JPH0239018B2 - - Google Patents

Info

Publication number
JPH0239018B2
JPH0239018B2 JP56071752A JP7175281A JPH0239018B2 JP H0239018 B2 JPH0239018 B2 JP H0239018B2 JP 56071752 A JP56071752 A JP 56071752A JP 7175281 A JP7175281 A JP 7175281A JP H0239018 B2 JPH0239018 B2 JP H0239018B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
magnetic layer
film
acyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56071752A
Other languages
Japanese (ja)
Other versions
JPS57189339A (en
Inventor
Kunio Hibino
Takashi Fujita
Masatoshi Takao
Mikio Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56071752A priority Critical patent/JPS57189339A/en
Publication of JPS57189339A publication Critical patent/JPS57189339A/en
Publication of JPH0239018B2 publication Critical patent/JPH0239018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/722Protective coatings, e.g. anti-static or antifriction containing an anticorrosive material

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属薄膜型磁気記録媒体の磁性層表面
の改質を行ない、耐食性、走行性の向上を目ざし
たものである。 一般に真空蒸着またはメツキ法で作成した金属
薄膜型磁気記録媒体は高密度性に優れているとい
われている。特に近年はオーデイオ録音用やビデ
オ録音テープ用しての用途が期待されており、小
型録音テープ用として、プラスチツク基板上に真
空蒸着によつて、コバルト主成分合金の薄膜を形
成したものは、実用化の域に入り、市販されるよ
うになつた。しかし、一般的に強磁性金属は腐食
し易く、これを避けるために磁性体自体の合金化
の方法や磁性層上に高分子化合物の皮膜を形成す
るなどの方法が採用されている。しかしこれらの
方法においては、磁性層の合金化の場合、磁気特
性の観点からは、耐食性の良い合金が必ずしも良
い特性を有するとは言えないのが普通である。ま
た、磁性層表面に耐食性のある被膜を形成する事
は、効果はあるが、電磁変換特性の観点からは、
あまり皮膜層の膜厚が大きすぎるのは好ましいと
は言えない。皮膜層の厚みの許され得る範囲は
高々500Åであり、望ましくは200Å程度である。
この程度の膜厚を持ち、耐食性のある皮膜を安定
にしかも量産性良く形成するのは非常な困難を伴
う。また皮膜が形成されたとしても、この程度の
厚みでは完全に水分の侵入を妨げることは困難で
ある。 本発明では、以上のような従来の困難さを避け
る目的で、チタンアシレートの溶液を塗布した
後、乾燥させることによつて、十分な耐食性を得
るものである。 以下本発明について説明する。 真空蒸着法、電気メツキ法、スパツタリング法
などで作成した、コバルトなどの強磁性金属より
成る磁気記録用薄膜媒体上にチタンアシレート溶
液を塗布する。チタンアシレートは、次式に示す
ような分子式で表わされる。 (R1,R2,R3,R4のうち、少くとも1つ以上が
アシル基であり、他はアルキル基を持つている。) 上式においてRがアルキル基の場合、微量の水
分によつて加水分解され、次式のような構造をも
つようになる。 また、Rがアシル基の場合には、加水分解反応
は起こらず、皮膜中に―ORが残ることになる。 アルキル基によつて加水分解の速度が異なり、
市販品としては、イソプロピル基、n―ブチル
基、2―エチルヘキシル基、ステアリル基が用い
られている。 アシル基は、未反応基として被膜に残るため、
撥水性、滑性の観点から炭素数8から22の長鎖の
アシル基を用いる。 溶媒としては、n―ブタノール、n―ヘキサ
ン、ベンゼン、トルエン、クロロホルム、メチル
クロロホルム、四塩化炭素を用いる。 濃度は10%から0.001%が有効であり、1%か
ら0.01%が望ましい。 濃度が濃い場合には、均一な膜が生成しにくく
チヨーキング現象を起こし、接着性が低下する。
また、濃度が低い場合には、十分な厚みをもつた
皮膜が得られず、金属薄膜が露出する部分が生じ
十分な耐食性が得られない。 チタンアシレートは、金属薄膜上の微量の水分
や水酸基と反応し、錆の原因となる水分、水酸基
を減少させる。また反応後の長鎖のアシル基が残
るため疎水性を示し、水に対する接触角も増大す
るため、錆の原因となる水の浸入を防ぎ、耐食性
が向上する。 また、長鎖のアシル基は、良好な潤滑性を持つ
ていることから、走行性も改善される。 また、チタンアシレートのポリマー(2〜5量
体)でも同様の効果が得られる。 なお後述の実施例では強磁性金属薄膜として
Co―Ni膜を用いているが、Co膜,Co―Cr膜,
Co―Ni―Cr膜、Co―Fe膜等においても類似の効
果が得られた。 次に具体的に実施例の説明を行う。 実施例 1 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%),ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 トリ―n―ブトキシチタンモノステアレート
1部 Ti(o―nC4H93(oCOC17H35)〔日本曹達(株)製
チタンアシレート(TBSTA)〕n―ブタノー
ル 100部 塗布後60℃で約30分間乾燥した。処理したもの
は処理前に比較して、磁性層の撥水性が改善され
た。また、鏡面仕上げのSUS304のブロツク上で
10gの荷重下での摩擦抵抗を測定したところ処理
前に比較して、約9分の8に低下していた。 第1表に接触角の測定結果と環境試験結果を示
す。
The present invention aims at improving the corrosion resistance and runnability by modifying the surface of the magnetic layer of a metal thin film magnetic recording medium. In general, metal thin film magnetic recording media prepared by vacuum deposition or plating methods are said to have excellent high density properties. Particularly in recent years, applications for audio and video recording tapes have been expected, and thin films of cobalt-based alloys formed by vacuum deposition on plastic substrates have been put into practical use for small-sized recording tapes. It has become commercially available. However, ferromagnetic metals are generally prone to corrosion, and in order to avoid this corrosion, methods such as alloying the magnetic material itself or forming a film of a polymer compound on the magnetic layer are adopted. However, in these methods, when alloying the magnetic layer, it is common that an alloy with good corrosion resistance does not necessarily have good properties from the viewpoint of magnetic properties. Also, forming a corrosion-resistant film on the surface of the magnetic layer is effective, but from the perspective of electromagnetic conversion characteristics,
