JPH025833B2 - - Google Patents

Info

Publication number
JPH025833B2
JPH025833B2 JP15188081A JP15188081A JPH025833B2 JP H025833 B2 JPH025833 B2 JP H025833B2 JP 15188081 A JP15188081 A JP 15188081A JP 15188081 A JP15188081 A JP 15188081A JP H025833 B2 JPH025833 B2 JP H025833B2
Authority
JP
Japan
Prior art keywords
chloride
plating
alloy
plating solution
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15188081A
Other languages
Japanese (ja)
Other versions
JPS5855585A (en
Inventor
Yoshihisa Yoshihara
Akira Matsuda
Shoji Shizuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15188081A priority Critical patent/JPS5855585A/en
Publication of JPS5855585A publication Critical patent/JPS5855585A/en
Publication of JPH025833B2 publication Critical patent/JPH025833B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 本発明は酸化物を含まない表面外観の優れた亜
鉛―ニツケル合金めつき鋼板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a zinc-nickel alloy plated steel sheet that does not contain oxides and has an excellent surface appearance.

亜鉛めつき鋼板の耐食性を改善するために、合
金めつきや複合めつきの研究が種々行われてい
る。その中で特にZn―Ni合金めつき鋼板は耐食
性、溶接性、塗装性などの優れた表面特性を有
し、例えば、特開昭55―110791号、特開昭55―
152194号などにその有用性が報告され、なかでも
γ単相からなる10〜20%Ni含有合金が最も優れ
た耐食性が得られることが発表されている。しか
し、合金めつきはめつき浴組成、PH、電流密度、
浴温、液の撹拌条件などのめつき条件の変動によ
つて折出合金組成が変動し易く、所定の合金組成
が工業的に高速度で安定して得られ難い。
In order to improve the corrosion resistance of galvanized steel sheets, various studies have been conducted on alloy plating and composite plating. Among them, Zn--Ni alloy plated steel sheets in particular have excellent surface properties such as corrosion resistance, weldability, and paintability.
Their usefulness has been reported in No. 152194, among others, and it has been announced that an alloy containing 10 to 20% Ni consisting of a single γ phase provides the best corrosion resistance. However, for alloy plating, plating bath composition, PH, current density,
The deposited alloy composition tends to fluctuate due to variations in plating conditions such as bath temperature and liquid stirring conditions, making it difficult to stably obtain a predetermined alloy composition industrially at high speed.

このZn―Ni合金めつきにおける折出合金組成
の安定化についての改善策が特開昭55―110791号
に開示されており、これによると、硫酸亜鉛およ
び硫酸ニツケルを用いた硫酸塩浴で、Ni2+
Zn2+のモル濃度比を1.5〜4(すなわち、Ni2+
(Ni2++Zn2+)のモル濃度百分率で60〜80%)に
調整するとともに、めつき浴でのめつき液と鋼板
の相対移動速度を10m/min以上に設定すること
を特徴としている。すなわち、めつき浴中の
Ni2+濃度とZn2+濃度のモル比と、めつき液と鋼
板の相対移動速度との2つの条件を適正化するこ
とにより、Ni含有率9〜20%のZn−Ni合金めつ
きを得るものである。
An improvement measure for stabilizing the deposited alloy composition in Zn--Ni alloy plating is disclosed in JP-A-55-110791, which states that in a sulfate bath using zinc sulfate and nickel sulfate, Ni 2+ and
The molar concentration ratio of Zn 2+ was varied from 1.5 to 4 (i.e., Ni 2+ /
(Molar concentration percentage of Ni 2+ + Zn 2+ ) is adjusted to 60 to 80%), and the relative movement speed between the plating solution and the steel plate in the plating bath is set to 10 m/min or more. . In other words, during the plating bath
By optimizing the two conditions of the molar ratio of Ni 2+ concentration and Zn 2+ concentration and the relative movement speed between the plating solution and the steel plate, Zn-Ni alloy plating with a Ni content of 9 to 20% was achieved. It's something you get.

