JPH0256971A - Vertical type double diffused mosfet - Google Patents

Vertical type double diffused mosfet

Info

Publication number
JPH0256971A
JPH0256971A JP63208860A JP20886088A JPH0256971A JP H0256971 A JPH0256971 A JP H0256971A JP 63208860 A JP63208860 A JP 63208860A JP 20886088 A JP20886088 A JP 20886088A JP H0256971 A JPH0256971 A JP H0256971A
Authority
JP
Japan
Prior art keywords
cells
gate
sections
shape
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63208860A
Other languages
Japanese (ja)
Inventor
Osamu Yaida
八井田 収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63208860A priority Critical patent/JPH0256971A/en
Publication of JPH0256971A publication Critical patent/JPH0256971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve the efficiency of gate drive by forming the plane forms of cells to an octagonal shape, arranging the cells so that gate sections among the cells are connected to a latticed shape and forming field oxide films at the lattice point sections of the gate sections. CONSTITUTION:An N<-> silicon epitaxial layer 4 is shaped onto the surface of an N<+> type single crystal silicon substrate 2. P-type wells 6, N<+> type sources 8 and P<+> regions 10 are shaped onto the surface of the epitaxial layer 3 through diffusion in cell 5 sections. The plane shapes of the cells are formed to an octagonal shape, sections 14 among the cells 5 and the cells 5 are used as gate sections, and the cells 5 are disposed so that the gate sections 14 are connected to a latticed shape. A field oxide film 20 having a quadrilateral P-surface shape is formed to the lattice point section of the gate sections 14, a section at regular intervals from four cells 5. Accordingly, drain currents are made to flow uniformly, and gate capacitance is reduced, thus shortening the charge and discharge time at the time of drive.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチップ表面のセル内に2重拡散によりウェルと
ソースが形成され、チップ裏面にドレインが形成されて
おり、ウェル表面にチャネルが形成される縦型2重拡散
MO3FET (VDMOSFET)に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention is characterized in that a well and a source are formed by double diffusion in cells on the surface of a chip, a drain is formed on the back surface of the chip, and a channel is formed on the surface of the well. The present invention relates to a vertical double-diffused MO3FET (VDMOSFET).

縦型2重拡散MOSFETは、個別素子として、又は他
のMOSFETなどとともにIC化されて用いられ1例
えばパワーMOSFETとして利用される。
The vertical double diffusion MOSFET is used as an individual element or integrated into an IC together with other MOSFETs, for example, as a power MOSFET.

(従来の技術) 縦型2重拡@MOSFETではチップに多数のセルが配
置される。セルの平面形状としては、四角形、円形、八
角形などがある。角度をもつセルでは角の部分が辺の部
分に比べてドレイン電流の流れが不均一になり、電界も
高くなる。また、面積効率の点でもやや不利である。ド
レイン電流の均一性や面積効率の点では円形のセルが最
も有利であるが、円形のセルではセル間のゲート酸化膜
領域が広くなり、ゲート容量が大きくなって駆動の際の
充放電時間が長くなる欠点がある。
(Prior Art) In a vertical double expansion @MOSFET, a large number of cells are arranged on a chip. The planar shape of the cell may be a square, a circle, an octagon, or the like. In a cell with an angle, the drain current flows more unevenly at the corners than at the sides, and the electric field also becomes higher. It is also somewhat disadvantageous in terms of area efficiency. Circular cells are most advantageous in terms of uniformity of drain current and area efficiency, but in circular cells, the gate oxide film area between cells becomes larger, the gate capacitance becomes larger, and the charging/discharging time during driving becomes shorter. It has the disadvantage of being long.

(発明が解決しようとする課題) 本発明は縦型2重拡散MOSFETにおいて、ドレイン
電流を均一に流し、かつ、ゲート容量を減らして駆動の
際の充放電時間を短縮することのできるセル形状及びそ
の配置を提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention provides a cell shape and a cell shape that can uniformly flow drain current and reduce gate capacitance to shorten charging and discharging time during driving in a vertical double diffusion MOSFET. The purpose is to provide that arrangement.

