JPH0124233B2 - - Google Patents

Info

Publication number
JPH0124233B2
JPH0124233B2 JP58084032A JP8403283A JPH0124233B2 JP H0124233 B2 JPH0124233 B2 JP H0124233B2 JP 58084032 A JP58084032 A JP 58084032A JP 8403283 A JP8403283 A JP 8403283A JP H0124233 B2 JPH0124233 B2 JP H0124233B2
Authority
JP
Japan
Prior art keywords
plating
content
bath
alloy
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58084032A
Other languages
Japanese (ja)
Other versions
JPS59211589A (en
Inventor
Yoshihisa Yoshihara
Akira Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8403283A priority Critical patent/JPS59211589A/en
Publication of JPS59211589A publication Critical patent/JPS59211589A/en
Publication of JPH0124233B2 publication Critical patent/JPH0124233B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 Znめつき鋼板の耐食性向上に関する強い要請
は、主としてその自動車用鋼板の使途においてま
すます強まりつつあり、かような要望に従つて
Zn系合金めつきないしは、複合めつきの研究が
広く、意欲的に進められるようになつた。 前者のうち、とくにZn−Ni系合金めつきの鋼
板への適用に関して以下のべるところは、いわゆ
る表面処理鋼板の属する技術の分野、なかでも、
とくにZn系合金めつき鋼板の製造に関連してさ
らに細分されたところに位置を占める。 従来技術とその問題点 Zn系合金めつきのうちとくにZn−Ni系合金め
つきを施した鋼板は、一般に耐食性、溶接性およ
び塗装性などの面で、優れた表面特性を呈すると
信じられ、たとえば、特開昭55−110791号、同55
−152194号各公報にその先例を見ることができ
る。 それらのうち前者は、硫酸亜鉛および硫酸ニツ
ケルを用いたとくに、硫酸塩浴にて、Ni2+
Zn2+とのモル濃度比を1.5〜4に調整し、従つて
Ni2+/Ni2++Zn2+のモル濃度百分率で見ると60
〜80%において、めつき浴中における鋼板との相
対速度が10m/min以上の操業条件下に、Ni含有
量9〜20重量%のZn−Ni合金めつき鋼板を得る
ことを教示する。 一方後者については、Ni2+およびZn2+のモル
濃度比には触れることなくとくに酸性浴を用いて
めつき液流速を20m/min以上、電流密度20A/
dm2以上の条件にてZn−Ni電析物を得ることを
開示し、そのうち塩化物を用いた例につき、Ni
モル濃度百分率36%にて、Ni約12〜19重量%の
析出を得たことも示されている。 しかるに硫酸塩浴ではめつきアノードとして
ZnおよびNiの可溶性陽極を用いたとしてもNi陽
極が不働態化してしまいイオン化を起さぬため、
浴中Ni2+濃度が低下し、品質の安定した合金め
つき鋼板を連続的に得ることが困難であり、さり
とて液組成を維持するための管理には著しい手間
が嵩む。 これに反して塩化物浴は、上記硫酸浴に比して
電導度が高く有利な上、アノードとしてZnおよ
びNiとも可溶性陽極を、鋼板面に析出させよう
とするZn,Ni比率にてめつき槽内に配列するだ
けで、析出量に見合う量にてイオン化し、めつき
液組成は常に一定に保たれる利点もある。 ここに発明者らはとくに塩化物浴として、塩化
亜鉛および塩化ニツケルを主成分とするめつき
浴、またこれに硫酸塩を添加した混合物浴につい
て、めつき液組成、めつき条件および析出合金組
成の相互関係についてあまた実験と検討を重ねた
ところ、この種の塩化物浴又は混合物浴から、と
くに高電流密度のめつき条件下に析出するNi:
10〜20重量%のZn−Ni合金めつきは、とくに
20A/dm2以上の電流密度にて、不所望にも、黄
褐色ないし青紫色の酸化物が含まれた析出物しか
得られなかつた。そしてかような酸化物を含む析
出物は表面光沢が悪く、商品価値に乏しいだけで