It cannot be said that it is preferable that the film thickness of the film layer is too large. The allowable range of the thickness of the coating layer is at most 500 Å, preferably about 200 Å.
It is extremely difficult to stably form a corrosion-resistant film with such a thickness and with good mass production. Further, even if a film is formed, it is difficult to completely prevent moisture from entering with such a thickness. In the present invention, in order to avoid the above-mentioned conventional difficulties, sufficient corrosion resistance is obtained by applying a titanium acylate solution and then drying it. The present invention will be explained below. A titanium acylate solution is applied onto a magnetic recording thin film medium made of a ferromagnetic metal such as cobalt and made by vacuum evaporation, electroplating, sputtering, or the like. Titanium acylate is represented by the molecular formula shown in the following formula. (At least one of R 1 , R 2 , R 3 , and R 4 is an acyl group, and the others have an alkyl group.) In the above formula, when R is an alkyl group, it is As a result, it is hydrolyzed and has the structure shown in the following formula. Furthermore, when R is an acyl group, no hydrolysis reaction occurs and --OR remains in the film. The rate of hydrolysis varies depending on the alkyl group,
As commercially available products, isopropyl group, n-butyl group, 2-ethylhexyl group, and stearyl group are used. Since the acyl group remains in the coating as an unreacted group,
From the viewpoint of water repellency and slipperiness, a long chain acyl group with 8 to 22 carbon atoms is used. As the solvent, n-butanol, n-hexane, benzene, toluene, chloroform, methylchloroform, and carbon tetrachloride are used. A concentration of 10% to 0.001% is effective, preferably 1% to 0.01%. If the concentration is high, it will be difficult to form a uniform film, causing a yoking phenomenon and reducing adhesion.
Furthermore, if the concentration is low, a film with sufficient thickness cannot be obtained, and some parts of the thin metal film are exposed, making it impossible to obtain sufficient corrosion resistance. Titanium acylate reacts with trace amounts of moisture and hydroxyl groups on the metal thin film, reducing moisture and hydroxyl groups that cause rust. Furthermore, since long-chain acyl groups remain after the reaction, they exhibit hydrophobicity and increase the contact angle with water, which prevents water from entering which causes rust and improves corrosion resistance. Furthermore, since long-chain acyl groups have good lubricity, running properties are also improved. Similar effects can also be obtained with titanium acylate polymers (dimers to pentamers). In the examples described later, as a ferromagnetic metal thin film.
Co-Ni film is used, but Co film, Co-Cr film,
Similar effects were obtained with Co--Ni--Cr films, Co--Fe films, etc. Next, examples will be specifically explained. Example 1 A solution having the following composition was applied to the magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. tri-n-butoxytitanium monostearate
1 part Ti(onC 4 H 9 ) 3 (oCOC 17 H 35 ) [Titanium acylate (TBSTA) manufactured by Nippon Soda Co., Ltd.] 100 parts n-butanol After coating, it was dried at 60° C. for about 30 minutes. The water repellency of the magnetic layer of the treated magnetic layer was improved compared to that before treatment. In addition, on a mirror-finished SUS304 block,
When the frictional resistance was measured under a load of 10g, it was found to have decreased to about 8/9 compared to before treatment. Table 1 shows the contact angle measurement results and environmental test results.

