JPH0571382B2 - - Google Patents

Info

Publication number
JPH0571382B2
JPH0571382B2 JP25585788A JP25585788A JPH0571382B2 JP H0571382 B2 JPH0571382 B2 JP H0571382B2 JP 25585788 A JP25585788 A JP 25585788A JP 25585788 A JP25585788 A JP 25585788A JP H0571382 B2 JPH0571382 B2 JP H0571382B2
Authority
JP
Japan
Prior art keywords
film
water
aluminum
chemical
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25585788A
Other languages
Japanese (ja)
Other versions
JPH02103133A (en
Inventor
Akihiro Kyotani
Tsukasa Kasuga
Takehiro Chinen
Toshinori Maeda
Makoto Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP25585788A priority Critical patent/JPH02103133A/en
Publication of JPH02103133A publication Critical patent/JPH02103133A/en
Publication of JPH0571382B2 publication Critical patent/JPH0571382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、アルミニウムまたはアルミニウム合
金からなる熱交換器用アルミニウムフイン材に関
するものであり、とくにプレコート被覆層を形成
することによつて、親水性を有し、かつ耐食性、
耐薬品性及び成形性に優れた熱交換器用アルミニ
ウムフイン材に関するものである。 [従来の技術] 空調機のエバポレーターの熱交換器のフイン材
には、軽量性、加工性、熱伝導性に優れたアルミ
ニウムまたはアルミニウム合金が使用されてい
る。 しかし、エバポレーターの作動中にはフイン表
面が露点以下となり、凝縮水がフイン表面に付着
するため、材料の腐食と通風抵抗の増大という問
題があつた。これを解決するため耐食性で水との
親和性をもつ表面処理被覆をしたフイン材が用い
られるようになつた。 この表面処理は、フインを成形した後に行う方
法(ポストコート法)とフイン成形前のアルミニ
ウム板に行う方法(プレコート法)とがあるが、
熱交換器製造工程の簡略化、表面処理皮膜の均一
性の観点からプレコート法が採用されるようにな
つた。 しかし、プレコート法では被覆後フイン形状に
加工しなければならないので、成形後のよいこと
と、成形により皮膜の破壊が起らないこと、成形
工具の摩耗が生じないことなどが要求される。ま
た、フインコアに組立後に成形時の潤滑油を除去
するため、トリクレン等の有機溶剤やアルカリ脱
脂剤が使用されるため、これらに対する耐薬品性
も必要とされる。 こうした要求に対して、従来から耐食性付与の
ため無機質皮膜であるクロメート処理皮膜、陽極
酸化膜、ベーマイト皮膜などが使用されている。
また、親水性付与のため無機質皮膜であるベーマ
イト皮膜や、シリカ、水ガラス、アルミナなどの
無機物質と有機物質の混合皮膜や、水溶性アクリ
ル樹脂などの有機皮膜が使用されている。また、
有機化合物と有機硬化剤の架橋反応物を前記無機
質皮膜の上に塗布する方法(特開昭62−105629
号)も提案されている。 しかし、クロメート処理皮膜などの無機質皮膜
は耐食性には優れているが、親水性は不十分であ
り、ベーマイト皮膜は親水性は良好なものの耐薬
品性に劣るという問題がある。また、これらの無
機質皮膜は十分な耐食性を得るためには膜厚を厚
くする必要があり、これがフイン成形加工時の工
具摩耗を促進するという問題があつた。 シリカ、水ガラス、アルミナなどの無機物質を
有機樹脂に混合した処理皮膜では、親水性に優れ
ているものの連続成形性に難があり、成形加工工
具の摩耗の問題がある。 水溶性アクリル樹脂などの有機皮膜は、連続成
形性に優れるものの親水性に劣るという問題があ
る。 また、親水性に良好な皮膜は水を透過し易いた