また、特開昭55―152194号の開示する処による
と、特にNi2+とZn2+のモル濃度比を限定しない
酸性浴にて、めつき液流速を20m/min以上と
し、電流密度を20A/dm2以上とする条件を選択
するとZn―Niの電析物が得られると記載され、
塩化物を用いた例としてはNiモル濃度百分率36
%で、Ni含有率が約12〜19%の析出物が得られ
ている。
Furthermore, according to the disclosure of JP-A No. 55-152194, in an acidic bath where the molar concentration ratio of Ni 2+ and Zn 2+ is not particularly limited, the flow rate of the plating solution is set to 20 m/min or more, and the current density is It is stated that if conditions of 20 A/dm 2 or more are selected, Zn-Ni deposits can be obtained.
An example using chloride is Ni molar concentration percentage 36
%, and a precipitate with a Ni content of approximately 12-19% has been obtained.

本発明者等は、さらにZn―Ni合金めつきにお
けるめつき浴組成およびめつき条件と析出合金組
成との関連について詳細に検討した結果、従来の
塩化亜鉛および塩化ニツケルを組成とする塩化物
浴から析出する黄褐色〜青紫色の析出物の外観光
沢が著しく改良され、高電流密度で高速かつ高能
率で安定した表面に酸化物を有しないZn―Ni合
金めつき鋼板が得られるめつき液を見い出した。
The present inventors further investigated in detail the relationship between the plating bath composition and plating conditions in Zn-Ni alloy plating and the deposited alloy composition. A plating solution that significantly improves the appearance gloss of the yellow-brown to blue-purple precipitates that precipitate, and produces Zn-Ni alloy coated steel sheets with high current density, high speed, high efficiency, and a stable surface with no oxides. I found out.

すなわち、本発明の方法に使用するZn―Ni合
金めつき液は、(1)塩化亜鉛と塩化ニツケルを主成
分とした塩化物浴を用い、(2)塩化アルミニウム、
塩化アルミニウムアンモニウム、塩化アンモニウ
ム、塩化カリウム、塩化カルシウム、塩化バリウ
ム、塩化ナトリウム、塩化マグネシウム等の群か
ら選択された1種または2種以上の塩化物塩を総
計で0.2mol/以上、溶解限度まで添加し、(3)
浴中のNi2+/(Ni2++Zn2+)モル濃度百分率を
20〜60%とし、(4)めつき液のPHを1.8〜4.5に調整
することを特徴とする。以上4つの条件を適正化
し、さらに電流密度20A/dm2以上とすることに
よつて、表面に酸化物を有しないNi含有量10〜
20重量%の外観光沢の優れたZn―Ni合金めつき
鋼板を安定して得ることに成功した。
That is, the Zn--Ni alloy plating solution used in the method of the present invention uses (1) a chloride bath containing zinc chloride and nickel chloride as main components, (2) aluminum chloride,
One or more chloride salts selected from the group such as aluminum ammonium chloride, ammonium chloride, potassium chloride, calcium chloride, barium chloride, sodium chloride, magnesium chloride, etc. are added in a total amount of 0.2 mol or more up to the solubility limit. (3)
Ni 2+ / (Ni 2+ + Zn 2+ ) molar concentration percentage in the bath
20 to 60%, and (4) adjusting the pH of the plating solution to 1.8 to 4.5. By optimizing the above four conditions and further increasing the current density to 20 A/dm 2 or higher, the Ni content can be reduced to 10 to 10% without any oxides on the surface.
We succeeded in stably obtaining a 20% by weight Zn-Ni alloy plated steel plate with excellent appearance gloss.

従来の塩化亜鉛および塩化ニツケルを組成とす
る塩化物浴から析出するNi含有量10〜20重量%
のZn―Ni合金めつきは、10A/dm2以上の高電
流密度では黄褐色〜青紫色の酸化物を含む析出物
しか得られず、その改良が必要であつた。すなわ
ち、黄褐色〜青紫色の酸化物を含む析出物は、表
面光沢が悪く、商品価値を著しく低下するだけで
なく、Zn―Ni合金めつき鋼板は主として塗装し
て使用されるので、その塗装下地処理のリン酸塩
あるいはクロメート処理が酸化物のために均一に
形成されず、塗料密着性および耐食性の低下の原
因となり、不都合である。
Ni content 10 to 20% by weight precipitated from a chloride bath composed of conventional zinc chloride and nickel chloride
In the case of Zn--Ni alloy plating, only yellow-brown to bluish-purple oxide-containing precipitates were obtained at high current densities of 10 A/dm 2 or higher, and improvements were needed. In other words, precipitates containing yellowish-brown to bluish-purple oxides not only have poor surface gloss and significantly reduce commercial value, but also because Zn-Ni alloy plated steel sheets are mainly used after being painted. The phosphate or chromate treatment used as the base treatment is not uniformly formed due to the presence of oxides, which causes a decrease in paint adhesion and corrosion resistance, which is disadvantageous.