なく、一般にZn−Ni合金めつき鋼板が主として
塗装の使途に供されるためにその塗装下地処理を
要するところ、その下地処理つまりりん酸塩、ま
たクロメート処理が、酸化物の影響で、均一に形
成されにくくその結果、塗料密着性および塗装後
耐食性に劣るところに、決定的な難点を伴うこと
を認識するに至つた。 発明の目的 上掲の問題点つまり、塩化亜鉛および塩化ニツ
ケルを主成分とする塩化物浴、又はさらに硫酸塩
を添加した混合物浴をめつき液に用いて鋼板表面
にZn−Ni系合金めつきを施す際、それもとくに
高電流密度下にて操業する場合、従来析出物層中
で不可避に随伴された黄褐色ないしは青紫色の酸
化物の混入析出を有効に抑制し、しかも適切な
Ni含有量の任意な調節を可能にする。Zn−Ni系
合金めつき鋼板の製造に供するZn−Ni系合金め
つき液を提案することが、この発明の目的であ
る。 発明の構成 上掲目的は、次の事項を骨子をする構想を具体
化することにより、あとで詳しく言及する電解挙
動の下で、とくに有利に成就される。 塩化亜鉛および塩化ニツケルを主成分とする塩
化物浴又はさらに硫酸塩を添加した混合物浴に、
Zn−Ni系合金めつきのNi含有量を8〜20重量%
の範囲内にて主としてγ(NiZn3)相よりなる合
金めつきの析出を確保するに足る量のアンモニウ
ム塩を、0.5mol/lから溶解度に達するまでの
範囲で添加すると共に、PHを1.5〜5.8に調整した
Zn−Ni系合金めつき液において、前記めつき液
のNi2+/Ni2++Zn2+モル濃度百分率を10〜19%
としたことを特徴とするZn−Ni系合金めつき液。 またZn−Ni系合金めつきのNi含有量を直接に
支配し、また合金相が主としてγ(NiZn3)相よ
りなるものとして、黄褐色ないし青紫色の酸化物
の混入析出を抑制するように寄与するアンモニウ
ム塩は、あとでより具体的に説明を加える塩化ア
ンモニウムを代表例とし、そのほかにも、塩化ア
ルミニウムアンモニウム、硫酸アンモニウム、硫
酸ニツケルアンモニウムおよび水酸化アンモニウ
ムなどがそれぞれ単独にて、またそれらの伴用に
よつても、ほぼ同等効果が得られる。 一般にZn−Ni合金系めつきにおけるNi含有量
は、そのめつきを施した鋼板の耐久性に著しい影
響を与えることは、発明者らが行つた実験によつ
ても再確認されたところであるが、通常、めつき
液中の金属イオン濃度、PH、液温、電流密度や撹
拌条件など、めつき条件に依存して、変動を来し
易いのに反して上記の構成によれば、工業的規模
のめつき鋼板製造ラインに適合すべき高速度下に
高電流密度での操業にはもちろん、かような操業
条件の変動に拘らず、目標Ni含有量の的中を安
定に実現することができる。 すなわち上掲しためつき浴からの析出は、上掲
した先行例に説かれ、従来一般的にも観念されて
来た、めつき液と鋼板の相対速度及び電流密度の
変動による、Ni含有量の変化が殆どなく、また
さらに静止浴またはこれに近い状態にて、相対速
度の大きい場合と同様に、20A/dm2以上の高電
流密度下に、めつき相中に酸化物の混入を伴うこ
となく、Ni含有量8〜20重量%の範囲内にて主
としてγ(NiZn3)相よりなるZn−Ni系合金めつ
き鋼板が得られる。 この点上掲の特開昭55−110791号および特開昭
55−152194号各公報の開示はいずれの場合におい
ても、Ni10〜20%の合金組成を高電流密度(例
えば10A/dm2以上)で工業的に高速度で得るた
めには、めつき液と鋼板の相対移動速度を、とく
に10m/min以上に設定することを必須とし、こ
れらについて発明者らが従来のめつき浴を用いて
詳細に検討した結果でも、30A/dm2以上の高電
流密度で電解するためには、めつき浴を強制循環
させるか、あるいは撹拌などによつて鋼板界面附
近のめつき液を十分に撹拌しない限り均一なγ相
(Ni含有量10〜20%)は得られない。さらに
70A/dm2以上のような高電流密度では、これら
のめつき浴の撹拌を強化するために、特別な撹拌
設備が新らたに必要となり、従来のめつき設備の
大がかりな変更、改造を必要とすることがわかつ
た。 しかるにこの発明によるめつき浴は、めつき液
と鋼板の相対速度が比較的小さい場合(例えば20
m/min以下)でも、20〜250A/dm2にわたる
広範な電流密度範囲にて均しく、表面に酸化物を
有しない所定の合金組成が得られる点で、従来の
めつき浴の欠点がきわめて有利、効果的に解決で
き、Zn−Ni合金めつき鋼板を工業的に高速度で
製造する際、その貢献度がきわめて大きいのであ
る。 この発明の実施に当つては通常、めつき液中の
Zn2+濃度30g/l以上、またNi2+濃度10g/l
以上においてNi2+/Ni2++Zn2+のモル濃度百分