めに耐食性に劣り、耐食性に良好な皮膜は水をは
じき易く親水性に劣る。このように相反する機能
の親水性と耐食性を一つの皮膜で得ることは非常
に困難であり、親水性を有し、かつ耐食性、連続
成形性、耐薬品性の全てに優れた皮膜を得ようと
すれば、多層皮膜とならざるを得ないが、しか
し、前記の有機化合物と有機硬化剤の架橋反応物
を無機質皮膜の上に塗布したものは、両者の欠点
を補うものであつても、充分に満足できるもので
はなかつた。 [発明が解決しようとする課題] そこで本発明の目的は、親水性を有し、かつ耐
食性、連続成形性、耐薬品性の全てに優れた皮
膜、特に熱交換器フイン材のプレコート皮膜を被
覆した熱交換器用アルミニウムフイン材を提供す
ることにある。 [課題を解決するための手段] 本発明者は、上記課題を解決すべく従来より研
究を重ねてきたが、アルミニウムまたはアルミニ
ウム合金薄板に化学皮膜処理した上で、その上に
特定組成の耐食性複合樹脂皮膜からなる中間層を
設け、さらに特定の親水性有機皮膜を設けること
が有効であることを知見し、本発明に至つた。 すなわち、本発明は、アルミニウムまたはアル
ミニウム合金薄板の表面に、化学皮膜からなる下
層と、該化学皮膜の上に(a)水溶性不飽和カル
ボン酸類の重合体、(b)ジルコニウム化合物、
チタン化合物、ケイ素化合物からなる群から選択
された化合物および(c)フツ化物からなる水溶
液を塗布、乾燥して得られた耐食性複合樹脂皮膜
からなる中間層と、さらにその上に水溶性セルロ
ース樹脂と水溶性アクリル樹脂との反応物からな
る親水性有機皮膜からなる上層とから構成される
複合皮膜を有することを特徴とする熱交換器用ア
ルミニウムフイン材である。 本発明に使用するアルミニウムまたはアルミニ
ウム合金薄板は、アルミニウムフイン材として使
用されるものである。 このアルミニウムまたはアルミニウム合金薄板
の表面に形成する化学皮膜は、りん酸クロメート
皮膜やクロム酸クロメート皮膜等のクロメート皮
膜が望ましいが、ベーマイト皮膜、陽極酸化皮
膜、水ガラス処理皮膜あるいはジルコニウム処理
皮膜も使用することができる。 本発明において中間層を構成する耐食性複合樹
脂皮膜は上記a,bおよびcからなる水溶液を塗
布、乾燥してなるものである。 (a) 成分の水溶性不飽和カルボン酸類の重合体と
しては、たとえば(メタ)アクリル酸、(メタ)
アクリル酸のエステルの重合体あるいはこれと
他のビニル単量体との共重合体が挙げられ、水
溶液中に0.3〜30g/含まれていることが望
ましい。 (b) 成分のジルコニウム化合物としては、たとえ
ばフルオロジルコニウム酸及びそのアルカリ金
属塩、フツ化ジルコニウム、酸化ジルコニウ
ム、炭酸ジルコニウムのアンモニウム塩等が使
用される。チタン化合物としては、フルオロチ
タン酸及びそのアルカリ金属塩、フルオロチタ
ン酸アンモニウム、酸化チタン等が使用され
る。ケイ素化合物としては、フルオロケイ酸及
びそのアルカリ金属塩、フツ化ケイ素、酸化ケ
イ素等が使用され、(b)成分は水溶液中に0.1
〜15g/含まれることが望ましい。 (c) 成分のフツ化物としては、たとえばフツ酸、
フツ化水素酸カリウム、フツ化水素酸ナトリウ
ム等を挙げることができる。(c)成分は水溶
液中に0.05〜10g/含まれていることが望ま
しい。 これら中間層形成液の化学皮膜上への塗布
は、ロール方式、浸漬方式、スプレー方式等の
いずれの方法によつてもよく、塗布後80〜200
℃で1〜60秒乾燥され中間層を形成する。 本発明において上層を構成する親水性有機皮膜
は、水溶性セルロース樹脂と水溶性アクリル樹脂
とからなつている。 水溶性セルロース樹脂としては、セルロース、
そのエステルあるいはエーテルもしくはそれらの
混合物が使用できる。 水溶性アクリル樹脂は、一般にアクリル重合体
中にカルボキシル基、ヒドロキシル基、アミノ基
等の親水性官能基を有するものであつて、(メタ)
アクリル酸、(メタ)アクリル酸エステル、(メ
タ)アクリルアミド等の重合体、またはこれらの
不飽和化合物相互の共重合体、あるいはこれらの
不飽和化合物と他の不飽和化合物との共重合体も
しくは加水分解等によつて前記カルボキシル基、
ヒドロキシル基あるいはアミノ基等の親水性基が
導入されたアクリル重合体を挙げることができ
る。 これら水溶性セルロース樹脂と水溶性アクリル
樹脂は、1:4〜4:1の割合で使用するのが好
ましい。 これらの混合物を前記中間層上に塗布した後、
200〜280℃、5〜60秒の条件で焼付を行うことに