本発明の方法によれば広範囲のめつき条件に亘
つて高速かつ高能率で表面に酸化膜を有しない
Zn―Ni合金めつき鋼板が得られる。上述したよ
うに、従来の塩化物浴からは表面に黄褐色〜青紫
色の酸化物あるいは水酸化物の不純物を含む析出
物しか得られないが、本発明のめつき方法では、
高電流密度とくに20〜200A/dm2の範囲で表面
に酸化物を有しない外観光沢の優れたNi含有量
10〜20重量%の析出物が得られる。さらに、本発
明のめつき方法による析出は、従来一般的に行わ
れているようにめつき液と鋼板の相対速度を大き
くすることなく、すなわち静止浴においても相対
速度が大きい場合と同様に上述したような高電流
密度で表面に酸化物を有しないZn―Ni合金めつ
き鋼板が得られる利点がある。
According to the method of the present invention, the plating process can be performed at high speed and with high efficiency over a wide range of plating conditions, and there is no oxide film on the surface.
A Zn-Ni alloy plated steel sheet is obtained. As mentioned above, conventional chloride baths yield only yellowish-brown to bluish-purple precipitates containing oxide or hydroxide impurities on the surface, but in the plating method of the present invention,
High current density, especially in the range of 20 to 200 A/dm 2 , excellent Ni content with no oxides on the surface and a glossy appearance
A precipitate of 10-20% by weight is obtained. Furthermore, precipitation by the plating method of the present invention can be carried out without increasing the relative velocity between the plating solution and the steel plate, as has conventionally been generally done. The advantage is that Zn-Ni alloy plated steel sheets without oxides on the surface can be obtained at such high current densities.

前述した特開昭55―110791号および特開昭55―
152194号などの従来のめつき浴では、Ni10〜20
重量%の合金組成を高電流密度(例えば、10A/
dm2以上)で工業的に高速度で得るためには、め
つき液と鋼板の相対移動速度を10m/min以上に
設定することが必須条件である。さらに、本発明
者等が従来のめつき浴を用いて詳細に検討した結
果、30A/dm2以上の高電流密度で電解するため
には、めつき浴を強制循環させるかあるいは撹拌
などによつて鋼板界面付近のめつき液を十分に撹
拌しないと均一なγ相(Ni含有量10〜20%)が
得られず、特に70A/dm2以上の高電流密度では
これらのめつき浴の撹拌を強化するために、特別
な撹拌設備が新たに必要となり、従来のめつき設
備の大がかりな変更、改造が必要となることがわ
かつた。
The above-mentioned Japanese Patent Application Publication No. 110791 and Japanese Patent Application Publication No. 110791-
In conventional plating baths such as No. 152194, Ni10 to 20
wt% alloy composition at high current density (e.g. 10A/
dm 2 or more) at high speed industrially, it is essential to set the relative movement speed between the plating solution and the steel plate to 10 m/min or more. Furthermore, as a result of detailed studies by the present inventors using conventional plating baths, we found that in order to conduct electrolysis at a high current density of 30 A/dm 2 or more, it is necessary to forcefully circulate the plating bath or to use methods such as stirring. If the plating solution near the steel plate interface is not sufficiently stirred, a uniform γ phase (Ni content of 10 to 20%) cannot be obtained. Especially at high current densities of 70 A/dm2 or higher , stirring of these plating baths is difficult. In order to strengthen this process, it was found that new special stirring equipment was required, and that the existing plating equipment would require major changes and modifications.