率を10〜19%に調整しこれに添加剤としてアンモ
ニウム塩を0.5mol/l以上を添加する。 Zn2+およびNi2+濃度が上記の濃度未満ではと
くに50A/dm2以上の高電流密度で正常な合金め
つきが得られ難くなる。 ここでNi2+/Ni2++Zn2+のモル濃度百分率が
10%末満では、めつき層中のNi含有率を10%以
上に確保し難くなつて十分な耐食性を期待するの
が困難となり逆にNi2+モル濃度百分率が19%を
こえるとき、めつき層中のNi含有率が20%をこ
えるようになつてZnによる犠牲防食効果が減少
し勝ちになり、まためつき密着性も低下傾向を示
す。 添加剤としてのアンモニウム塩はとくに重要で
あつて0.5mol/l末満では電流密度、流速、PH
および浴温などのめつき条件によつてNi含有率
が変化し、さらには黄褐色〜青紫色の酸化物ある
いは水酸化物の不純物を含む析出物しか得られな
い。 またアンモニウム塩の添加濃度が多くなるに従
つてNi含有率は増大するので、任意のNi含有率
はNiモル濃度百分率との組合せによつてNi含有
量を任意に設定できる。 めつき液はPHは1.5〜5.8が適正であり、PH1.5末
満ではめつき層の化学溶解を生じて好ましくな
く、PH6.0超過では水酸化物の生成を生じてめつ
き液が不安定となりやはり好ましくない。 なお、浴塩は35〜75℃程度が適当である。 次に、電流密度は20〜250A/dm2が適当で、
というのは20A/dm2末満では高速度めつきがで
きず工業的には不利となり、また250A/dm2
過では樹枝状結晶を生成し好ましくない。 さらにめつき液の流速あるいはストリツプのラ
インスピードによるめつき液とストリツプの相対
移動速度はこの発明の特色の一つとして、とくに
限定されず、この発明によるめつき浴では流速20
m/min以下の低速でも酸化物を含まない表面外
観の優れたγ相単相が安定して析出し、また
70A/dm2をこえるような高電流密度のめつき操
業にあつても前述の如き、特別な撹拌装置を要せ
ず、さらに液流速が不均一な、めつき方式であつ
ても、十分に安定したNi含有率が得られ、工業
的にきわめて有利である。 加えて塩化物浴の有利性は硫酸浴より電導度が
2〜3倍高くなり、電力消費量は1/2〜1/3に軽減
され省エネルギの要請を有利に満たすことにあ
る。まためつき液組成を一定に維持するのが容易
な点でも有利である。 さてこの発明によるアンモニウム塩添加塩化物
浴による電解挙動を調べた実験の結果の一例を次
に示す。 ZnCl2136g/lおよびNiCl2・6H2O60g/l
(Ni2+/Ni2++Zn2+モル濃度百分率20%)のめつ
き液にNH4Cl10〜400g/l(0.18〜7.4mol/l)
の範囲にわたつて添加し、PH4.0に調整した種種
なめつき浴を用いて何れも電流密度75A/dm2
流速50m/min、浴温50℃の一定条件で、Zn−
Ni目付量20g/m2となるようにめつきを行つた。 その結果を示した第1図から明らかなように、
NH4Clの添加量の増加に伴いNi含有率が増加す
る特異の挙動を呈する。従つてNH4Cl添加量を
適当に選択することによつて、めつき層中のNi
含有率8〜20重量%の範囲にて任意に制御し、特
性に合つたZn−Ni合金めつき鋼板を製造するこ
とが容易にできる。 次に上記のうちNH4Cl200g/lの場合につ
き、これを含まない場合と比較して、上記の条件
にて得られたZn−Ni合金めつき鋼板における、
めつき皮膜のX線回析結果を第2図に示す。 この発明に従い図の実線のようにNiZn3(γ相)
単相の回折ピークが得られるが、従来のNH4Cl
を含まないとき図の破線のごとくNiZn3の他に酸
化物の回折ピーク(2θ≒49゜)が存在し、NiZn3
以外の不純物を共折し析出物が褐色に着色した原
因をなしているものと考えられる。 この発明の従い、NH4Clの種々な量について
同様な実験を行つたが何れの場合も析出物中の不
純物は見出されなかつた。つまり、従来不可避な
不純物を含まずしてしかも任意のNi含有率のめ
つき層がこの発明によつて容易に得られるわけで
ある。 次にめつき流速および電流密度がZn−
Niめつき中、Ni含有量に及ぼす影響についてこ
の発明での電解挙動を、従来浴による場合を対比
して第8図、第4図に掲げた。 めつき液組成は第1表のとおりである。
Technical field There is a strong demand for improving the corrosion resistance of Zn-plated steel sheets, mainly in the use of steel sheets for automobiles.