(課題を解決するための手段) 本発明の縦型2重拡散MOSFETでは、セルの平面形
状が八角形であり、セル間のゲート部分が格子状につな
がるよう、にセルが配置され、かつ、ゲート部分の格子
点部分にはフィールド酸化膜が形成されている。
(Means for Solving the Problems) In the vertical double diffusion MOSFET of the present invention, the planar shape of the cells is octagonal, and the cells are arranged so that the gate portions between the cells are connected in a grid pattern, and A field oxide film is formed at the lattice point portion of the gate portion.

(作用) 八角形は四角形や八角形に比べて角度が大きく、従って
、角の部分でもドレイン電流が均一に流れる。
(Function) An octagon has a larger angle than a square or an octagon, so the drain current flows uniformly even at the corners.

ゲート部分の格子点部分はセルから離れた位置にあるた
め、ドレイン電流には大きく影響しない。
Since the lattice point portion of the gate portion is located away from the cell, it does not significantly affect the drain current.

ゲート部分の格子点部分に設けられたフィールド酸化膜
はゲート容量を小さくするのに寄与する。
The field oxide film provided at the lattice point portion of the gate portion contributes to reducing the gate capacitance.

(実施例) 第1図は一実施例の部分平面図、第2図は第1図のA−
A ’線位置での断面図、第3図は第1図のB−B’線
位置での断面図である。
(Example) Fig. 1 is a partial plan view of one embodiment, and Fig. 2 is A-A in Fig. 1.
3 is a cross-sectional view taken along line A', and FIG. 3 is a cross-sectional view taken along line B-B' in FIG.

2はN1型単結晶シリコン基板であり、その表面にN−
型シリコンエピタキシャル暦4が形成されている。セル
5の部分では、第3図に示されるように、エピタキシャ
ル層4の表面に拡散によってP型ウェル6、N4型ソー
ス8及びP0領域10が形成されている。エピタキシャ
ル層4の表面上にはゲート酸化膜12を介して多結晶シ
リコン層14が形成されている。基板2はドレインとな
る。
2 is an N1 type single crystal silicon substrate, with N-
A type silicon epitaxial layer 4 is formed. In the cell 5 portion, as shown in FIG. 3, a P-type well 6, an N4-type source 8, and a P0 region 10 are formed on the surface of the epitaxial layer 4 by diffusion. A polycrystalline silicon layer 14 is formed on the surface of the epitaxial layer 4 with a gate oxide film 12 interposed therebetween. Substrate 2 becomes a drain.

16はPSG膜であり、PSG膜16に設けられたコン
タクトホールを介してソース8に接続されるアルミニウ
ム配線18が形成されている。PSG膜16はゲートで
ある多結晶シリコンN14とソース8の間の眉間絶縁膜
となる。
16 is a PSG film, and an aluminum wiring 18 connected to the source 8 through a contact hole provided in the PSG film 16 is formed. The PSG film 16 becomes an insulating film between the eyebrows between the polycrystalline silicon N14, which is the gate, and the source 8.

セル5は第1図に示されるようにその平面形状は八角形
である。セル5とセル5の間の部分14はゲート部分で
あり、セル5はゲート部分14が格子状につながるよう
に配置されている。ゲート部分14の格子点部分、すな
わち4個のセル5から等間隔にある部分は面積が大きい
ので、その部分全てにゲート酸化膜が存在するとゲート
容量が大きくなる。そのため、ゲート部分14の格子点
部分には厚さが10000〜15000人程度のフィー
ルド酸化膜20が形成されている。フィールド酸化膜2
0の平面形状は四角形である。セル5の八角形は正八角
形でもよいが、実施例のセル5はフィールド酸化膜20
と対向する辺が他の辺より短かくなった八角形である。
As shown in FIG. 1, the cell 5 has an octagonal planar shape. A portion 14 between the cells 5 is a gate portion, and the cells 5 are arranged so that the gate portions 14 are connected in a grid pattern. Since the lattice point portions of the gate portion 14, that is, the portions equidistant from the four cells 5, have a large area, the gate capacitance increases if the gate oxide film is present in all of these portions. Therefore, a field oxide film 20 having a thickness of approximately 10,000 to 15,000 layers is formed at the lattice point portion of the gate portion 14. field oxide film 2
The planar shape of 0 is a quadrilateral. Although the octagon of the cell 5 may be a regular octagon, the cell 5 of the embodiment has a field oxide film 20.
It is an octagon with the opposite side shorter than the other sides.