より上層が形成される。 [作用] 本発明によれば、アルミニウムまたはアルミニ
ウム合金薄板表面のクロメート皮膜等の化学皮膜
により耐食性が付与される。 また、中間層の耐食性複合樹脂皮膜は、化学皮
膜の上を不飽和カルボン酸の重合体とジルコニウ
ム化合物等の架橋反応により高分子化された皮膜
が均一に覆う形で形成されており、殊に中間層中
において遊離した形で存在するフツ化物の作用に
より、化学皮膜の欠陥部において効果的に有機・
無機皮膜が強固に形成され、耐食性を大きく向上
させることができる。 無機物であるジルコニウム化合物等は、有機化
合物と共に架橋反応し、反応性成物の一部として
存在する。また、この皮膜の耐食性向上作用によ
り、下層の化学皮膜を薄く抑えることができ、成
形工具の摩耗の問題はなくなる。 さらに、不飽和カルボン酸の重合体により上層
の皮膜との密着性も非常に良好なため、親水性皮
膜の耐薬品性、連続成形性が向上する。したがつ
て、その皮膜の薄膜化が可能となり、製造コスト
を低減することができる。 この中間層の耐食性複合樹脂皮膜は、非常な薄
膜でも耐食性に優れ、その厚さは0.5〜500mg/
m2、好ましくは3〜100mg/m2である。これは、
0.5mg/m2未満では耐食性向上の効果がなく、500
mg/m2を超えても耐食性向上の効果はわずかであ
り、製造コストも上昇することによる。 親水性有機皮膜は水溶性セルロースを第1成分
としていて、そのセルロース樹脂は多数の水酸基
を持つために親水性に非常に優れている。水溶性
アクリル樹脂を混合反応させることにより、耐薬
品性も向上させることができる。また完全な有機
皮膜であるために成形工具の摩耗の心配はない。 親水性有機皮膜の厚さは0.05〜1g/m2が望ま
しい。これは0.05g/m2未満では親水性向上の効
果が少なく、1g/m2を超えても親水性向上の効
果はわずかであり、製造コストも上昇することに
よる。 [実施例] 以下に実施例を挙げ、本発明をさらに詳細に説
明する。 実施例 厚さが0.110mmの工業用純アルミ(JIS A1100
−H26)条を市販の弱アルカリ系脱脂剤を用いて
脱脂・洗浄した。次いでリン酸クロメート系化成
浴液(商品名アロジン401/45日本ペイント(株)社
製)に浸漬してリン酸クロメート皮膜からなる耐
食性化学皮膜を形成した後、水洗乾燥させた。次
いでこの化学皮膜の上に表1に示す配合処方の中
間層形成液をロールコーターで塗布し、熱風乾燥
炉で温度120℃、時間20秒で乾燥して、表1に示
される各膜厚の耐食性複合樹脂皮膜を得た。次い
で、その耐食性複合樹脂皮膜の上に水溶性セルロ
ース樹脂と水溶性アクリル樹脂とからなる塗料を
ロールコーターで塗布し、熱風乾燥炉で温度250
℃、時間20秒で焼付けて、表1に示される各膜厚
の有機親水性皮膜を形成した。 こうして得られた各種のプレコート皮膜を形成
したフイン材についてそれぞれについての生成複
合皮膜の特性(親水性・耐食性、耐薬品性、連続
成形性)を調べ、その結果を表1に示した。 ここで親水性は室温の水中に2分間浸漬し、次
いで6分間冷風乾燥することの組合せを1サイク
ルとし、500サイクル行つた後で、水との接触角
を測定し評価した。◎は非常に良好(接触角20゜
以下)、〇は良好(接触角20゜〜40゜)、×は不良
(接触角40゜超え)とした。 耐食性は塩水噴霧試験500時間後のフインの表
面状態を観察した。◎は非常に良好、〇は良好、
×は不良とした。 耐薬品性は市販のプレス油に24時間浸漬し、
次いでトリクレンで洗浄した後に水との接触角を
測定し評価した。◎は非常に良好(接触角15゜以
内)、〇良好(接触角15゜〜30゜)、×は不良(接触
角30゜超え)とした。耐薬品性は市販のアルカ
リ脱脂液に50℃で1分間浸漬し、浸漬前後の皮膜
厚さより、膜厚減少率を求め評価した。◎は非常
に良好(減少率20%以下)、〇は良好(減少率40
%以下)、×は不良(減少率40%超え)とした。 連続成形性は連続10万パンチ フインプレス後
に成形工具の摩耗状況と成形後のフイン外観とを
肉眼で観察した。 比較例 実施例と同じ要領でアルミ条の表面に表1に示
す構成の複合被膜を形成した。また比較例8で
は、化学被膜の上にシリカを混合した水溶性有機
樹脂塗料を塗布焼付けして、有機・無機・混合皮
膜を得た。また比較例9では化学皮膜の上に水溶
性アクリル樹脂塗料を塗布・焼付けして、有機親
水性皮膜を得た。各々の皮膜厚さは1.5g/m2
あつた。 得られた皮膜の特性を実施例と同様に調べ、そ
の結果を表1に示した。