Research on Zn-based alloy plating or composite plating has become widespread and aggressive. Of the former, the following is particularly relevant to the application of Zn-Ni alloy plating to steel sheets, especially in the field of technology to which so-called surface-treated steel sheets belong.
In particular, it occupies a further subdivision in relation to the production of Zn-based alloy plated steel sheets. Prior art and its problems It is generally believed that steel sheets coated with Zn alloy plating, especially Zn-Ni alloy plating, exhibit excellent surface properties in terms of corrosion resistance, weldability, paintability, etc. , JP-A-55-110791, 55
-152194 The precedent can be seen in each publication. Among them, the former uses zinc sulfate and nickel sulfate, especially in a sulfate bath .
Adjust the molar concentration ratio with Zn 2+ from 1.5 to 4, thus
The molar concentration percentage of Ni 2+ /Ni 2+ +Zn 2+ is 60
It is taught that a Zn--Ni alloy plated steel sheet having a Ni content of 9 to 20% by weight can be obtained under operating conditions in which the relative speed with the steel sheet in the plating bath is 10 m/min or more at 10% to 80% by weight. On the other hand, for the latter, without touching the molar concentration ratio of Ni 2+ and Zn 2+ , use an acidic bath with a plating solution flow rate of 20 m/min or more and a current density of 20 A/min.
It discloses that Zn-Ni deposits can be obtained under conditions of dm 2 or more, and in the example using chloride, Ni
It is also shown that at a molar percentage of 36%, a precipitation of approximately 12-19% Ni by weight was obtained. However, as a plating anode in a sulfate bath,
Even if soluble Zn and Ni anodes are used, the Ni anode becomes passivated and ionization does not occur.
The Ni 2+ concentration in the bath decreases, making it difficult to continuously obtain alloy-plated steel sheets of stable quality, and managing to maintain the liquid composition requires considerable effort. On the other hand, chloride baths are advantageous in that they have a higher electrical conductivity than the sulfuric acid baths, and they are plated at a ratio of Zn and Ni that allows both Zn and Ni to be soluble as anodes to be deposited on the steel sheet surface. Just by arranging them in a tank, they are ionized in an amount commensurate with the amount of precipitation, and have the advantage that the composition of the plating solution is always kept constant. Here, the inventors have specifically investigated the plating solution composition, plating conditions, and precipitated alloy composition regarding plating baths containing zinc chloride and nickel chloride as main components, as well as mixture baths in which sulfate is added. After extensive experiments and studies on the interrelationships, we found that Ni deposits from this type of chloride bath or mixture bath, especially under high current density plating conditions:
Zn-Ni alloy plating of 10 to 20% by weight is especially
At current densities above 20 A/dm 2 , undesirably only yellow-brown to blue-violet oxide-containing precipitates were obtained. Precipitates containing such oxides not only have poor surface gloss and lack commercial value, but also generally require pre-painting treatment since Zn-Ni alloy plated steel sheets are primarily used for painting. It is recognized that the surface treatment, that is, phosphate and chromate treatment, is difficult to form uniformly due to the influence of oxides, resulting in poor paint adhesion and post-painting corrosion resistance, which is a decisive drawback. It came to this. Purpose of the Invention The above-mentioned problems can be solved by plating Zn-Ni alloy on the surface of a steel plate using a chloride bath containing zinc chloride and nickel chloride as main components, or a mixture bath to which sulfate is added as a plating solution. When applying this method, especially when operating under high current density, it is possible to effectively suppress the mixed precipitation of yellow-brown or blue-purple oxides that are unavoidably accompanied in the conventional precipitate layer.
Allows arbitrary adjustment of Ni content. It is an object of the present invention to propose a Zn-Ni alloy plating solution for use in manufacturing Zn-Ni alloy plated steel sheets. Structure of the Invention The above object is achieved particularly advantageously under the electrolytic behavior to be described in detail later by embodying a concept which outlines the following matters. In a chloride bath mainly consisting of zinc chloride and nickel chloride or in a mixture bath to which sulfate is added,
Ni content of Zn-Ni alloy plating is 8 to 20% by weight
An amount of ammonium salt sufficient to ensure the precipitation of an alloy plating mainly composed of γ (NiZn 3 ) phase is added in a range from 0.5 mol/l to reach solubility, and the pH is adjusted to 1.5 to 5.8. adjusted to
In the Zn-Ni alloy plating solution, the Ni 2+ /Ni 2+ +Zn 2+ molar concentration percentage of the plating solution is 10 to 19%.