本発明によるめつき方法では、めつき液と鋼板
の相対速度が比較的小さい場合(例えば20m/
min以下)でも100A/dm2以上の高電流密度で
表面に酸化物を有しない所定の合金組成が得ら
れ、従来のめつき浴の欠点が極めて有利かつ効果
的に解決でき、Zn―Ni合金めつき鋼板を工業的
に高速度で製造する際、その貢献度が極めて大で
ある。
In the plating method according to the present invention, when the relative speed between the plating liquid and the steel plate is relatively small (for example, 20 m/
Even at high current densities of 100 A/dm 2 or higher, a desired alloy composition without oxides on the surface can be obtained even when Its contribution is extremely large when producing galvanized steel sheets industrially at high speed.

本発明におけるような塩化物浴の有利性は、硫
酸浴より電導度が2〜3倍高くなり、電力消費量
は1/2〜1/3に軽減されて省エネルギーの面からも
有利であり、まためつき液組成を一定に維持する
のが容易であることである。すなわち、塩化物浴
では鋼板に析出するZnおよびNi量に相当する比
率でZnおよびNi陽極を配列し、析出量に見合う
量でイオン化することによつてめつき液組成は常
に一定に保たれ、安定したZn―Ni合金めつき鋼
板が得られる。他方、硫酸浴ではNi陽極は不働
態化してイオン化しないので、Ni2+濃度が低下
して連続的に安定した品質の合金めつき鋼板を得
ることは困難である。従つて、液組成を一定に保
つための手段を必要とする欠点がある。
The advantage of the chloride bath in the present invention is that the conductivity is 2 to 3 times higher than that of the sulfuric acid bath, and the power consumption is reduced to 1/2 to 1/3, which is advantageous in terms of energy saving. Furthermore, it is easy to maintain a constant plating solution composition. In other words, in the chloride bath, the composition of the plating solution is always kept constant by arranging Zn and Ni anodes in a ratio corresponding to the amount of Zn and Ni deposited on the steel plate and ionizing in an amount commensurate with the amount of deposited. A stable Zn-Ni alloy plated steel sheet can be obtained. On the other hand, in a sulfuric acid bath, the Ni anode becomes passivated and is not ionized, so the Ni 2+ concentration decreases and it is difficult to continuously obtain alloy-plated steel sheets of stable quality. Therefore, there is a drawback that means for keeping the liquid composition constant is required.

本発明で用いるめつき液においては、めつき液
中のZn2+濃度を30g/以上、Ni2+濃度を30
g/以上、添加剤としての塩化物塩の総量を
0.2mol/以上とし、かつNi2+/(Ni2++Zn2+
のモル百分率を20〜60%に調整し、PHを1.8〜4.5
に調整する。Zn2+およびNi2+濃度が30g/未
満では、20A/dm2以上で正常な合金めつきが得
られず、添加剤としての塩化物塩0.2mol/未
満では、20A/dm2以上の高電流密度で黄褐色〜
青紫色の酸化物あるいは水酸化物の不純物を含む
Ni含有量10〜20%の析出物しか得られない。こ
の酸化物を含む析出物はめつき浴の電導度の不足
に起因している。
In the plating solution used in the present invention, the Zn 2+ concentration in the plating solution is 30 g/or more, and the Ni 2+ concentration is 30 g/min.
g/ or more, the total amount of chloride salts as additives
0.2 mol/or more, and Ni 2+ / (Ni 2+ + Zn 2+ )
Adjust the molar percentage from 20 to 60% and the PH from 1.8 to 4.5
Adjust to. If the Zn 2+ and Ni 2+ concentration is less than 30g/20A/ dm2 or more, normal alloy plating cannot be obtained, and if the chloride salt as an additive is less than 0.2mol/20A/dm2 or more , high Yellowish brown at current density
Contains blue-purple oxide or hydroxide impurities
Only precipitates with Ni content of 10-20% are obtained. This oxide-containing precipitate is due to insufficient conductivity of the plating bath.