[Industrial Application Field] The present invention relates to an aluminum fin material for a heat exchanger made of aluminum or an aluminum alloy, and in particular, by forming a pre-coated coating layer, it has hydrophilicity, corrosion resistance,
This invention relates to an aluminum fin material for heat exchangers that has excellent chemical resistance and formability. [Prior Art] Aluminum or aluminum alloy, which has excellent lightness, workability, and thermal conductivity, is used for the fin material of the heat exchanger of the evaporator of an air conditioner. However, during operation of the evaporator, the surface of the fins becomes below the dew point and condensed water adheres to the surface of the fins, causing problems such as corrosion of the material and increased ventilation resistance. To solve this problem, fin materials with surface treatment coatings that are corrosion resistant and have an affinity for water have come to be used. There are two methods for this surface treatment: one is to perform it after forming the fins (post-coat method), and the other is to perform it on the aluminum plate before forming the fins (pre-coat method).
The pre-coating method has been adopted from the viewpoint of simplifying the heat exchanger manufacturing process and ensuring uniformity of the surface treatment film. However, in the pre-coating method, it is necessary to process the coating into a fin shape after coating, so it is required that the coating be good after molding, that the film will not be destroyed by molding, and that the molding tool will not be worn out. In addition, since organic solvents such as trichlene and alkaline degreasing agents are used to remove lubricating oil during molding after assembly to the fin core, chemical resistance against these is also required. To meet these demands, inorganic films such as chromate-treated films, anodized films, and boehmite films have been used to impart corrosion resistance.
