid is dissolved in deionized water to adjust the pH to 2.5 to 4.5). ,
In addition, as organic-inorganic composite resins, the organic resin component of organic-inorganic composite resins includes urethane resins and inorganic resins, such as silica-acrylic composite-melamine resin type paints and silica-urethane composite paints. Saturated carboxylic acids or their derivatives (acrylic acid, methacrylic acid esters, amides, imides, especially acrylic melamine resins), olefins (polyethylene, polypropylene), or copolymers thereof are used, and organic-inorganic composites are used. The inorganic compound component of the resin is a water-absorbing substance, such as SiO 4-4 .
A silicate having the basic structure is used. The product obtained in this way has a layer between the base film containing Ti or Zr as a main component (usually coexisting with F) and the organic-inorganic composite film on the aluminum surface. It is composed of a composite layer with the water-absorbing inorganic compound component in the body film, and due to the existence of this composite layer, even when aluminum-based composite material is molded, the organic-inorganic composite on the surface No cracks occur in the film,
It has good processability, excellent corrosion resistance, and also good water wettability. In particular, if the composite layer consisting of the base film of Ti or Zr and, for example, a material mainly composed of SiO 4-4 , has a thickness of approximately several + Å, the workability and corrosion resistance are excellent, and it is necessary to construct such a composite layer. It is necessary that the thickness of the layer constituting the film mainly composed of Ti or Zr is about 10 to 200 Å, and the thickness of the organic-inorganic composite resin coating layer is about 0.5 to 3 μm. In addition, when the film of the aluminum-based composite material of the present invention thus obtained was examined by X-ray photoelectron analysis (ESCA), for example, as shown in the drawing, Al, Al 2 O 3 , SiO 4-4 were found . It can be seen that a composite layer, which is thought to be a compound of , Ti, and F, coexists.
In the figure, the lower graph shows the surface of the organic-inorganic composite film, and the upper graph shows the composite layer. Hereinafter, specific examples of the present invention will be described. Example 1 JIS1200-H24 aluminum alloy foil (coil width
500mm, coil length 3000m, coil thickness 0.110mm)
Ti
After forming a chemical conversion film (total Ti amount: 3 mg/m 2 ) mainly consisting of , it is dried at 80°C for 30 seconds to remove moisture on or in the chemical conversion film. Next, a water-dispersible silica-acrylic composite-melamine resin type paint manufactured by Kansai Paint Co., Ltd. (ASM4155 modified, acrylic-silica-melamine resin, solid content 17.5% (SiO 2 content 40%) was applied on the above chemical conversion film. ),
9.8% isopropyl alcohol, 1.8% dimethylaminoethanol, 70.8% clean water) was applied using a reverse roll method so that the thickness after drying was approximately 1.1 to 1.6μ, and the metal temperature was approximately 200 to 220℃ after application. 20
Heat and dry for 2 seconds. Fins of a predetermined shape are formed by subjecting the composite material pre-coated on the surface of the aluminum foil to drawless press processing including ironing, and after processing, the fins are assembled. It is degreased to remove oil that has adhered to it during the processing process, and a heat exchanger with a small fin pitch is constructed. Example 2 For JIS1200-H22 aluminum alloy foil,
A chemical conversion film is formed in the same manner as in Example 1, and then an organic-inorganic composite resin is applied. Fins of a predetermined shape are formed by drawing-pressing the composite material, which has been pre-coated on the surface of the aluminum foil with a pattern, for example, and assembling the fins after processing. Triclene degreasing treatment is applied to remove oil adhering during the processing process, and a heat exchanger with a small fin pitch is constructed. Example 3 The same wrought material as in Example 1 was degreased by slight etching, and then immersed in a 1% potassium zirconium fluoride (K 2 ZrF 6 ) bath at a temperature of 60 to 65°C for about 16 to 17 seconds to improve the surface of the wrought material. After forming a chemical conversion film containing Zr as a main component, it is dried at 120°C for 30 seconds to remove moisture on or in the chemical conversion film. Next, a water-dispersible silica-urethane composite paint made by Nippon Parkerizing Co., Ltd. is applied onto the above chemical conversion film using a reverse roll method so that the thickness after drying is approximately 1.1 to 1.6 μm. Heat dry at ~240℃ metal temperature for about 20 seconds. The composite material whose aluminum foil surface was precoated in this manner was processed in the same manner as in Example 1 to construct a heat exchanger. Comparative Example 1 A heat exchanger was constructed in the same manner as in Example 1 except that the step of forming a chemical conversion film containing Ti as a main component in Example 1 was omitted. Comparative Example 2 After slightly etching and degreasing the wrought material of Example 1,
After drying at 120℃ for 30 seconds, organic
Different from inorganic composite resin, for example, NP Alcoat LX80-119 (acrylic-melamine resin type paint,
(manufactured by Nippon Paint Co., Ltd.) applied 2μ thick and heated to 200 to 220℃.
The heat exchanger was then heated and dried for 30 seconds at a metal temperature of 100 mL, and processed in the same manner as in Example 1 to construct a heat exchanger. The press moldability, corrosion resistance, trichlene washability after processing, etc. of the product obtained as described above were measured and the results are shown in the table.