A Zn-Ni alloy plating liquid characterized by the following. It also directly controls the Ni content in the Zn-Ni alloy plating, and as the alloy phase mainly consists of the γ (NiZn 3 ) phase, it contributes to suppressing the mixing and precipitation of yellow-brown to blue-purple oxides. A representative example of the ammonium salt is ammonium chloride, which will be explained in more detail later.Other examples include ammonium aluminum chloride, ammonium sulfate, ammonium nickel sulfate, and ammonium hydroxide, each used alone or in combination. Almost the same effect can be obtained by In general, the Ni content in Zn-Ni alloy plating has a significant effect on the durability of the plated steel sheet, which was reconfirmed through experiments conducted by the inventors. In general, the metal ion concentration in the plating solution, pH, solution temperature, current density, stirring conditions, etc. tend to fluctuate depending on the plating conditions, but with the above configuration, industrial Not only is it suitable for operations at high speeds and high current densities that are suitable for large-scale galvanized steel plate manufacturing lines, but it is also possible to stably achieve the target Ni content regardless of fluctuations in operating conditions. can. In other words, the precipitation from the plating bath mentioned above is caused by the change in the Ni content due to fluctuations in the relative speed and current density between the plating solution and the steel sheet, which was explained in the previous example mentioned above and has been generally considered in the past. There is almost no change in the plating phase, and in addition, in a static bath or similar state, under high current density of 20 A/dm 2 or more, as in the case of high relative velocity, there is contamination of oxides in the plating phase. A Zn--Ni alloy plated steel sheet consisting mainly of the γ (NiZn 3 ) phase can be obtained without any Ni content within the range of 8 to 20% by weight. In this regard, JP-A No. 55-110791 and JP-A-Sho
No. 55-152194 discloses that in any case, in order to obtain an alloy composition of 10 to 20% Ni at high current density (for example, 10 A/dm 2 or more) and at high speed industrially, it is necessary to use a plating solution and It is essential to set the relative moving speed of the steel plate to 10 m/min or more, and even after detailed studies by the inventors using conventional plating baths, high current densities of 30 A/dm 2 or more were found. In order to electrolyze the plating solution, it is impossible to obtain a uniform γ phase (Ni content of 10 to 20%) unless the plating bath is forced to circulate or the plating solution near the steel plate interface is sufficiently stirred. I can't. moreover
At high current densities such as 70 A/dm 2 or more, new special stirring equipment is required to enhance the stirring of these plating baths, requiring major changes and modifications to conventional plating equipment. I found out what I needed. However, the plating bath according to the present invention is effective when the relative velocity between the plating solution and the steel plate is relatively small (for example, 20
The shortcomings of conventional plating baths are greatly overcome in that a predetermined alloy composition with no oxides on the surface can be obtained uniformly over a wide current density range of 20 to 250 A/ dm2 even when It can be solved advantageously and effectively, and its contribution to the industrial high-speed production of Zn-Ni alloy coated steel sheets is extremely large. In carrying out this invention, usually
Zn 2+ concentration 30g/l or more, Ni 2+ concentration 10g/l
In the above process, the molar concentration percentage of Ni 2+ /Ni 2+ +Zn 2+ is adjusted to 10 to 19%, and an ammonium salt of 0.5 mol/l or more is added thereto as an additive. If the Zn 2+ and Ni 2+ concentrations are less than the above concentrations, it becomes difficult to obtain normal alloy plating, especially at high current densities of 50 A/dm 2 or more. Here, the molar concentration percentage of Ni 2+ /Ni 2+ + Zn 2+ is
At the end of 10%, it becomes difficult to maintain the Ni content in the plating layer above 10%, and it becomes difficult to expect sufficient corrosion resistance.On the other hand, when the Ni 2+ molar concentration percentage exceeds 19%, When the Ni content in the glazing layer exceeds 20%, the sacrificial anticorrosion effect of Zn decreases and becomes dominant, and the glazing adhesion also tends to decrease. Ammonium salts as additives are particularly important, and at less than 0.5 mol/l, current density, flow rate, pH
The Ni content changes depending on plating conditions such as bath temperature, and furthermore, only yellowish brown to bluish-purple precipitates containing oxide or hydroxide impurities are obtained. Further, since the Ni content increases as the concentration of ammonium salt added increases, the Ni content can be arbitrarily set by combining it with the Ni molar concentration percentage. The appropriate pH for the plating solution is 1.5 to 5.8; a pH of less than 1.5 causes chemical dissolution of the plating layer, which is undesirable, and a pH of over 6.0 causes the formation of hydroxide, causing the plating solution to become ineffective. It becomes stable, which is still not desirable. Note that the appropriate temperature for the bath salt is about 35 to 75°C. Next, the appropriate current density is 20 to 250 A/ dm2 .