In addition, to impart hydrophilic properties, boehmite films, which are inorganic films, mixed films of inorganic and organic substances such as silica, water glass, and alumina, and organic films such as water-soluble acrylic resins are used. Also,
A method of applying a crosslinking reaction product of an organic compound and an organic curing agent onto the inorganic film (Japanese Patent Laid-Open No. 105629/1983)
) has also been proposed. However, inorganic coatings such as chromate-treated coatings have excellent corrosion resistance but insufficient hydrophilicity, and boehmite coatings have good hydrophilicity but are poor in chemical resistance. Furthermore, in order to obtain sufficient corrosion resistance, these inorganic coatings must be thick, which has the problem of accelerating tool wear during fin forming. Treated films made by mixing inorganic substances such as silica, water glass, and alumina with organic resins have excellent hydrophilic properties, but have difficulty in continuous molding and have problems with wear of molding tools. Organic films such as water-soluble acrylic resins have excellent continuous moldability, but have a problem of poor hydrophilicity. Furthermore, a film with good hydrophilicity easily allows water to permeate and has poor corrosion resistance, and a film with good corrosion resistance easily repels water and has poor hydrophilicity. It is extremely difficult to obtain these conflicting functions of hydrophilicity and corrosion resistance in a single film, so it is important to obtain a film that is hydrophilic and has excellent corrosion resistance, continuous moldability, and chemical resistance. If this is the case, it will have to be a multilayer film, but even if the crosslinking reaction product of the organic compound and organic curing agent described above is coated on an inorganic film, it will compensate for the drawbacks of both. It wasn't completely satisfying. [Problems to be Solved by the Invention] Therefore, the object of the present invention is to provide a coating that is hydrophilic and has excellent corrosion resistance, continuous formability, and chemical resistance, particularly for coating precoated coatings on heat exchanger fin materials. An object of the present invention is to provide an aluminum fin material for a heat exchanger. [Means for Solving the Problems] The present inventor has conducted repeated research in order to solve the above problems, and found that after chemically coating aluminum or aluminum alloy thin plates, a corrosion-resistant composite of a specific composition was applied on the aluminum or aluminum alloy thin plates. It has been found that it is effective to provide an intermediate layer made of a resin film and further provide a specific hydrophilic organic film, leading to the present invention. That is, the present invention provides a lower layer consisting of a chemical film on the surface of an aluminum or aluminum alloy thin plate, and on the chemical film, (a) a polymer of water-soluble unsaturated carboxylic acids, (b) a zirconium compound,
An intermediate layer consisting of a corrosion-resistant composite resin film obtained by coating and drying an aqueous solution consisting of a compound selected from the group consisting of a titanium compound and a silicon compound and (c) a fluoride, and further a water-soluble cellulose resin on top of the intermediate layer. This is an aluminum fin material for a heat exchanger characterized by having a composite film composed of an upper layer made of a hydrophilic organic film made of a reaction product with a water-soluble acrylic resin. The aluminum or aluminum alloy thin plate used in the present invention is used as an aluminum fin material. The chemical film formed on the surface of this aluminum or aluminum alloy thin plate is preferably a chromate film such as a phosphoric acid chromate film or a chromic acid chromate film, but a boehmite film, an anodized film, a water glass treated film or a zirconium treated film may also be used. be able to. In the present invention, the corrosion-resistant composite resin film constituting the intermediate layer is formed by applying and drying an aqueous solution consisting of the above a, b, and c. Examples of polymers of water-soluble unsaturated carboxylic acids as component (a) include (meth)acrylic acid and (meth)acrylic acid.
Examples include polymers of esters of acrylic acid or copolymers of these and other vinyl monomers, and it is desirable that the aqueous solution contains 0.3 to 30 g/g. Examples of the zirconium compound used as component (b) include fluorozirconic acid and its alkali metal salts, zirconium fluoride, zirconium oxide, and ammonium salts of zirconium carbonate. As the titanium compound, fluorotitanic acid and its alkali metal salts, ammonium fluorotitanate, titanium oxide, etc. are used. As the silicon compound, fluorosilicic acid and its alkali metal salt, silicon fluoride, silicon oxide, etc. are used, and component (b) is contained in an aqueous solution containing 0.1
It is desirable to contain ~15g/. (c) Examples of the fluoride component include fluoric acid,
Potassium hydrofluoride, sodium hydrofluoride, etc. can be mentioned. It is desirable that component (c) is contained in the aqueous solution in an amount of 0.05 to 10 g. The intermediate layer forming liquid may be applied onto the chemical film by any method such as a roll method, a dipping method, or a spray method.