また、Ni2+/(Ni2++Zn2+)のモル百分率が
20%未満では、析出合金組成のNi含有量が10%
未満となり十分な耐食性が得られない。逆に、モ
ル百分率が60%を超えるとNi含有量が20%以上
となり犠牲防食効果が減少する。なお、めつき液
のPHは1.8〜4.5が適正であり、PH1.8未満では析出
合金の化学溶解を生じ好ましくない。また、PH
4.5を超えると水酸化物の生成を生じ、めつき液
が不安定となる。めつき浴の温度は35〜75℃程度
が適当である。
Also, the molar percentage of Ni 2+ /(Ni 2+ + Zn 2+ ) is
Below 20%, the Ni content in the precipitated alloy composition is 10%
If the corrosion resistance is less than that, sufficient corrosion resistance cannot be obtained. Conversely, when the molar percentage exceeds 60%, the Ni content becomes 20% or more and the sacrificial corrosion protection effect decreases. Note that the pH of the plating solution is preferably 1.8 to 4.5, and a pH of less than 1.8 is undesirable because chemical dissolution of the precipitated alloy occurs. Also, PH
If it exceeds 4.5, hydroxide will be generated and the plating solution will become unstable. The appropriate temperature of the plating bath is about 35 to 75°C.

本発明で用いるめつき浴では、めつき液の流速
あるいはストリツプのラインスピードによるめつ
き液とストリツプとの相対移動速度は特に限定さ
れないが、流速20m/min以下の低速でも酸化物
を含まない表面外観の優れたγ相単相が得られ
る。従つて、高電流密度での電解でも前述の如く
特別な撹拌装置を要せず、液流速が不均一となる
ようなめつき方式(例えばCAROSEL、縦型めつ
きセル)でも、本発明のめつき方法が有利に適用
できる。
In the plating bath used in the present invention, the relative movement speed between the plating liquid and the strip is not particularly limited depending on the flow rate of the plating liquid or the line speed of the strip, but even at a low flow rate of 20 m/min or less, a surface free from oxides can be obtained. A single γ phase with excellent appearance is obtained. Therefore, the plating of the present invention does not require a special stirring device as described above even in electrolysis at high current density, and even in plating methods where the liquid flow rate is non-uniform (e.g. CAROSEL, vertical plating cell). The method can be advantageously applied.

以下、本発明のめつき方法を実施例を挙げて具
体的に説明する。
Hereinafter, the plating method of the present invention will be specifically explained with reference to Examples.

実施例 1 ZnCl2136g/およびNiCl2・6H2O238g/
を含み、Ni2+モル濃度百分率50%に調整しため
つき液に、NaCl0.2〜4.0mol/(11.6〜232g/
)を添加しためつき浴を用い、電流密度75A/
dm2、液流速50m/minでZn―Ni目付量20g/
m2となるように電解を行つた。
Example 1 ZnCl 2 136g/and NiCl 2・6H 2 O238g/
NaCl 0.2 to 4.0 mol/(11.6 to 232 g/
) with a current density of 75A/
dm 2 , liquid flow rate 50m/min, Zn-Ni area weight 20g/
Electrolysis was carried out so that m 2 was obtained.

本発明の方法に使用するめつき液のNaCl添加
量と電導度との関係を第1図に示す。第1図から
明らかなように、NaCl添加量の増加に伴い、め
つき液の電導度はほぼ直線的に向上する。第2図
には本発明のめつき液のNaCl添加量と得られた
Zn―Ni合金めつき(Ni含有量約13〜16重量%の
γ単相)皮膜の光沢度との関係を示す。第2図か
ら明らかなように、NaClを0.2mol/以上添加
することによつてめつき被膜の光沢度が著しく改
良される。
FIG. 1 shows the relationship between the amount of NaCl added to the plating solution used in the method of the present invention and the electrical conductivity. As is clear from FIG. 1, as the amount of NaCl added increases, the electrical conductivity of the plating solution increases almost linearly. Figure 2 shows the amount of NaCl added to the plating solution of the present invention and the obtained
The relationship between the glossiness of the Zn-Ni alloy plating (γ single phase with Ni content of about 13 to 16% by weight) film is shown. As is clear from FIG. 2, the gloss of the plating film is significantly improved by adding 0.2 mol/or more of NaCl.