【表】 実施例 2 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%),ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 i―プロポキシチタントリ―ステアレート
0.5部 〔Ti(o―i―C3H7)(oCoC17H353日本曹達
(株)製チタンアシレート(TTS)〕ベンゼン
100部 塗布後、60℃で約30分間乾燥した。処理したも
のは処理前に比較して磁性層の撥水性が改善され
た。また、鏡面仕上げSUS304のブロツク上で10
gの荷重下での摩擦抵抗を測定したところ、処理
前に比較して、約4分の3に低下していた。第2
表の接触角の測定結果と環境試験結果を示す。
[Table] Example 2 A solution having the following composition was applied to the magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. i-propoxy titanium tri-stearate
0.5 parts [Ti (o-i-C 3 H 7 ) (oCoC 17 H 35 ) 3 Nippon Soda
Titanium Acylate Co., Ltd. (TTS) Benzene
After applying 100 parts, it was dried at 60°C for about 30 minutes. The water repellency of the magnetic layer of the treated magnetic layer was improved compared to that before treatment. In addition, 10
When the frictional resistance was measured under a load of 100 g, it was found to have decreased to about three-fourths of that before treatment. Second
The contact angle measurement results and environmental test results are shown in the table.

【表】 実施例 3 ポリエステルフイルム上に真空蒸着法で作成し
たコバルト(80%)、ニツケル(20%)の強磁性
合金薄膜の磁性層に下記の組成の溶液を塗布し
た。 日本曹達(株)製チタンアシレートポリマー 5部 TBSTA―400 ベンゼン 100部 塗布後、60℃で約30分間乾燥した。処理したも
のは処理前に比較して磁性層の撥水性が改善され
た。また鏡面仕上げしたSUS304のブロツク上で
10gの荷重下での摩擦抵抗を測定したところ、処
理前に比較して、約5分の4に低下していた。第
3表に接触角の測定結果と環境試験結果を示す。
[Table] Example 3 A solution having the following composition was applied to the magnetic layer of a ferromagnetic alloy thin film of cobalt (80%) and nickel (20%) prepared by vacuum evaporation on a polyester film. Titanium acylate polymer manufactured by Nippon Soda Co., Ltd. 5 parts TBSTA-400 Benzene 100 parts After coating, it was dried at 60°C for about 30 minutes. The water repellency of the magnetic layer of the treated magnetic layer was improved compared to that before treatment. Also, on a mirror-finished SUS304 block.
When the frictional resistance was measured under a load of 10g, it was found to have decreased to about 4/5 compared to before treatment. Table 3 shows the contact angle measurement results and environmental test results.

【表】 また、上記実施例1〜3において作成した試料
を、市販のビデオテープレコーダと同等の機能を
有する試験機にて、電磁性変換特性を測定したこ
ろ、未処理品に比較して、チタンアシレート処理
品の出力低下は、1dB以内と十分な特性を示し
た。 以上のように本発明によれば、金属薄膜型磁気
記録媒体の耐蝕性を容易に高めることができると
ともに摩擦抵抗を下げることができる。
[Table] In addition, when the electromagnetic conversion characteristics of the samples prepared in Examples 1 to 3 above were measured using a tester having the same function as a commercially available video tape recorder, the results showed that the electromagnetic conversion characteristics were compared with those of the untreated product. The output drop of the titanium acylate treated product was within 1 dB, showing sufficient characteristics. As described above, according to the present invention, the corrosion resistance of a metal thin film magnetic recording medium can be easily increased, and the frictional resistance can be lowered.