It is dried for 1 to 60 seconds at ℃ to form an intermediate layer. In the present invention, the hydrophilic organic film constituting the upper layer is composed of a water-soluble cellulose resin and a water-soluble acrylic resin. Water-soluble cellulose resins include cellulose,
The esters or ethers or mixtures thereof can be used. Water-soluble acrylic resins generally have hydrophilic functional groups such as carboxyl groups, hydroxyl groups, and amino groups in their acrylic polymers.
Polymers of acrylic acid, (meth)acrylic acid esters, (meth)acrylamide, etc., copolymers of these unsaturated compounds, or copolymers or hydration of these unsaturated compounds with other unsaturated compounds The carboxyl group is removed by decomposition etc.
Examples include acrylic polymers into which hydrophilic groups such as hydroxyl groups or amino groups are introduced. It is preferable to use these water-soluble cellulose resin and water-soluble acrylic resin in a ratio of 1:4 to 4:1. After applying these mixtures on the intermediate layer,
The upper layer is formed by baking at 200-280°C for 5-60 seconds. [Function] According to the present invention, corrosion resistance is imparted by a chemical film such as a chromate film on the surface of an aluminum or aluminum alloy thin plate. In addition, the corrosion-resistant composite resin film of the intermediate layer is formed by uniformly covering the chemical film with a film made of a polymer through a crosslinking reaction between a polymer of unsaturated carboxylic acid and a zirconium compound. Due to the action of the fluoride present in free form in the intermediate layer, organic compounds are effectively removed from the defective areas of the chemical film.
A strong inorganic film is formed, and corrosion resistance can be greatly improved. Zirconium compounds and the like, which are inorganic substances, undergo a crosslinking reaction with organic compounds and exist as part of the reactive components. Furthermore, due to the effect of improving the corrosion resistance of this film, the underlying chemical film can be kept thin, eliminating the problem of wear of forming tools. Furthermore, since the unsaturated carboxylic acid polymer has very good adhesion to the upper film, the chemical resistance and continuous moldability of the hydrophilic film are improved. Therefore, the film can be made thinner, and manufacturing costs can be reduced. This intermediate layer of corrosion-resistant composite resin film has excellent corrosion resistance even if it is a very thin film, and its thickness is 0.5 to 500 mg/
m 2 , preferably 3 to 100 mg/m 2 . this is,
If it is less than 0.5mg/m2, there is no effect of improving corrosion resistance;
Even if it exceeds mg/m 2 , the effect of improving corrosion resistance is small and the manufacturing cost also increases. The first component of the hydrophilic organic film is water-soluble cellulose, and since the cellulose resin has a large number of hydroxyl groups, it has excellent hydrophilicity. Chemical resistance can also be improved by mixing and reacting water-soluble acrylic resins. Also, since it is a completely organic film, there is no need to worry about wear of the molding tool. The thickness of the hydrophilic organic film is preferably 0.05 to 1 g/m 2 . This is because if it is less than 0.05 g/m 2 , the effect of improving hydrophilicity is small, and even if it exceeds 1 g/m 2 , the effect of improving hydrophilicity is small, and the manufacturing cost increases. [Example] The present invention will be described in further detail with reference to Examples below. Example Industrial pure aluminum with a thickness of 0.110 mm (JIS A1100
-H26) The strip was degreased and cleaned using a commercially available weak alkaline degreaser. Next, it was immersed in a phosphoric acid chromate-based chemical bath liquid (trade name: Allozin 401/45, manufactured by Nippon Paint Co., Ltd.) to form a corrosion-resistant chemical film consisting of a phosphoric acid chromate film, and then washed with water and dried. Next, an intermediate layer forming liquid having the formulation shown in Table 1 was applied onto this chemical film using a roll coater, and dried in a hot air drying oven at a temperature of 120°C for 20 seconds to obtain the film thicknesses shown in Table 1. A corrosion-resistant composite resin film was obtained. Next, a paint made of water-soluble cellulose resin and water-soluble acrylic resin is applied onto the corrosion-resistant composite resin film using a roll coater, and heated in a hot air drying oven at a temperature of 250°C.