This is because at less than 20 A/dm 2 high-speed plating cannot be achieved and it is industrially disadvantageous, and at more than 250 A/dm 2 dendrites are formed, which is undesirable. Furthermore, the relative movement speed between the plating liquid and the strip depending on the flow rate of the plating liquid or the line speed of the strip is not particularly limited as one of the features of the present invention, and the plating bath according to the present invention has a flow rate of 20
Even at low speeds of less than m/min, a single γ phase with an excellent surface appearance and no oxides precipitates stably.
Even in plating operations with high current densities exceeding 70A/ dm2 , there is no need for a special stirring device as mentioned above, and even in plating systems with uneven liquid flow rates, it is possible to operate satisfactorily. A stable Ni content can be obtained, which is extremely advantageous industrially. In addition, the advantage of chloride baths is that the electrical conductivity is 2-3 times higher than that of sulfuric acid baths, and the power consumption is reduced by 1/2-1/3, thus advantageously meeting the requirements for energy saving. It is also advantageous in that it is easy to maintain a constant plating solution composition. Now, an example of the results of an experiment in which the electrolytic behavior of the ammonium salt-added chloride bath according to the present invention was investigated will be shown below. ZnCl 2 136g/l and NiCl 2.6H 2 O60g/l
(Ni 2+ / Ni 2+ + Zn 2+ molar concentration percentage 20%) NH 4 Cl 10-400g/l (0.18-7.4mol/l)
The current density was 75 A/dm 2 , using a licking bath adjusted to pH 4.0.
Under constant conditions of flow rate 50 m/min and bath temperature 50°C, Zn-
Plating was carried out so that the Ni coating amount was 20 g/m 2 . As is clear from Figure 1 showing the results,
It exhibits a peculiar behavior in which the Ni content increases as the amount of NH 4 Cl added increases. Therefore, by appropriately selecting the amount of NH 4 Cl added, Ni in the plating layer can be reduced.
By arbitrarily controlling the content within the range of 8 to 20% by weight, it is easy to manufacture a Zn-Ni alloy plated steel sheet that matches the properties. Next, in the case of 200 g/l of NH 4 Cl among the above, compared with the case without NH 4 Cl, in the Zn-Ni alloy plated steel sheet obtained under the above conditions,
Figure 2 shows the results of X-ray diffraction of the plating film. According to this invention, NiZn 3 (γ phase) as shown by the solid line in the figure
Single-phase diffraction peaks are obtained, but conventional NH 4 Cl
When NiZn 3 is not included, there is an oxide diffraction peak (2θ≒49°) in addition to NiZn 3 as shown by the broken line in the figure.
This is thought to be the cause of the brown coloring of the precipitate due to the co-separation of other impurities. In accordance with the present invention, similar experiments were conducted using various amounts of NH 4 Cl, but no impurities were found in the precipitate in any case. In other words, according to the present invention, a plated layer containing any conventionally unavoidable impurities and having any desired Ni content can be easily obtained. Next, the plating flow rate and current density are Zn−
Regarding the effect on Ni content during Ni plating, the electrolytic behavior in this invention is shown in FIGS. 8 and 4 in comparison with that in a conventional bath. The composition of the plating solution is shown in Table 1.