本実施例は従来の円形や四角形などの形状のセルと同じ
プロセスで製造することができる。例えば、エピタキシ
ャル層4上にゲート酸化膜12を形成し、その上に多結
晶シリコンN14を堆積し、写真製版とエツチングによ
って多結晶シリコン層14にパターン化を施す。その後
、多結晶シリコン層14をマスクとして自己整合技術に
よりウェル6とソース8を二重拡散により形成する。ウ
ェル6とソース8の拡散幅の差によってウェル6の表面
にチャネル領域を形成する。
This embodiment can be manufactured using the same process as conventional cells having shapes such as circular or rectangular. For example, a gate oxide film 12 is formed on the epitaxial layer 4, polycrystalline silicon N14 is deposited thereon, and the polycrystalline silicon layer 14 is patterned by photolithography and etching. Thereafter, the well 6 and the source 8 are formed by double diffusion using the polycrystalline silicon layer 14 as a mask using a self-alignment technique. A channel region is formed on the surface of the well 6 due to the difference in diffusion width between the well 6 and the source 8.

本実施例において、ゲートである多結晶シリコン層14
にゲート電圧を印加すると、ウェル6の表面のチャネル
領域にエンハンスメントモードのNチャネルが形成され
、ドリフト領域であるエピタキシャルrf54の表面に
デプリーションモードのNチャネルがそれぞれ形成され
て、矢印のように電子電流がドレインである基板2へ流
れる。
In this embodiment, the polycrystalline silicon layer 14 which is the gate
When a gate voltage is applied to , an enhancement mode N channel is formed in the channel region on the surface of the well 6, and a depletion mode N channel is formed in the surface of the epitaxial rf 54, which is the drift region, as shown by the arrow. Electron current flows to the substrate 2, which is the drain.

次に、セル形状が正八角形、第4図に示される正方形、
第5図に示される円形、第6図に示される正八角形につ
いて最大面積効率を算出する。
Next, the cell shape is a regular octagon, a square shown in Fig. 4,
The maximum area efficiency is calculated for the circle shown in FIG. 5 and the regular octagon shown in FIG.

まず、セルのウェルの周辺長Z、単位セル面積Acel
lを算出すると第1表のようになり、さらにチャネル面
積Achと単位セル面積Acellの比を算出すると第
2表のようになる。
First, the peripheral length Z of the cell well, the unit cell area Acel
When l is calculated, the results are shown in Table 1, and when the ratio of the channel area Ach to the unit cell area Acell is further calculated, the results are shown in Table 2.

第1表 第2表 ここで、Qcはウェル間隔、Qsはウェルの中心から周
辺までの長さである。また、x=Qs/Qcである。
Table 1 Table 2 Here, Qc is the well spacing, and Qs is the length from the center to the periphery of the well. Moreover, x=Qs/Qc.

Ach/ AcellはXの関数である。そこで、Ac
h/Acellの最大値Ach/ Acell(wax
)と、その時のX値x (wax)を第3表に示す。
Ach/Acell is a function of X. Therefore, Ac
Maximum value of h/Acell Ach/Acell(wax
) and the X value x (wax) at that time are shown in Table 3.

第3表 x=Qs/Qeのうち、Qcはオン抵抗の一部であるR
jfet (ウェル6とドリフト層4により形成される
JFET部分の抵抗)を決定する長さであり、比較のた
めにこれを一定とすると、最もx (++ax)の小さ
い形状のセルが全セルを配置したときの総面積で有利と
なる。この結果によれば、セル形状が円形と八角形のも
のが有利であることがわかる。円形の場合は、不要なゲ
ート酸化膜領域が多くなってゲート容量が大きくなる欠
点をもっており、本実施例では第1図に示されるように
四角形のフィールド酸化膜20を設けることにより、こ
の不要なゲート酸化膜領域を除くことができる。
In Table 3, x=Qs/Qe, Qc is R, which is a part of the on-resistance.
jfet (the resistance of the JFET portion formed by the well 6 and the drift layer 4), and if this is kept constant for comparison, the cell with the smallest x (++ax) shape will be the one in which all the cells are arranged. It is advantageous in terms of total area. The results show that circular and octagonal cell shapes are advantageous. In the case of a circular shape, there is a disadvantage that the unnecessary gate oxide film area increases and the gate capacitance increases.In this embodiment, as shown in FIG. 1, by providing a rectangular field oxide film 20, this unnecessary The gate oxide region can be eliminated.