It was baked for 20 seconds at a temperature of 0.degree. C. to form an organic hydrophilic film having the thickness shown in Table 1. The properties (hydrophilicity/corrosion resistance, chemical resistance, continuous formability) of the resulting composite film were investigated for each of the fin materials on which the various precoat films were formed, and the results are shown in Table 1. Here, hydrophilicity was evaluated by measuring the contact angle with water after 500 cycles in which one cycle was a combination of immersion in water at room temperature for 2 minutes and then drying with cold air for 6 minutes. ◎ is very good (contact angle 20° or less), 〇 is good (contact angle 20° to 40°), and × is poor (contact angle over 40°). Corrosion resistance was determined by observing the surface condition of the fins after 500 hours of a salt spray test. ◎ is very good, 〇 is good,
× was determined to be defective. Chemical resistance is determined by soaking in commercially available press oil for 24 hours.
Next, after washing with trichlene, the contact angle with water was measured and evaluated. ◎ is very good (contact angle of 15° or less), 〇 is good (contact angle of 15° to 30°), and × is bad (contact angle of over 30°). Chemical resistance was evaluated by immersing the film in a commercially available alkaline degreasing solution at 50°C for 1 minute and determining the film thickness reduction rate from the film thickness before and after immersion. ◎ is very good (reduction rate of 20% or less), 〇 is good (reduction rate of 40%)
% or less), × indicates poor (reduction rate exceeding 40%). Continuous formability was determined by continuous punching of 100,000 fins.After the fin press, the wear condition of the forming tool and the appearance of the fins after forming were observed with the naked eye. Comparative Example A composite film having the structure shown in Table 1 was formed on the surface of an aluminum strip in the same manner as in the example. In Comparative Example 8, a water-soluble organic resin paint mixed with silica was applied and baked on the chemical film to obtain an organic/inorganic mixed film. In Comparative Example 9, a water-soluble acrylic resin paint was applied and baked on the chemical film to obtain an organic hydrophilic film. The thickness of each coating was 1.5 g/m 2 . The properties of the obtained film were investigated in the same manner as in the Examples, and the results are shown in Table 1.

【表】【table】

【表】 [発明の効果] 以上説明したように、本発明の構成によるアル
ミニウムフイン材は、親水性を有し、かつ耐水
性、連続成形性、耐薬品性にも優れており、熱交
換器用として非常に有用である。また、本発明の
表面処理皮膜は全体として非常に薄膜であるた
め、皮膜による伝熱抵抗の増加を抑止でき、しか
も製造コストの低減も可能である。
[Table] [Effects of the Invention] As explained above, the aluminum fin material according to the structure of the present invention has hydrophilicity and is also excellent in water resistance, continuous formability, and chemical resistance, and is suitable for use in heat exchangers. It is very useful as Furthermore, since the surface treatment film of the present invention is a very thin film as a whole, it is possible to suppress an increase in heat transfer resistance due to the film, and also to reduce manufacturing costs.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムまたはアルミニウム合金薄板の
表面に、化学被膜からなる下層と、該化学皮膜の
上に(a)水溶性不飽和カルボン酸類の重合体、
(b)ジルコニウム化合物、チタン化合物、ケイ
素化合物からなる群から選択された化合物および
(c)フツ化物からなる水溶液を塗布、乾燥して
得られた耐食性複合樹脂皮膜からなる中間層と、
さらにその上に水溶性セルロース樹脂と水溶性ア
クリル樹脂との反応物からなる親水性有機皮膜か
らなる上層とから構成される複合皮膜を有するこ
とを特徴とする熱交換器用アルミニウムフイン
材。
1 A lower layer consisting of a chemical film on the surface of an aluminum or aluminum alloy thin plate, and on the chemical film (a) a polymer of water-soluble unsaturated carboxylic acids;
(b) a compound selected from the group consisting of a zirconium compound, a titanium compound, and a silicon compound; and (c) an intermediate layer consisting of a corrosion-resistant composite resin film obtained by applying and drying an aqueous solution consisting of a fluoride;
An aluminum fin material for a heat exchanger, further comprising a composite film comprising an upper layer comprising a hydrophilic organic film made of a reaction product of a water-soluble cellulose resin and a water-soluble acrylic resin.