第3図には本発明の方法によつて得られためつ
き皮膜と、従来の方法によつて得られためつき皮
膜のX線回折結果を示す。第3図から明らかなよ
うに、本発明例ではNiZn3(γ相)単相の回折ピ
ークが得られるが、従来例ではNiZn3の他に酸化
物と考えられる回折ピーク(2θ≒49゜)が存在し、
NiZn3以外の不純物を共析して析出物に褐色の着
色をしているものと考えられる。
FIG. 3 shows the results of X-ray diffraction of the tamping film obtained by the method of the present invention and the tamping film obtained by the conventional method. As is clear from Fig. 3, in the example of the present invention, a single phase diffraction peak of NiZn 3 (γ phase) is obtained, whereas in the conventional example, a diffraction peak (2θ≒49°) which is considered to be an oxide in addition to NiZn 3 is obtained. exists,
It is thought that impurities other than NiZn 3 are co-deposited, giving the precipitate a brown color.

このように、本発明のめつき方法を用いること
により、従来浴とは全く異り不純物を含まない析
出物が得られた。
Thus, by using the plating method of the present invention, a precipitate containing no impurities was obtained, completely different from conventional baths.

実施例 2 ZnCl2164g/およびNiCl2・6H2O190g/
を含み、Ni2+モル濃度百分率40%に調整しため
つき液に、KCl、NH4Cl、AlCl3およびCaCl2
それぞれ2mol/添加してPH3.0に調整しためつ
き浴を用いて実施例1と同様に、電流密度75A/
dm2、液流速50m/minでZn―Ni目付量20g/
m2となるように電解を行つた。
Example 2 ZnCl 2 164g/and NiCl 2 6H 2 O 190g/
The pH was adjusted to 3.0 by adding 2 mol/each of KCl, NH 4 Cl, AlCl 3 , and CaCl 2 to the tamping solution containing 40% Ni 2+ molar concentration. Similar to Example 1, current density 75A/
dm 2 , liquid flow rate 50m/min, Zn-Ni area weight 20g/
Electrolysis was carried out so that m 2 was obtained.

その結果、実施例1と同様にめつき浴の電導度
は230〜270m/cmまで向上し、光沢の優れた析
出物(Ni含有量12〜17重量%のγ単相)が得ら
れた。
As a result, as in Example 1, the electrical conductivity of the plating bath was improved to 230 to 270 m/cm, and a precipitate with excellent gloss (γ single phase with Ni content of 12 to 17% by weight) was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法におけるめつき液の
NaCl添加量と電導度との関係を示すグラフ、第
2図はNal添加量と得られたZn―Ni合金めつき
皮膜の光沢度との関係を示すグラフ、第3図は本
発明の方法におけるめつき浴および従来の方法に
おけるめつき浴から得られるZn―Ni合金めつき
皮膜のX線回折結果を示すグラフである。
Figure 1 shows the plating solution used in the method of the present invention.
A graph showing the relationship between the amount of NaCl added and the electrical conductivity, Figure 2 is a graph showing the relationship between the amount of Na added and the gloss of the obtained Zn-Ni alloy plating film, and Figure 3 is a graph showing the relationship between the amount of NaCl added and the gloss of the obtained Zn-Ni alloy plating film. 1 is a graph showing the results of X-ray diffraction of a Zn--Ni alloy plating film obtained from a plating bath and a plating bath in a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化亜鉛および塩化ニツケルを主成分とし、
塩化アルミニウム、塩化アルミニウムアンモニウ
ム、塩化アンモニウム、塩化カリウム、塩化カル
シウム、塩化バリウム、塩化ナトリウムおよび塩
化マグネシウムより成る群から選択された1種ま
たは2種以上の塩化物塩を総計で0.2mol/以
上溶解限度まで含有し、かつNi2+/(Zn2+
Ni2+)のモル濃度百分率が20〜60%の組成のめ
つき液を用い、このめつき液のPHを1.8〜4.5に調
整した後、鋼板に20A/dm2以上の電流密度でめ
つきすることを特徴とする亜鉛―ニツケル合金め
つき鋼板の製造方法。
1 Main ingredients are zinc chloride and nickel chloride,
Solubility limit of one or more chloride salts selected from the group consisting of aluminum chloride, ammonium aluminum chloride, ammonium chloride, potassium chloride, calcium chloride, barium chloride, sodium chloride and magnesium chloride in total of 0.2 mol/or more Ni 2+ / (Zn 2+ +
After adjusting the pH of this plating solution to 1.8 to 4.5 using a plating solution with a molar concentration percentage of Ni 2+ ) of 20 to 60%, the steel plate is plated at a current density of 20 A/dm 2 or more. A method for producing a zinc-nickel alloy plated steel sheet.
JP15188081A 1981-09-25 1981-09-25 Zinc-nickel alloy plating liquid Granted JPS5855585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15188081A JPS5855585A (en) 1981-09-25 1981-09-25 Zinc-nickel alloy plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15188081A JPS5855585A (en) 1981-09-25 1981-09-25 Zinc-nickel alloy plating liquid