Claims (1)

【特許請求の範囲】 1 強磁性金属薄膜より成る磁性層の表面に、一
般式 (R1,R2,R3,R4のうち、1つ以上3つ以下が
炭素数8から22のアシル基であり、他はアルキル
基である。) で表わされるチタンアシレートの溶液が塗布、乾
燥されて形成された長鎖のアシル基を有する酸化
チタンの保護皮膜を設けたことを特徴とする金属
薄膜型磁気記録媒体。 2 強磁性金属薄膜よりなる磁性層の表面に、一
般式 (R1,R2,R3,R4のうち、1つ以上3つ以下が
炭素数8から22のアシル基であり、他はアルキル
基である。) で表わされるチタンアシレート溶液を塗布し、乾
燥させて、長鎖のアシル基を有する酸化チタンの
保護皮膜を形成することを特徴とする金属薄膜型
磁気記録媒体の製造方法。
[Claims] 1. On the surface of a magnetic layer made of a ferromagnetic metal thin film, the general formula (Among R 1 , R 2 , R 3 , and R 4 , one or more and three or less are acyl groups having 8 to 22 carbon atoms, and the others are alkyl groups.) 1. A metal thin film type magnetic recording medium characterized by being provided with a protective film of titanium oxide having a long chain acyl group formed by coating and drying. 2. On the surface of the magnetic layer made of a ferromagnetic metal thin film, the general formula (Among R 1 , R 2 , R 3 , and R 4 , one or more and three or less are acyl groups having 8 to 22 carbon atoms, and the others are alkyl groups.) Apply a titanium acylate solution represented by A method for manufacturing a metal thin film type magnetic recording medium, comprising: forming a protective film of titanium oxide having a long-chain acyl group by drying.
JP56071752A 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture Granted JPS57189339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56071752A JPS57189339A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56071752A JPS57189339A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Publications (2)

Publication Number Publication Date
JPS57189339A JPS57189339A (en) 1982-11-20
JPH0239018B2 true JPH0239018B2 (en) 1990-09-03

Family

ID=13469571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56071752A Granted JPS57189339A (en) 1981-05-13 1981-05-13 Metallic thin film type magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS57189339A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005659A (en) * 2001-04-17 2003-01-08 Tokai Rubber Ind Ltd Transparent electromagnetic wave shield film for plasma display, front surface filter for plasma display panel using it, and plasma display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189702A (en) * 1975-02-05 1976-08-06 JIKIKIOKUTAI
JPS5376013A (en) * 1976-12-17 1978-07-06 Nec Corp Magnetic memory medium
JPS5441111A (en) * 1977-09-07 1979-04-02 Nec Corp Magnetic memory medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189702A (en) * 1975-02-05 1976-08-06 JIKIKIOKUTAI
JPS5376013A (en) * 1976-12-17 1978-07-06 Nec Corp Magnetic memory medium
JPS5441111A (en) * 1977-09-07 1979-04-02 Nec Corp Magnetic memory medium

Also Published As

Publication number Publication date
JPS57189339A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
JPH0239018B2 (en)
JPS6069824A (en) Magnetic recording medium
JPS59172134A (en) Magnetic recording medium
JPH0325848B2 (en)
JPH0326454B2 (en)
JPH0580731B2 (en)
JPH0219528B2 (en)
JPH0249489B2 (en)
JPS6180522A (en) Magnetic recording medium
JPS6246431A (en) Magnetic recording medium
JP3336768B2 (en) Magnetic recording media
JPS61194624A (en) Magnetic recording medium
JPS6126923A (en) Magnetic recording medium
JPH05331473A (en) Lubricant and magnetic recording medium coated with the same
JPH0249488B2 (en)
JPS63217519A (en) Magnetic recording medium
JPH0310162B2 (en)
JPS5819737A (en) Metallic thin film magnetic recording medium and its production
JPS581834A (en) Magnetic recording medium
JPH0587889B2 (en)
JPS58211324A (en) Magnetic recording medium
JPH028366B2 (en)
JPH07311935A (en) Magnetic recording medium
JPS63106914A (en) Magnetic recording medium
JPH02201727A (en) Lubricating material for recording medium and its production