【表】 上述の如く、本発明に係るアルミニウム系複合
材は、アルミニウム又はアルミニウム合金の表面
にTi又はZrを主成分とする皮膜を形成し、該皮
膜表面に有機―無機複合体樹脂を被覆し、Ti又
はZrを主成分とする皮膜の層と有機―無機複合体
樹脂の層との境にTi又はZrと有機―無機複合体
樹脂中の無機化合物成分とによる複合層を構成し
たものであるので、例えばこのような素材を用い
て熱交換器のフインを構成する場合にはそのプレ
ス成形性が良く、不良品の発生率が著しく少な
く、又、耐食性に富んでおり、かつ耐熱性にも優
れ、さらには水濡れ性を良く、熱交換器の素材と
して最適なものとなる等の特長を有する。
[Table] As mentioned above, the aluminum-based composite material according to the present invention is produced by forming a film containing Ti or Zr as a main component on the surface of aluminum or aluminum alloy, and coating the surface of the film with an organic-inorganic composite resin. , a composite layer of Ti or Zr and the inorganic compound component in the organic-inorganic composite resin is constructed at the boundary between the film layer containing Ti or Zr as the main component and the organic-inorganic composite resin layer. Therefore, for example, when fins of a heat exchanger are constructed using such a material, it has good press formability, the incidence of defective products is extremely low, and it is also highly corrosion resistant and heat resistant. It also has excellent water wettability, making it ideal as a material for heat exchangers.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明のアルミニウム系複合材の皮膜
のX線光電子分析の結果を示すものである。
The drawings show the results of X-ray photoelectron analysis of the film of the aluminum-based composite material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム又はアルミニウム合金の表面に
Ti又はZrを主成分とする皮膜を形成し、該皮膜
表面に有機―無機複合体樹脂を被覆し、Ti又は
Zrを主成分とする皮膜の層と有機―無機複合体樹
脂の層との境にTi又はZrと有機―無機複合体樹
脂中の無機化合物成分とによる複合層を構成した
ことを特徴とするアルミニウム系複合材。
1 On the surface of aluminum or aluminum alloy
A film containing Ti or Zr as the main component is formed, and the surface of the film is coated with an organic-inorganic composite resin.
Aluminum characterized by comprising a composite layer of Ti or Zr and an inorganic compound component in the organic-inorganic composite resin at the boundary between the film layer mainly composed of Zr and the organic-inorganic composite resin layer. system composite material.
JP21394382A 1982-12-08 1982-12-08 Aluminum-base composite material Granted JPS59107055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21394382A JPS59107055A (en) 1982-12-08 1982-12-08 Aluminum-base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21394382A JPS59107055A (en) 1982-12-08 1982-12-08 Aluminum-base composite material

Publications (2)

Publication Number Publication Date
JPS59107055A JPS59107055A (en) 1984-06-21
JPS6227153B2 true JPS6227153B2 (en) 1987-06-12

Family

ID=16647610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21394382A Granted JPS59107055A (en) 1982-12-08 1982-12-08 Aluminum-base composite material

Country Status (1)

Country Link
JP (1) JPS59107055A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127746A (en) * 1985-11-28 1987-06-10 Ricoh Co Ltd Electrode for electrophotographic sensitive body
JP2013159806A (en) * 2012-02-03 2013-08-19 Kobe Steel Ltd Aluminum alloy sheet, and joined body and member for automobile using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413858A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Electromagnetic clutch brake system
JPS5418664A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Semiconductor switch
JPS54160527A (en) * 1977-10-14 1979-12-19 Nippon Packaging Kk Surface treatment for aluminum and alloy thereof
JPS5746000A (en) * 1980-09-04 1982-03-16 Nippon Electric Co Cooling structure for electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413858A (en) * 1977-07-01 1979-02-01 Hitachi Ltd Electromagnetic clutch brake system
JPS5418664A (en) * 1977-07-13 1979-02-10 Hitachi Ltd Semiconductor switch
JPS54160527A (en) * 1977-10-14 1979-12-19 Nippon Packaging Kk Surface treatment for aluminum and alloy thereof
JPS5746000A (en) * 1980-09-04 1982-03-16 Nippon Electric Co Cooling structure for electronic device

Also Published As

Publication number Publication date
JPS59107055A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
JP5240489B2 (en) Resin-coated aluminum alloy plate and molded body using the same
US6696106B1 (en) Primer for radiation curable coating compositions
JPS6140305B2 (en)
HU225813B1 (en) Copolymer primer for aluminium alloy sheet for producing food and beverage containers, and method for producing the sheet
JP4915068B2 (en) Aluminum alloy can lid with excellent corrosion resistance and adhesion and method for producing the same
JPS6227153B2 (en)
JP5311266B2 (en) Resin-coated seamless aluminum can with excellent corrosion resistance and adhesion
CN105849499B (en) heat exchanger coating
JPH0515176B2 (en)
JP2654312B2 (en) Aluminum fin material with hydrophilic surface treatment for air conditioner heat exchanger
JPS6239028B2 (en)
JPS63262238A (en) Heat-exchanger fin material
JP2004018906A (en) Surface-treated aluminum material, manufacturing method therefor, formed aluminum article, and aluminum can
JPS63216977A (en) Treatment of aluminum material for preventing corrosion and providing hydrophilic property
JPH0424632B2 (en)
JPH0571382B2 (en)
JP2005520114A (en) Surface treatment method for brazing evaporator
JPS59202398A (en) Aluminum made fin for heat exchanger
JPS63262239A (en) Heat-exchanger fin material
JPH04190096A (en) Heat exchanger
JPS62176578A (en) Treatment of fin for heat exchanger
JPS59153884A (en) Zinc or zinc alloy plated steel sheet for base metal for coating
JP3218927B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JPS6354793B2 (en)
JP3218923B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same