Publications (2)

Publication Number Publication Date
JPS5855585A JPS5855585A (en) 1983-04-01
JPH025833B2 true JPH025833B2 (en) 1990-02-06

Family

ID=15528214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15188081A Granted JPS5855585A (en) 1981-09-25 1981-09-25 Zinc-nickel alloy plating liquid

Country Status (1)

Country Link
JP (1) JPS5855585A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211589A (en) * 1983-05-16 1984-11-30 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet
WO1985000045A1 (en) * 1983-06-17 1985-01-03 Kawasaki Steel Corporation Zn-ni alloy plating solution based on chloride bath
JPS60228693A (en) * 1984-04-25 1985-11-13 Kawasaki Steel Corp Manufacture of steel plate plated with zn-ni alloy
JPS61227181A (en) * 1985-03-30 1986-10-09 Sumitomo Metal Ind Ltd Highly corrosion resistant surface treated steel material
JPH0559583A (en) * 1992-02-14 1993-03-09 Kawasaki Steel Corp High-corrosion resistance surface treated steel sheet
KR100417931B1 (en) * 1996-12-26 2004-03-30 주식회사 포스코 Zn-Ni ALLOY ELECTROPLATING SOLUTION
JP2010270353A (en) * 2009-05-19 2010-12-02 Nippon Steel Corp Plated steel material excellent in glossy appearance and corrosion resistance, and method of manufacturing the same
JP6427541B2 (en) * 2016-09-16 2018-11-21 本田技研工業株式会社 Zinc-nickel composite plating bath and plating method

Also Published As

Publication number Publication date
JPS5855585A (en) 1983-04-01

Similar Documents

Publication Publication Date Title
US3954574A (en) Trivalent chromium electroplating baths and electroplating therefrom
GB2144769A (en) Zinc and zinc alloy electroplating
CA2230330A1 (en) Alkaline zinc and zinc alloy electroplating baths and processes
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
CN103757672B (en) A kind of Zinc-tin alloy electro-plating method
JPH0338351B2 (en)
JPS6358230B2 (en)
US2693444A (en) Electrodeposition of chromium and alloys thereof
US4142948A (en) Chromium deposition solution
JPH025833B2 (en)
JPH01298192A (en) Zinc-nickel alloy plating solution
JPH0136559B2 (en)
KR101130821B1 (en) Zi-ni plating liquid
JPH1060683A (en) Electroplating with ternary system zinc alloy, and its method
JPS58153795A (en) Suppressing of gas generation from anode in trivalent chromium plating bath
JPS635474B2 (en)
JPH0124233B2 (en)
JPS647159B2 (en)
JPS6367560B2 (en)
JPS62240788A (en) Zinc-nickel alloy plating bath
KR960006597B1 (en) Zn-ni alloy solution for an electroplating and the method for manufacturing a zn-ni alloy electroplating steel plate using the same
JPS5938313B2 (en) Highly corrosion resistant electrolytic zinc alloy plated steel sheet and its manufacturing method
KR100979047B1 (en) Electro-Galvanizing Additive for Excellent Adhesion, Flatness and Surface Appearance, Manufacturing Method Thereof and Plating Method Using it
JPS6215635B2 (en)
JPS6027757B2 (en) Highly corrosion resistant electrogalvanized steel sheet and its manufacturing method