実施例はNチャネル型に適用した例であるが、Pチャネ
ル型に適用することもできる。
Although the embodiment is an example in which the present invention is applied to an N-channel type, it can also be applied to a P-channel type.

(発明の効果) 本発明の縦型2重拡散MOSFETでは、セルの平面形
状が八角形であり、セル間のゲート部分が格子状につな
がるようにセルが配置されているので、従来の四角形や
八角形の平面形状のセルをもつものに比べて、面積効率
がよくなる。
(Effects of the Invention) In the vertical double diffusion MOSFET of the present invention, the planar shape of the cell is octagonal, and the cells are arranged so that the gate portions between the cells are connected in a lattice shape, so that The area efficiency is better than that of cells with an octagonal planar shape.

また、不要なゲート酸化膜領域にフィールド酸化膜を設
けることによって、ゲート駆動効率を上げることができ
る。このフィールド酸化膜は円形のセルの場合にも設け
ることができるが、その場合はフィールド酸化膜の形状
が複雑となる。それに対し、本発明のようにセル形状が
八角形であれ4、このフィールド酸化膜形状を四角形と
することができ、設計が容易である。
Further, by providing a field oxide film in an unnecessary gate oxide film region, gate drive efficiency can be increased. This field oxide film can also be provided in the case of a circular cell, but in that case the shape of the field oxide film becomes complicated. On the other hand, even if the cell shape is octagonal as in the present invention, the field oxide film shape can be square, which facilitates the design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例を示す部分平面図、第2図は第1図の
A−A ’線位置での断面図、第3図は第1図のB−B
’線位置での断面図である。第4図、第5図及び第6図
はそれぞれ従来のセル形状を示す平面図である。 2・・・・・・シリコン基板、4・・・・・・シリコン
エピタキシャル層、5・・・・・・セル、6・・・・・
・P型ウェル、8・・・・・・N+型ソース、12・・
・・・・ゲート酸化膜、14・・・・・・多結晶シリコ
ン層、20・・・・・・フィールド酸化膜。
Fig. 1 is a partial plan view showing one embodiment, Fig. 2 is a sectional view taken along line A-A' in Fig. 1, and Fig. 3 is a sectional view taken along line B-B in Fig. 1.
It is a cross-sectional view at the ' line position. FIG. 4, FIG. 5, and FIG. 6 are plan views showing conventional cell shapes, respectively. 2...Silicon substrate, 4...Silicon epitaxial layer, 5...Cell, 6...
・P-type well, 8...N+ type source, 12...
...Gate oxide film, 14...Polycrystalline silicon layer, 20...Field oxide film.

Claims (1)

【特許請求の範囲】[Claims] (1)チップ表面のセル内に2重拡散によりウェルとソ
ースが形成されており、チップ裏面にドレインが形成さ
れており、前記ウェル表面にチャネルが形成される縦型
2重拡散MOSFETにおいて、前記セルの平面形状が
八角形であり、セル間のゲート部分が格子状につながる
ようにセルが配置され、かつ、前記ゲート部分の格子点
部分にはフィールド酸化膜が形成されていることを特徴
とする縦型2重拡散MOSFET。
(1) In a vertical double diffusion MOSFET, a well and a source are formed by double diffusion in a cell on the front surface of the chip, a drain is formed on the back surface of the chip, and a channel is formed on the surface of the well. The planar shape of the cells is octagonal, the cells are arranged so that gate portions between the cells are connected in a lattice pattern, and a field oxide film is formed at the lattice point portions of the gate portions. Vertical double diffusion MOSFET.
JP63208860A 1988-08-22 1988-08-22 Vertical type double diffused mosfet Pending JPH0256971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63208860A JPH0256971A (en) 1988-08-22 1988-08-22 Vertical type double diffused mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63208860A JPH0256971A (en) 1988-08-22 1988-08-22 Vertical type double diffused mosfet