【表】 第3図は電流密度を75A/dm2にしたときめつ
き液流速がNi含有量に及ぼす影響を示し、従来
の硫酸塩浴また混合物浴とも流速依存性が著しい
のに反してこの発明のめつき液組成においては、
150m/minにも及ぶ広範なめつき液流速に拘ら
ずNH4Cl濃度に従つて定まる特定のNi含有量が
安定に維持され得る特異挙動をあらわしている。 また第4図は、めつき液流速を75m/minに固
定して電流密度がNi含有量に及ぼす影響を比較
して示し、従来の硫酸塩浴および混合物浴でそれ
ぞれほぼ100A/dm2,150A/dm2にてやけ発生
による電解不能に至る間に、Ni含有量の著しい
変動を来すのに反してこの発明によると、
250A/dm2にも達する広範な電流密度領域にわ
たつてやはりほぼ一様なNi含有量が安定に維持
されることが明らかである。 実施例 ZnCl2,NiCl2およびNiSO4からなる合金めつ
き液のNi2+モル濃度百分率を10,30,50%とな
るようにそれぞれ濃度調整を行い、この合金めつ
き液に塩化アンモニウム150g/lと硫酸アンモ
ニウム25g/lを添加し、PH4.0に調整した。 このめつき浴を用いて、何れも電流密度50A/
dm2,流速50m/min,浴温50℃の一定条件で、
Zn−Ni目付量40g/m2となるようにめつきを行
つた。 その結果を示した第2表から明らかなように、
塩化アンモニウムおよび硫酸アンモニウムを添加
しためつき浴からは、めつき層中のNi含有率8
〜17重量%の範囲で合金めつきが得られ、その析
出物は光沢のある表面外観の良好なものであつ
た。 一方、アンモニウム塩を添加しない従来めつき
浴(比較浴)のNi2+濃度百分率が30%以下では
めつき層中のNi含有率が8重量%末満で、しか
もその析出物は黄褐色ないし青紫色の酸化物が析
出物中に混入していた。
[Table] Figure 3 shows the effect of the flow rate of the plating solution on the Ni content when the current density was set to 75A/ dm2 . In the plating liquid composition of the invention,
This shows a peculiar behavior in which a specific Ni content determined according to the NH 4 Cl concentration can be stably maintained despite a wide range of plating solution flow rates up to 150 m/min. Figure 4 also shows a comparison of the effect of current density on Ni content with the plating solution flow rate fixed at 75 m/min. According to the present invention, the Ni content fluctuates significantly during the time when electrolysis becomes impossible due to the occurrence of burns at / dm2 .
It is clear that a nearly uniform Ni content is also stably maintained over a wide range of current densities up to 250 A/dm 2 . Example The Ni 2+ molar concentration percentage of an alloy plating solution consisting of ZnCl 2 , NiCl 2 and NiSO 4 was adjusted to 10, 30, and 50%, respectively, and 150 g/m of ammonium chloride was added to this alloy plating solution. 1 and 25 g/l of ammonium sulfate were added to adjust the pH to 4.0. Using this plating bath, the current density was 50A/
dm 2 , flow rate 50m/min, bath temperature 50℃,
Plating was performed so that the Zn-Ni area weight was 40 g/m 2 . As is clear from Table 2 showing the results,
From the plating bath containing ammonium chloride and ammonium sulfate, the Ni content in the plating layer was 8.
Alloy plating was obtained in the range of ~17% by weight, and the precipitate had a good glossy surface appearance. On the other hand, when the Ni 2+ concentration percentage of the conventional plating bath (comparative bath) to which no ammonium salt is added is below 30%, the Ni content in the plating layer is less than 8% by weight, and the precipitates are yellowish brown or yellowish brown. A blue-purple oxide was mixed into the precipitate.

【表】 つき密着性にも問題が生じた。
発明の効果 この発明による効果は次のように要約される。 1 アンモニウム塩の添加量を制御因子として
Zn−Ni系めつきのNi含有量を所望どおりに決
定できる。 2 アンモニウムの添加により、従来の塩化物浴
を用いる場合に不可避な黄褐色ないし青紫色の
酸化物の析出層中混入がなくなる。 3 Zn−Ni系めつき層中のNi含有量がめつき液
流速および電流密度の依存性から脱却される。 4 従つて電気めつき鋼板製造ラインの操業条件
の変動等の影響なしに高速高能率下のめつき操
業を安定化できる。
[Table] Problems also occurred in adhesion.
Effects of the invention The effects of this invention can be summarized as follows. 1 Using the amount of ammonium salt added as a control factor
The Ni content of Zn-Ni plating can be determined as desired. 2. The addition of ammonium eliminates the contamination of yellow-brown to blue-purple oxides in the deposited layer, which is inevitable when using conventional chloride baths. 3. The Ni content in the Zn-Ni based plating layer is freed from dependence on the plating solution flow rate and current density. 4. Therefore, the plating operation can be stabilized at high speed and high efficiency without being affected by fluctuations in the operating conditions of the electroplated steel sheet production line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNH4Clの添加量がNi含有量に及ぼす
影響を示すグラフ、第2図はめつき皮膜のX線回
析の結果を、NH4Cl添加有無の場合について対
比した、回析ピーク比較グラフ、第3図、第4図
はめつき液流速および電流密度がNi含有量に及
ぼす影響を示すグラフである。
Figure 1 is a graph showing the effect of the amount of NH 4 Cl added on the Ni content. Figure 2 is the diffraction peak comparing the results of X-ray diffraction of the plated film with and without addition of NH 4 Cl. Comparison graphs, FIGS. 3 and 4, are graphs showing the effects of plating solution flow rate and current density on Ni content.