JP25585788A 1988-10-13 1988-10-13 Aluminum fin material for heat exchanger Granted JPH02103133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25585788A JPH02103133A (en) 1988-10-13 1988-10-13 Aluminum fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25585788A JPH02103133A (en) 1988-10-13 1988-10-13 Aluminum fin material for heat exchanger

Publications (2)

Publication Number Publication Date
JPH02103133A JPH02103133A (en) 1990-04-16
JPH0571382B2 true JPH0571382B2 (en) 1993-10-07

Family

ID=17284551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25585788A Granted JPH02103133A (en) 1988-10-13 1988-10-13 Aluminum fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JPH02103133A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514478A (en) * 1993-09-29 1996-05-07 Alcan International Limited Nonabrasive, corrosion resistant, hydrophilic coatings for aluminum surfaces, methods of application, and articles coated therewith
JPH11131254A (en) * 1997-10-24 1999-05-18 Nippon Parkerizing Co Ltd Surface treatment of aluminum-containing metallic material
JP4464796B2 (en) * 2004-11-15 2010-05-19 日立アプライアンス株式会社 Heat exchanger and manufacturing method thereof
JP5789401B2 (en) * 2011-04-15 2015-10-07 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
FR3013437B1 (en) * 2013-11-20 2015-12-18 Valeo Systemes Thermiques COATING FOR HEAT EXCHANGER

Also Published As

Publication number Publication date
JPH02103133A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
AU746200B2 (en) Process for surface-treating an aluminium containing metal
CA1332329C (en) Method for hydrophilic treatment of aluminum using an amphoteric polymer
JPH0873775A (en) Metal surface treating agent for forming coating film excellent in fingerprint resistance, corrosion resistance and adhesion of coating film and method of treating therewith
JP3373802B2 (en) Method for hydrophilic treatment of aluminum material, base treating agent and hydrophilic paint
JPS6140305B2 (en)
JPS59133373A (en) Metal surface treatment and treating bath
JPH0571382B2 (en)
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JPH0515176B2 (en)
JPH01108231A (en) Hydrophilic surface-treating agent and treatment
JP4562897B2 (en) Fin material for heat exchanger having non-chromate reaction type underlayer and heat exchanger provided with the same
JPH06322552A (en) Hydrophilic surface treating agent, hydrophilic surface treating bath and surface treating method for aluminum material
JPH1183384A (en) Pre-coated fin material for heat exchanger
JP3373801B2 (en) Aluminum substrate surface treatment method and surface treatment agent
JP2004018929A (en) Coated metal material and nonchromium metal surface treatment method
JP2000516996A (en) Compositions and methods for treating metal surfaces
JPS63178873A (en) Production of chromated plated steel sheet having excellent corrosion resistance and coating property
JPS63262239A (en) Heat-exchanger fin material
JPS63262238A (en) Heat-exchanger fin material
JPH0159356B2 (en)
JPH02219875A (en) Hydrophilic coating agent, aluminum or aluminum alloy sheet for fin and heat exchanger
JPH02277782A (en) Formation of hydrophilic coating film on heat exchanger
JP2002038280A (en) Metal plate with chromium-free coating
JP6215990B2 (en) Aluminum fin material
JP2001342578A (en) Surface treatment agent for metal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071007

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20081007

LAPS Cancellation because of no payment of annual fees