Publications (1)

Publication Number Publication Date
JPH0256971A true JPH0256971A (en) 1990-02-26

Family

ID=16563318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63208860A Pending JPH0256971A (en) 1988-08-22 1988-08-22 Vertical type double diffused mosfet

Country Status (1)

Country Link
JP (1) JPH0256971A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128935U (en) * 1990-04-05 1991-12-25
JPH07193241A (en) * 1990-12-21 1995-07-28 Siliconix Inc Method for controlling defect formed in manufacture of silicon integrated circuit, method for controlling quality of oxide film and formation of defect, and method for forming double-diffusion integrated circuit device cell and integrated circuit mosfet cell
JPH08197134A (en) * 1995-01-24 1996-08-06 Yodogawa Steel Works Ltd Device for coiling surface treated metallic strip and method thereof
US5760454A (en) * 1995-04-11 1998-06-02 Oki Electric Industry Co., Ltd. Pattern form of an active region of a MOS type semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149057A (en) * 1983-02-15 1984-08-25 Nissan Motor Co Ltd Vertical metal oxide semiconductor transistor
JPS59151466A (en) * 1983-02-17 1984-08-29 Nissan Motor Co Ltd Vertical type metal oxide semiconductor field-effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149057A (en) * 1983-02-15 1984-08-25 Nissan Motor Co Ltd Vertical metal oxide semiconductor transistor
JPS59151466A (en) * 1983-02-17 1984-08-29 Nissan Motor Co Ltd Vertical type metal oxide semiconductor field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128935U (en) * 1990-04-05 1991-12-25
JPH07193241A (en) * 1990-12-21 1995-07-28 Siliconix Inc Method for controlling defect formed in manufacture of silicon integrated circuit, method for controlling quality of oxide film and formation of defect, and method for forming double-diffusion integrated circuit device cell and integrated circuit mosfet cell
JPH08197134A (en) * 1995-01-24 1996-08-06 Yodogawa Steel Works Ltd Device for coiling surface treated metallic strip and method thereof
US5760454A (en) * 1995-04-11 1998-06-02 Oki Electric Industry Co., Ltd. Pattern form of an active region of a MOS type semiconductor device

Similar Documents

Publication Publication Date Title
JP4860821B2 (en) Semiconductor device manufacturing method
US11270993B2 (en) MOSFET device of silicon carbide having an integrated diode and manufacturing process thereof
US7317213B2 (en) Semiconductor device having super junction structure and method for manufacturing the same
US20050263853A1 (en) Insulated gate semiconductor device
US6264167B1 (en) Semiconductor device
GB2137811A (en) High power mosfet with direct connection from connection pads to underlying silicon
US6037631A (en) Semiconductor component with a high-voltage endurance edge structure
US20200259005A1 (en) Semiconductor device and manufacturing method therefor
JP2007042892A (en) Trenched misfet
US6955970B1 (en) Process for manufacturing a low voltage MOSFET power device having a minimum figure of merit
KR910004318B1 (en) Vertical type dmos transistors cell
JP3525637B2 (en) Semiconductor device
JPH0256971A (en) Vertical type double diffused mosfet
JPH06104438A (en) Film transistor
US20040155258A1 (en) Semiconductor device
JPS6180859A (en) Power mosfet
JPH01238173A (en) Power mosfet
JP3855386B2 (en) Semiconductor device
JP2723868B2 (en) Semiconductor device
JPH02178975A (en) Mos type semiconductor device
JPH04188877A (en) Power mosfet of high breakdown strength
US10957791B2 (en) Power device with low gate charge and low figure of merit
JP2004031386A (en) Semiconductor device
JPH01292862A (en) Semiconductor device
US7482285B2 (en) Dual epitaxial layer for high voltage vertical conduction power MOSFET devices