Claims (1)

【特許請求の範囲】 1 塩化亜鉛および塩化ニツケルを主成分とする
塩化物浴又はさらに硫酸塩を添加した混合物浴
に、Zn−Ni系合金めつきのNi含有量を8〜20重
量%の範囲内にて主としてγ(NiZn3)相よりな
る合金めつきの析出を確保するに足る量のアンモ
ニウム塩を、0.5mol/lから溶解度に達するま
での範囲で添加すると共に、PHを1.5〜5.8に調整
したZn−Ni系合金めつき液において、 前記めつき液のNi2+/Ni2++Zn2+モル濃度百
分率を10〜19%としたことを特徴とするZn−Ni
系合金めつき液。
[Claims] 1. Ni content of Zn-Ni alloy plating is in the range of 8 to 20% by weight in a chloride bath mainly composed of zinc chloride and nickel chloride or in a mixture bath to which sulfate is added. An amount of ammonium salt sufficient to ensure the precipitation of an alloy plating mainly composed of γ (NiZn 3 ) phase was added in a range from 0.5 mol/l to reach solubility, and the pH was adjusted to 1.5 to 5.8. A Zn-Ni based alloy plating solution, characterized in that the plating solution has a Ni 2+ /Ni 2+ +Zn 2+ molar concentration percentage of 10 to 19%.
Alloy plating liquid.
JP8403283A 1983-05-16 1983-05-16 Production of zn-ni alloy plated steel sheet Granted JPS59211589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8403283A JPS59211589A (en) 1983-05-16 1983-05-16 Production of zn-ni alloy plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8403283A JPS59211589A (en) 1983-05-16 1983-05-16 Production of zn-ni alloy plated steel sheet

Publications (2)

Publication Number Publication Date
JPS59211589A JPS59211589A (en) 1984-11-30
JPH0124233B2 true JPH0124233B2 (en) 1989-05-10

Family

ID=13819190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8403283A Granted JPS59211589A (en) 1983-05-16 1983-05-16 Production of zn-ni alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JPS59211589A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666791A (en) * 1985-12-06 1987-05-19 Bethlehem Steel Corporation Of Delaware Ni-Zn electroplated product resistant to paint delamination
JP6427541B2 (en) * 2016-09-16 2018-11-21 本田技研工業株式会社 Zinc-nickel composite plating bath and plating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855585A (en) * 1981-09-25 1983-04-01 Kawasaki Steel Corp Zinc-nickel alloy plating liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855585A (en) * 1981-09-25 1983-04-01 Kawasaki Steel Corp Zinc-nickel alloy plating liquid

Also Published As

Publication number Publication date
JPS59211589A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
KR890001107B1 (en) Process for preparing zn - fe base alloy electroplated steel strips
JPH0136559B2 (en)
JPH025833B2 (en)
JPH0124233B2 (en)
Zhen-mi et al. The electrodeposition of Zn-Co alloy from a zincate bath
JPS635474B2 (en)
KR100419659B1 (en) A plating solution for blackening zinc-nickel alloy coated steel sheet and electroplating method for zinc-nickel steel sheet
JPH0352551B2 (en)
KR100786971B1 (en) Electroplated steel sheets with excellent corrosion resistance and electrolyte thereof
KR100256328B1 (en) Method for electroplating of the zn-cr-fe alloy with high corrosion resistance after coating and metal sheet used therefor
JPS5938313B2 (en) Highly corrosion resistant electrolytic zinc alloy plated steel sheet and its manufacturing method
JPH04124295A (en) Production of thick galvanized steel sheet
JPS647159B2 (en)
JPH0390591A (en) Method for electroplating zinc-manganese alloy with high productivity
JPS6367560B2 (en)
JPS58104194A (en) Highly corrosion resistant electrogalvanized steel plate and its production
JPH0230791A (en) Production of zn-ni alloy plated steel sheet
JP2000256890A (en) Production of electrogalvanized steel sheet
JPS6344837B2 (en)
KR100226912B1 (en) Electroplating solution of zn-cr and zn-cr-fe alloy
JPS6026836B2 (en) Manufacturing method of zinc-nickel alloy plated steel sheet
JP2616039B2 (en) Electroplating method for zinc-manganese alloy with excellent productivity and excellent appearance
JPH051397A (en) Production of two-layer plating steel sheet having iron-based electroplating layer on galvanized sheet
KR20090124165A (en) Electro-galvanizing additive for excellent adhesion, flatness and surface appearance, manufacturing method thereof and plating method using it
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet