JPH01292862A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01292862A
JPH01292862A JP63123412A JP12341288A JPH01292862A JP H01292862 A JPH01292862 A JP H01292862A JP 63123412 A JP63123412 A JP 63123412A JP 12341288 A JP12341288 A JP 12341288A JP H01292862 A JPH01292862 A JP H01292862A
Authority
JP
Japan
Prior art keywords
conductivity type
layer
region
conductive layer
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63123412A
Other languages
Japanese (ja)
Inventor
Taira Matsunaga
平 松永
Takashi Kimura
隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63123412A priority Critical patent/JPH01292862A/en
Priority to KR1019890006788A priority patent/KR920009751B1/en
Publication of JPH01292862A publication Critical patent/JPH01292862A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase an effective area of an element and to acquire a high breakdown strength even when a junction is shallow, by providing an extension section of a gate electrode layer and a gate wiring electrode layer which functions as a field plate in a circumference section inside an element formation region. CONSTITUTION:A gate electrode layer 26 of MOS structure 35a which positions at the outermost side inside an element formation region 36 extends to the outside of the MOS structure 35a through a gate insulation layer 25 by a specified size (a1). A gate wiring electrode layer 27 is formed extending further to the outside of the outermost end of the gate electrode layer 26 by a specified size (a2). Since the gate electrode 26 and the wiring electrode layer 27 are used as a part of a field plate, a larger effective area can be provided for element formation. The extension section of the gate electrode layer 26 from the outermost MOS structure 35a functions as a field plate, and is opposite to a substrate through a thin gate oxide from 25a at an area near a bending section 33 of the junction of the MOS structure 35a. Therefore, field concentration at the bending section 33 can be considerably relaxed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、縦型絶縁ゲート型素子を有する半導体装置に
関し、特に縦形MO3FET素子の外周部の耐圧構造に
係るものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a semiconductor device having a vertical insulated gate type element, and particularly relates to a voltage withstanding structure at the outer periphery of a vertical MO3FET element. .

(従来の技術) 従来、縦形M OS F E ’I”において、基板主
面側のドレイン・ソース間耐圧を向上させるために、フ
ィールドプレート構造がよく用いられている。
(Prior Art) Conventionally, a field plate structure is often used in a vertical MOS F E 'I'' in order to improve the breakdown voltage between the drain and the source on the main surface side of the substrate.

その従来例を図面を参照して以下説明する。A conventional example thereof will be explained below with reference to the drawings.

第4図は従来の該FET周辺部の断面図である。FIG. 4 is a sectional view of the peripheral portion of the conventional FET.

N−型エピタキシャルN2が積層形成されたN4型シリ
コン基板1の一方の主面には、選択的に複数のP型ベー
ス領域3又は3Aが形成され、又各P型ベース領域内に
は選択的にP4型ベースfA域9又は9Aが形成される
。fk外側のP型ベース領域3Aを除くP型ベース領域
3には高濃度のN′″型ソース領域4が設けられる。 
N−型エピタキシャル層2(以下N−型ドレイン領域と
も呼ぶ)とN4型ソース領域4に挟まれ基板面に露出す
るP型ベース領域3のN型チャネル形成領域3hとゲー
ト酸化膜5を介して対向するゲート電極6が形成されて
いる。 最外側のP型ベース領域3AとN−型ドレイン
領域2との接合@10を含み、領域2及び3Aにまたが
り、外側に延在する酸化膜7が設けられる。 ソース″
r4極開口部を除き、ゲー ト電極6及び酸化膜7を覆
うように層間絶縁[8を設け、ソース電極開口部及び眉
間絶縁膜8の上面に、ソース電極を含むソース配線型@
11が形成される。 又N+型シリコン基板1の他方の
主面にドレイン電極12を設ける。
A plurality of P-type base regions 3 or 3A are selectively formed on one main surface of the N4-type silicon substrate 1 on which N-type epitaxial N2 is laminated, and selectively a plurality of P-type base regions 3 or 3A are formed in each P-type base region. A P4 type base fA region 9 or 9A is formed. A highly doped N'' type source region 4 is provided in the P type base region 3 except for the P type base region 3A outside fk.
Through the gate oxide film 5 and the N-type channel forming region 3h of the P-type base region 3 which is sandwiched between the N-type epitaxial layer 2 (hereinafter also referred to as the N-type drain region) and the N4-type source region 4 and which is exposed on the substrate surface. Opposing gate electrodes 6 are formed. An oxide film 7 is provided that includes the junction @10 between the outermost P-type base region 3A and the N-type drain region 2, spans the regions 2 and 3A, and extends outward. sauce"
An interlayer insulator [8 is provided to cover the gate electrode 6 and the oxide film 7 except for the r4 electrode opening, and a source wiring type @ including the source electrode is provided on the upper surface of the source electrode opening and the glabella insulating film 8.
11 is formed. Further, a drain electrode 12 is provided on the other main surface of the N+ type silicon substrate 1.

ドレイン電極12が正、ソース電極11が負となる極性
のドレイン電圧と、ゲート電極に一定値を越える正のゲ
ート電圧を印加するとN型チャネル形成領域3hにチャ
ネルが形成されドレイン電流が流れる。 ドレイン電流
はゲート電圧によって制御される。 ゲート電圧を一定
値以下にするとドレイン電流は遮断され、ドレイン電圧
はN−型ドレイン領域2とP型ベース領域3又は3Aと
の接合部の空乏層によって主として負担される。
When a drain voltage with a polarity such that the drain electrode 12 is positive and the source electrode 11 is negative, and a positive gate voltage exceeding a certain value is applied to the gate electrode, a channel is formed in the N-type channel forming region 3h, and a drain current flows. Drain current is controlled by gate voltage. When the gate voltage is lower than a certain value, the drain current is cut off, and the drain voltage is mainly borne by the depletion layer at the junction between the N- type drain region 2 and the P-type base region 3 or 3A.

第4図に示すようなプレーナ構造の素子では、P型ベー
ス領域3AとN−型ドレイン領域の外側の接合部の曲り
部分13に前記ドレイン電圧による電界が集中するため
に耐圧が低下するという問題がある。 この従来例では
ソース配線電極11をベース領域3Aの外側から外方に
長さaだけはみださせたフィールドプレート構造となっ
ている。
In an element having a planar structure as shown in FIG. 4, there is a problem in that the electric field due to the drain voltage is concentrated on the curved portion 13 of the outer junction between the P-type base region 3A and the N-type drain region, resulting in a decrease in breakdown voltage. There is. This conventional example has a field plate structure in which the source wiring electrode 11 protrudes outward by a length a from the outside of the base region 3A.

フィールドプレート構造ではフィールドプレートの下の
絶縁層の膜厚、フィールドプレートのはみだし幅aを適
当に選ぶことにより、前記接合部の曲り部分13におけ
る電界集中を避けることができ、ドレイン・ソース間耐
圧を向上させることが可能である。
In the field plate structure, by appropriately selecting the film thickness of the insulating layer under the field plate and the protrusion width a of the field plate, it is possible to avoid electric field concentration at the bent portion 13 of the junction, and to increase the drain-source breakdown voltage. It is possible to improve.

フィールドプレート構造により、プレーナ構造の耐圧が
改善される理由は次の通りである。 プレーナ’!f4
3iaにおいて、平面接合と比べて耐圧が低下する原因
は、接合に曲り部分があり、その部分に電界が集中する
ためである。 第4図に示すように縦形MO3FETに
フィールドプレート(ソース配線電極のはみだし部a)
を形成した場合、ドレイン・ソース間に順方向(Nチャ
ネルMO8PETの場合、ドレインが正、PチャネルM
O3FETの場合、ドレインが負電位)に電圧が印加さ
れた場合、フィールドプレート下のN−型ドレイン領域
2の表面のキャリヤが追払われるため、ここに空乏層が
形成される。 この空乏層は接合の空乏層と連続し、接
合の曲り部の空乏層の曲率半径を緩和することができる
。 換言すれば曲り部13での電界集中は防止され、耐
圧を向上させることができる。
The reason why the field plate structure improves the withstand voltage of the planar structure is as follows. Prerna'! f4
In 3ia, the reason why the withstand voltage is lower than that of a planar junction is that the junction has a curved part and the electric field is concentrated at that part. As shown in Figure 4, the field plate (protruding part a of the source wiring electrode) is attached to the vertical MO3FET.
When forming a forward direction between the drain and source (in the case of N-channel MO8PET, the drain is positive, and the P-channel M
In the case of an O3FET, when a voltage is applied to the drain (which is at a negative potential), carriers on the surface of the N- type drain region 2 under the field plate are driven away, so that a depletion layer is formed here. This depletion layer is continuous with the depletion layer of the junction, and can relax the radius of curvature of the depletion layer at the curved portion of the junction. In other words, electric field concentration at the bent portion 13 is prevented, and the withstand voltage can be improved.

フィールドプレートによる耐圧改善の効果は、フィール
ドプレート下の絶縁層の膜厚、及び材質に大きく依存し
ている( IEEE TRANSACTIONS、ED
−26、NO3,JULY、1977、P、1098〜
11009照) 、  第4図においてドレイン電fi
12とソース電極11に印加される順阻止電圧は、絶縁
層7及び8にかかる電圧と、フィールドプレート下のN
−型ドレイン領域内の空乏層にかかる電圧に分けられる
が、この割合はそれぞれの静電容算に逆比例しており、
容量の小さい方に大きな電圧がかかる。 空乏層にかか
る電圧が大きいはど空乏層の伸びは大きくなり、接合の
曲り部における空乏層の曲率の緩和は大きく、接合の曲
り部の電界集中を防ぐことが可能となる。 従って絶縁
層の厚さはなるべく薄くし、比誘電率のなるべく大きな
材料を使用し、絶縁層7及び8を誘電体層とする静電容
量を空乏層の容量に比し大きくすればよいことになる。
The effect of improving breakdown voltage by the field plate largely depends on the thickness and material of the insulating layer under the field plate (IEEE TRANSACTIONS, ED
-26, NO3, JULY, 1977, P, 1098~
11009), in Fig. 4, the drain voltage fi
The forward blocking voltage applied to the source electrode 12 and the source electrode 11 is the voltage applied to the insulating layers 7 and 8 and the N under the field plate.
The voltage applied to the depletion layer in the - type drain region is divided into voltages applied to the depletion layer in the -type drain region, and this ratio is inversely proportional to each capacitance calculation.
Larger voltage is applied to the smaller capacitance. When the voltage applied to the depletion layer is large, the elongation of the depletion layer becomes large, and the curvature of the depletion layer at the curved portion of the junction is greatly relaxed, making it possible to prevent electric field concentration at the curved portion of the junction. Therefore, the thickness of the insulating layer should be made as thin as possible, a material with a relative permittivity as large as possible should be used, and the capacitance using the insulating layers 7 and 8 as dielectric layers should be made larger than the capacitance of the depletion layer. Become.

しかしながらこの場合フィールドプレート端においても
同様に大きな電圧がかかることになり、フィールドプレ
ート端直下において電界集中が生ずるので、耐圧低下を
起こさないよう、この部分の絶縁層の厚さを一定値以上
にする必要がある。
However, in this case, a large voltage will be applied at the edge of the field plate as well, and electric field concentration will occur just below the edge of the field plate, so the thickness of the insulating layer in this area should be at least a certain value to prevent a drop in breakdown voltage. There is a need.

第4図に示す従来のフィールドプレート構造においては
、接合の曲り部及びフィールドプレート端部直下のいず
れにおいても電界集中による耐圧低下がないよう絶縁[
7及び8の膜厚を決める必要がある。 接合の深さが浅
いほど、接合の曲り部の曲率が大きくなるため、この部
分の電界集中を防ぐためには、曲り部のフィールドプレ
ート直下の絶縁層の膜厚をより小さくする必要がある。
In the conventional field plate structure shown in Fig. 4, insulation [[
It is necessary to determine the film thicknesses of 7 and 8. The shallower the depth of the junction, the greater the curvature of the curved portion of the junction. Therefore, in order to prevent electric field concentration in this portion, it is necessary to reduce the thickness of the insulating layer directly under the field plate at the curved portion.

従って第4図のような従来の構造では、深さが浅い接合
の場合は耐圧改善の効果は小さくなる。
Therefore, in the conventional structure as shown in FIG. 4, the effect of improving breakdown voltage is small in the case of a shallow junction.

この場合第5図に示すようにフィールドプレー1−を2
段とし、接合部近傍の絶縁層の厚さを薄くし、フィール
ドプレート端部においては絶縁層の厚さを厚くすること
が考えられる。  しかしながらこの構造は、従来のソ
ース電極11をはみださせる構造では製造工程がかなり
複雑となる。
In this case, as shown in Figure 5, field play 1-2 is
It is conceivable to reduce the thickness of the insulating layer near the junction and increase the thickness of the insulating layer at the end of the field plate. However, in the conventional structure in which the source electrode 11 protrudes, the manufacturing process becomes quite complicated.

又耐圧改善の他の方法としてガードリング構造等がある
が、この構造では素子周辺部のかなりの面積をガードリ
ング形成領域として収られ、素子の有効面積が小さくな
る。
Another method for improving the withstand voltage is a guard ring structure, but in this structure, a considerable area around the device periphery can be used as a guard ring formation region, reducing the effective area of the device.

(発明が解決しようとする課題) 前述のように、縦型MOS F ET等では、その外周
部の耐圧を向上させるためフィールドプレート構造が用
いられているが、例えば第4図に示す従来の構造では、
フィールドプレートにソース配線電極を使用するので、
フィールドプレート形成領域としてかなり余分の面8!
奢必要とし、又接合深さが浅くなると耐圧改善効果が小
さくなる。
(Problems to be Solved by the Invention) As mentioned above, a field plate structure is used in vertical MOS FETs and the like to improve the withstand voltage at the outer periphery, but for example, the conventional structure shown in FIG. So,
Since the source wiring electrode is used on the field plate,
Quite an extra surface 8 as a field plate forming area!
Moreover, as the junction depth becomes shallower, the withstand voltage improvement effect becomes smaller.

第5図に示す従来の構造では、耐圧改善効果はある程度
得られるが、素子周辺部のかなりの面積をフィールドプ
レート形成領域として取られ、素子の有効面積が減少す
るという課題は未解決であり、更にフィールドプレート
としてソース配線電極を使用する構造では、2段の厚さ
構造を有する絶縁層形成プロセスが複雑となり、生産性
を低下するという欠点がある。
Although the conventional structure shown in FIG. 5 can improve the breakdown voltage to some extent, the problem of reducing the effective area of the element because a considerable area around the element is taken up as a field plate formation area remains unsolved. Furthermore, a structure in which a source wiring electrode is used as a field plate has the disadvantage that the process for forming an insulating layer having a two-step thickness structure is complicated, which reduces productivity.

本発明の目的は、製造プロセスが従来とほぼ同様で、素
子の有効面積を従来より増加できると共に接合深さが浅
い場合でも高い耐圧が得られる縦形絶縁ゲート型素子を
有する半導体装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a vertical insulated gate type element, which can increase the effective area of the element compared to the conventional one and can obtain a high withstand voltage even when the junction depth is shallow, with the manufacturing process being almost the same as the conventional one. It is.

[発明の構成] (課題を解決するための手段とその作用)第1請求項の
本発明の半導体装置は、Mx形MO3FET、絶縁ゲー
トバイポーラトランジスタ(In5ulated  G
ate  Bipolar  Transister 
 、 IG8T)等の素子を有する単独又は複合半導体
装置であって、該素子形成領域内の周辺部にフィールド
プレートの機能を有する例えばゲート電極層及びゲート
配線電極層の延在部を設ける構造により前記課題を解決
したものである。
[Structure of the Invention] (Means for Solving the Problems and Their Effects) The semiconductor device of the present invention according to the first claim includes an Mx type MO3FET, an insulated gate bipolar transistor (In5ulated G
ate Bipolar Transister
, IG8T), etc., with a structure in which an extended portion of a gate electrode layer and a gate wiring electrode layer having a function of a field plate is provided in the peripheral part of the element formation region. This is a solution to a problem.

即ち周辺部のlI造の特徴の1つは、最外側に位置する
MO3m造の第1導電層(ゲート作用をするゲート電極
を含む)が、第1絶縁層(ゲート酸化膜を含む)を介し
て最外側の前記MO3構造より外側に所定大きさだけは
みだして延在している点である。 これにより、第1導
電層の延在する部分はフィールドプレートの機能を有し
、且つ前記MO8#l3jjの外側面の接合近傍におい
ては、延在する第1導電層は、薄い第1絶縁層を介して
基板に対向するため、前記接合深さが浅い場合でも前述
の理由により、高耐圧が得られる。 又この第1導電層
と第1絶縁層は、従来と同じ工程数で形成できる。
In other words, one of the characteristics of the II structure in the peripheral area is that the first conductive layer (including the gate electrode that functions as a gate) of the MO3M structure located at the outermost side is connected to the first insulating layer (including the gate oxide film) The point is that it extends outward by a predetermined amount from the outermost MO3 structure. As a result, the extending portion of the first conductive layer has the function of a field plate, and in the vicinity of the junction of the outer surface of the MO8#l3jj, the extending first conductive layer covers the thin first insulating layer. Since it faces the substrate through the junction, even if the junction depth is shallow, a high breakdown voltage can be obtained for the above-mentioned reason. Further, the first conductive layer and the first insulating layer can be formed using the same number of steps as in the conventional method.

周辺部の構造の特徴の他の1つは、前記第1導電層を覆
う第2絶縁層(層間絶縁層ともいう)を介して前記第1
導電層より更仲外側に所定大きさはみだして形成される
と共に、第1導電層と等電位になるよう接続される第2
導電層を設けたことである。 この第2導電層もフィー
ルドプレートとしての機能を有し、該層端部と基板との
間の絶縁¥trs層の層厚を十分大きくとれるので、端
部近傍における電界集中を低減することができる。 又
第2絶縁層及び第2導電層も従来と同じ工程数で形成で
、きる。
Another feature of the structure of the peripheral part is that the first conductive layer is
A second conductive layer is formed to protrude from the conductive layer by a predetermined amount to the outer side of the conductive layer, and is connected to have the same potential as the first conductive layer.
This is because a conductive layer is provided. This second conductive layer also has a function as a field plate, and since the thickness of the insulating trs layer between the layer end and the substrate can be made sufficiently large, electric field concentration near the end can be reduced. . Further, the second insulating layer and the second conductive layer can be formed using the same number of steps as in the conventional method.

上記周辺部の構造では、フィールドプレートの一部を第
2導電層(ゲート配線電極層と等価)として使用するこ
とができるので、別にゲート配線電極層を設ける必要が
なく、素子形成の有効面積を大きくすることができる。
In the above peripheral structure, a part of the field plate can be used as the second conductive layer (equivalent to the gate wiring electrode layer), so there is no need to provide a separate gate wiring electrode layer, and the effective area for element formation is reduced. Can be made larger.

第2請求項の本発明の半導体装置は、縦形MO8FET
素子を有する単独もしくは複合半導体装置であって、第
1請求項記載の半導体装置における第1絶縁層の望まし
い形状を具体化した点が異なる。 即ち最外側のMO5
4111造より外側に延在する第1絶縁層の層厚が、外
側に向かって増加している点である。 これにより最外
側MO3構造の外側面の接合近傍では絶縁層の厚さを薄
くし、一方で第1導電層及び第2導電層それぞれの端部
と基板間の絶縁層の厚さを厚くすることが可能となり、
それぞれの端部における電界集中の防止効果を大きくす
ることができる。 なお本発明の素子の周辺部のその他
の構成及び作用は第1請求項記載の素子と同等であり、
製造プロセスも比軟的簡単で素子の有効面積も大きくと
れる。
The semiconductor device of the present invention according to the second claim is a vertical MO8FET.
The present invention is a single or composite semiconductor device having an element, and is different in that it embodies the desired shape of the first insulating layer in the semiconductor device according to the first aspect. That is, the outermost MO5
The point is that the layer thickness of the first insulating layer extending outward from the 4111 structure increases toward the outside. As a result, the thickness of the insulating layer is reduced near the junction of the outer surface of the outermost MO3 structure, while the thickness of the insulating layer between the respective ends of the first conductive layer and the second conductive layer and the substrate is increased. becomes possible,
The effect of preventing electric field concentration at each end can be increased. Note that the other configurations and functions of the peripheral portion of the element of the present invention are equivalent to those of the element described in the first claim,
The manufacturing process is relatively simple and the effective area of the device can be large.

(実施例) 本発明の実施例として、Nチャネル縦形MO3FET素
子を1つのベレットに単独に形成した半導体装置を取り
上げ、図面を参照して以下説明する。 なお実施例の半
導体装置は、第1請求項記載の半導体装置に含まれ、第
1絶縁層の望ましい形状を具体化した第2請求項に係る
半導体装置である。
(Example) As an example of the present invention, a semiconductor device in which an N-channel vertical MO3FET element is individually formed in one pellet will be described below with reference to the drawings. Note that the semiconductor device of the embodiment is included in the semiconductor device described in the first claim, and is a semiconductor device according to the second claim that embodies the desired shape of the first insulating layer.

第1図に、本発明の実施例である前記縦形MO3F E
 ’I’の素子周辺部の模式的部分断面図を示す。
FIG. 1 shows the vertical MO3F E which is an embodiment of the present invention.
A schematic partial cross-sectional view of the peripheral part of the element 'I' is shown.

なお同図面上では左側が外周方向である。 又第2図は
、該装置のソース及びゲート配線電fl!層の形状の概
略を示す平面図である。
Note that in the drawing, the left side is the outer circumferential direction. FIG. 2 also shows the source and gate wiring voltage fl! of the device. FIG. 3 is a plan view schematically showing the shape of layers.

第1図において、N4″型シリコン基板21の表面にN
−型エピタキシャル層22が形成されている。 この実
施例では第1請求項記載の半導体基板11は、前記基板
21とN−型エピタキシャル層22とを合せたもので、
一導電型不純物領域はN−型エピタキシャル層22に該
当する。 このN−型エピタキシャル層(N−型ドレイ
ン層ともいう)22内に選択的に反対導電型不純物領域
(P型ベース領域とも呼ぶ)23が形成される。
In FIG. 1, the surface of the N4″ type silicon substrate 21 is
- type epitaxial layer 22 is formed. In this embodiment, the semiconductor substrate 11 described in the first claim is a combination of the substrate 21 and an N-type epitaxial layer 22,
The one conductivity type impurity region corresponds to the N- type epitaxial layer 22. An opposite conductivity type impurity region (also called a P-type base region) 23 is selectively formed in this N-type epitaxial layer (also called an N-type drain layer) 22 .

このP型ベース領域23内に選択的に一導電型高濃度不
純物領域(N”型ソース領域とも呼ぶ)24が設けられ
る。 このNゝ型ソース領域24とN−型ドレイン領域
22に挾まれるP型ベース領域23の基板主面に露出す
る部分のN型チャネル形成領域23hと、該領域23h
と第1絶縁層(ゲート絶縁層ともいい、周辺部では後述
の延在部分の絶縁層も含む)、λj−を介して対向する
第一導電層(ゲート電極層ともいい、周辺部では後述の
延在部分を含む)26とから成るMO3構造35及び3
5aが形成されている。
A high concentration impurity region of one conductivity type (also referred to as an N'' type source region) 24 is selectively provided in this P type base region 23. It is sandwiched between this N type source region 24 and N− type drain region 22. An N-type channel forming region 23h in a portion of the P-type base region 23 exposed to the main surface of the substrate, and the region 23h.
and a first insulating layer (also called a gate insulating layer, including the insulating layer of the extended part described later in the peripheral part), and a first conductive layer (also called a gate electrode layer, which in the peripheral part includes the insulating layer of the extended part described later), facing each other via λj-. (including the extension part) 26 and MO3 structure 35 and 3
5a is formed.

この素子形成領域36(第2図参照)内で最外側に位置
するMO3O3構造35a−ト電極層26が、ゲート絶
縁層、λj−を介してMO3構造35aより外側に所定
大きさa、たけはみだして延在している。 ゲート絶縁
層l擾、の延在部分は、デーl−酸化膜25aと、これ
よりら層厚が厚く階段状に連接する酸化膜25bとから
構成される。
The MO3O3 structure 35a located at the outermost side in the element formation region 36 (see FIG. 2) protrudes outward from the MO3 structure 35a by a predetermined distance a through the gate insulating layer, λj. It has been extended. The extended portion of the gate insulating layer 1 is composed of a oxide film 25a and an oxide film 25b which is thicker than the oxide film 25a and is connected in a stepwise manner.

又ゲート電極層26を覆って第2絶縁層(層間絶縁膜と
もいう)28が形成され、その上に第2導電層(ゲート
配線電極層ともいう)27が堆積される。 ゲート配線
″@極層27はゲート電極層26の外側端より更に外側
に所定大きさa2はみだして形成される。 又ゲート配
線電極層27とゲート電極層26は層間絶縁膜28の開
口部30を通して互いに電気的に接続されている。
Further, a second insulating layer (also referred to as an interlayer insulating film) 28 is formed covering the gate electrode layer 26, and a second conductive layer (also referred to as a gate wiring electrode layer) 27 is deposited thereon. The gate wiring "@ pole layer 27 is formed so as to protrude further outward by a predetermined size a2 from the outer end of the gate electrode layer 26. Furthermore, the gate wiring electrode layer 27 and the gate electrode layer 26 are formed through the opening 30 of the interlayer insulating film 28. electrically connected to each other.

次に第1図及び第2図に示した半導体装置を製造するた
めの工程の概要について第3図を参照して説明する。
Next, an overview of the steps for manufacturing the semiconductor device shown in FIGS. 1 and 2 will be explained with reference to FIG. 3.

同図(a )において、濃度、 3x 10′8ato
ns/cl”のアンチモンを含んだN4型シリコン基板
21に、濃度2x10”  atons/an3のリン
(P)を含んだエピタキシャル層22を成長させた後、
酸化膜を5000X成長させ、パターニングを行ない、
素子形成領域周辺部に比較的厚い酸化膜25bを形成す
る。 次に同図(b )において、ゲート酸化膜25a
を1000人成長させ、更に多結晶シリコンを5000
X堆積してパターニングを行ない、ゲート電極層26を
形成する。 その後ゲート電極層26をマスクとしてボ
ロン(B)を加速電圧40 key、ドーズ量4.OX
 10”  atO113/C112にてイオン注入し
、1100℃、N2ガス中にて約6時間拡散してP型ベ
ース領域23を形成する。 次に、同図(c)において
レジストをマスクとして(図示していない)ボロンを加
速電圧40 key、ドーズ量3X 10’atols
/c112にてイオン注入した後、1100℃、02ガ
ス中にて15分アニールしてP1型ベース領域29を形
成した後、再度レジストを塗布してパターニングを行な
い、レジスト34及びゲート電極26をマスクとして砒
素(As )を加速電圧40kev、ドーズl 5x1
0”  atols/cIl’にてイオン注入し、10
00℃、02ガス中にて20分アニールしてNゝ型ソー
ス領域24を形成する。 次に第1図においてCV D
 (CheIIicalνapor Depositi
on)等の方法により酸化膜を堆積し、パターニングし
て層間絶縁膜28を形成する。 眉間絶縁膜28には、
ゲート電極層26と後述のゲート配線電極層27とを接
続するための開口部30、並びにN4型ソース領域24
とP“型ベース領域29とのコンタクト開口部を形成す
る。 次にアルミニウムを堆積して、パターニングを行
ない、ゲート配線電極層27及びソース配線電極層31
を形成する。 上記構成と製造方法による半導体装置で
は、ゲート絶縁層25−の階段境界部34までの延在部
25aは、ゲート酸化膜形成工程でMO3構造35のゲ
ート酸化膜と同時に形成され、又延在部25aに連接続
する酸化膜25bは、第3図<a>に示す酸化膜を残し
たものとするので、第1図に示す本発明の半導体装置の
製造プロセスは、第4図に示す従来の縦型MO,5FE
Tの製造工程とほぼ同様であり、しかも第5図に示す2
段のフィールドプレートと同様な構造が実現できる。
In the same figure (a), the concentration is 3x 10'8ato
After growing an epitaxial layer 22 containing phosphorus (P) at a concentration of 2x10'' atoms/an3 on an N4 type silicon substrate 21 containing antimony at a concentration of 2x10'' atoms/an3,
Grow the oxide film at 5000X, pattern it,
A relatively thick oxide film 25b is formed around the element formation region. Next, in the same figure (b), the gate oxide film 25a
Grow 1000 polycrystalline silicon and further grow 5000 polycrystalline silicon.
X is deposited and patterned to form the gate electrode layer 26. Thereafter, using the gate electrode layer 26 as a mask, boron (B) was applied at an acceleration voltage of 40 key and a dose of 4. OX
Ions are implanted at 10" at O113/C112 and diffused in N2 gas at 1100° C. for about 6 hours to form a P-type base region 23. Next, as shown in FIG. ) Boron is accelerated at a voltage of 40 keys and a dose of 3X 10'atols.
After ion implantation at /c112, the P1 type base region 29 was formed by annealing at 1100° C. for 15 minutes in 02 gas, and then resist was applied again and patterned to mask the resist 34 and gate electrode 26. Arsenic (As) is accelerated at a voltage of 40keV and a dose of 15x1.
Ion implantation was performed at 0"atols/cIl',
Annealing is performed for 20 minutes at 00° C. in 02 gas to form an N-type source region 24. Next, in Figure 1, CV D
(Che IIical νapor Depositi
An oxide film is deposited by a method such as on) and patterned to form an interlayer insulating film 28. In the glabella insulating film 28,
An opening 30 for connecting the gate electrode layer 26 and a gate wiring electrode layer 27 to be described later, and an N4 type source region 24
A contact opening is formed between the gate wiring electrode layer 27 and the P" type base region 29. Next, aluminum is deposited and patterned to form the gate wiring electrode layer 27 and the source wiring electrode layer 31.
form. In the semiconductor device with the above configuration and manufacturing method, the extending portion 25a of the gate insulating layer 25- to the step boundary portion 34 is formed simultaneously with the gate oxide film of the MO3 structure 35 in the gate oxide film forming step, and Since the oxide film 25b connected to the oxide film 25a remains the oxide film shown in FIG. 3<a>, the manufacturing process of the semiconductor device of the present invention shown in FIG. Vertical MO, 5FE
It is almost the same as the manufacturing process of T, and moreover, the manufacturing process of
A structure similar to the stage field plate can be realized.

又第2図に示すように、本発明の構造では、ゲート電極
層26及びゲート配線電極層27をフィールドプレート
の一部として使用するので、素子形成に必要な有効面積
を大きく取ることができる。
Further, as shown in FIG. 2, in the structure of the present invention, since the gate electrode layer 26 and the gate wiring electrode layer 27 are used as part of the field plate, a large effective area required for element formation can be obtained.

又ゲート電極層26が最外側のMO3構造35aより延
在する部分は、フィールドプレートとしての機能を有し
、MO3構造35aの接合の曲り部33近傍においては
、薄いゲート酸化膜25aを介して基板に対向している
ので、最外側の接合の曲り部33における電界集中は大
幅に緩和される。 ゲート電極M26の外方部分は厚い
酸化膜25b上に堆積され、層間絶縁[28を介してゲ
ート配線電極層27に接続される。 従ってフィールド
プレートの実質的な端部となるゲート配線電極層27の
外側端は、酸化WA25bと層間絶縁膜28との積層膜
を介して基板と対向するので、この部分における電界集
中も十分緩和され耐圧が改善される。
Further, the portion where the gate electrode layer 26 extends from the outermost MO3 structure 35a has a function as a field plate, and in the vicinity of the junction bend 33 of the MO3 structure 35a, the gate electrode layer 26 is connected to the substrate through the thin gate oxide film 25a. , the electric field concentration at the bend 33 of the outermost junction is significantly alleviated. The outer portion of the gate electrode M26 is deposited on the thick oxide film 25b and connected to the gate wiring electrode layer 27 via the interlayer insulation [28]. Therefore, since the outer end of the gate wiring electrode layer 27, which is the substantial end of the field plate, faces the substrate via the laminated film of the oxidized WA 25b and the interlayer insulating film 28, the electric field concentration in this part is sufficiently alleviated. Pressure resistance is improved.

例えばドレイン・ソース間耐圧170Vの縦型MO3F
ETを形成する場合、従来の構造では、比抵抗3.5Ω
・C1程度のウェーハが必要となるが、本発明の構造で
は前述のように素子形成領域の周辺部における電界が緩
和されるため、比抵抗2.7Ω・CI程度のウェーハを
使用することが可能となり、チップ面積lX1111I
’の場合、従来の構造ではオン抵抗が2.67Ωに対し
本発明の構造では1.91Ωとなり、オン状態における
電力損失を大幅に低減できる。
For example, a vertical MO3F with a drain-source breakdown voltage of 170V
When forming ET, the conventional structure has a specific resistance of 3.5Ω.
・A wafer of about C1 is required, but in the structure of the present invention, the electric field in the periphery of the element formation region is relaxed as described above, so it is possible to use a wafer with a specific resistance of about 2.7Ω・CI. So, the chip area lX1111I
In the case of ', the on-resistance is 2.67Ω in the conventional structure, whereas it is 1.91Ω in the structure of the present invention, and power loss in the on-state can be significantly reduced.

本実施例ではNチャネル縦形MO3FETについて述べ
たが、本発明はPチャネル縦形MO8FETに対しては
勿論、縦形MO3FETのドレイン領域の他方の主面側
に接して、これと反対導電型領域を付加積層したIGB
T素子に対しても適用可能である。
In this embodiment, an N-channel vertical MO3FET has been described, but the present invention is applicable not only to a P-channel vertical MO8FET but also to an additional stacking of a region of the opposite conductivity type in contact with the other main surface side of the drain region of the vertical MO3FET. IGB
It is also applicable to T elements.

又本発明の半導体素子とその他の能動又は受動素子とを
1つの半導体チップにtii!したいわゆる複合半導体
装置に対しても、本発明は適用される。
Also, the semiconductor element of the present invention and other active or passive elements can be combined into one semiconductor chip! The present invention is also applicable to so-called composite semiconductor devices.

[発明の効果〕 本発明の半導体装置においては、!V造プロセスは従来
の半導体装置とほぼ同様で、その工程数も等しく、しか
も階段状のフィールドプレート構造を実現できる。
[Effects of the Invention] In the semiconductor device of the present invention,! The V manufacturing process is almost the same as that of conventional semiconductor devices, the number of steps is the same, and a stepped field plate structure can be realized.

又本発明の半導体装置の構造では、フィールドプレート
の一部をゲート配線電極層として使用することができる
ので、別にゲート配線t[i層を設ける必要がなく、従
来の構造と比べてMO3FET素子の有効面積を大きく
することができる。
In addition, in the structure of the semiconductor device of the present invention, a part of the field plate can be used as a gate wiring electrode layer, so there is no need to provide a separate gate wiring t[i layer, and the structure of the MO3FET element is reduced compared to the conventional structure. The effective area can be increased.

一般に縦形MOSFET等の場合、オン状態におけるソ
ース・ドレイン間の抵抗(オン抵抗)を小さくするため
には、ウェーハの抵抗をなるべく小さくする必要がある
が、耐圧との関係からその値は制限される。 耐圧を制
限する主たる要因は、該素子のベース領域とドレイン領
域との接合部の耐圧である。 本発明の構造ではフィー
ルドプレートを2段とし、接合部の曲り部上のフィール
ドプレートは薄いゲート酸化膜を介して基板と対向する
ので、接合深さが浅い場合でも高い耐圧が得られ、一方
フイールドプレートの外側端では厚い積層絶縁膜を介し
て基板と対向するので鎖端の耐圧は向上する。 実施例
において示したように、本発明の構造によると、従来の
構造のものより低い比抵抗のウェーハで同程度の耐圧を
得ることができる。
Generally, in the case of vertical MOSFETs, in order to reduce the resistance between the source and drain in the on state (on resistance), it is necessary to reduce the wafer resistance as much as possible, but its value is limited due to the relationship with the withstand voltage. . The main factor that limits the breakdown voltage is the breakdown voltage at the junction between the base region and drain region of the device. In the structure of the present invention, there are two levels of field plates, and the field plate on the curved part of the junction faces the substrate through a thin gate oxide film, so a high withstand voltage can be obtained even when the junction depth is shallow. Since the outer end of the plate faces the substrate through a thick laminated insulating film, the withstand voltage at the end of the chain is improved. As shown in the examples, according to the structure of the present invention, the same level of breakdown voltage can be obtained with a wafer having a lower specific resistance than that of the conventional structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における半導体装置の周辺部の
断面図、第2図は第1図の半導体装置の配線電極層を示
す平面図、第3図は第1図の半導体装置の製造工程を示
す断面図、第4図及び第5図は従来の半導体装置の周辺
部の断面図である。 λユ・・・半導体基板、 21・・・(N”型シリコン
基板)、 22・・・一導電型不純物領域(N〜型エピ
タキシャル層)、 23・・・反対導電型不純物領域(
P型ベース領域)、 23h・・・チャネル形成領域、
 24・・・一導電型高濃度不純物領域(N″型ソース
領域)、 l二・・・第1絶縁層(ゲート絶縁層)、 
25a・・・〈ゲート酸化膜)、 25b・・・(酸化
膜)、 26・・・第1導電層(ゲート電極層)、 2
7・・・第2導″@層(ゲート配線電極Jtり、28・
・・第2絶縁層(層間絶縁膜)、 30・・・開口部、
 31・・・(ソース配線を極層)、 34・・・階段
、 35・・・MO3構造、 35a・・・最外側MO
8構造、 36・・・素子形成領域、  a、、a2・
・・所定大きさのはみだし部。 (注)()内の名称は「3、発明の詳細な説明」におい
て使用する名称である。 特許出願人 株式会社 東  芝 27:第2導電層 第1図 第2図 (a) 23      25a 第4図
FIG. 1 is a cross-sectional view of the peripheral part of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a plan view showing a wiring electrode layer of the semiconductor device of FIG. 1, and FIG. 3 is a fabrication of the semiconductor device of FIG. 1. 4 and 5 are cross-sectional views showing the peripheral portion of a conventional semiconductor device. λU... Semiconductor substrate, 21... (N" type silicon substrate), 22... One conductivity type impurity region (N~ type epitaxial layer), 23... Opposite conductivity type impurity region (
P-type base region), 23h...channel forming region,
24... High concentration impurity region of one conductivity type (N'' type source region), l2... First insulating layer (gate insulating layer),
25a... (gate oxide film), 25b... (oxide film), 26... first conductive layer (gate electrode layer), 2
7...Second conductive layer (gate wiring electrode Jt, 28.
... second insulating layer (interlayer insulating film), 30... opening,
31... (source wiring in pole layer), 34... stairs, 35... MO3 structure, 35a... outermost MO
8 structure, 36... element formation region, a,, a2.
...Protruding portion of a predetermined size. (Note) The names in parentheses are the names used in "3. Detailed Description of the Invention." Patent applicant: Toshiba Corporation 27: Second conductive layer Figure 1 Figure 2 (a) 23 25a Figure 4

Claims (1)

【特許請求の範囲】 1 一方の主面側が一導電型不純物領域である半導体基
板と、前記一導電型不純物領域に選択的に形成される反
対導電型不純物領域と、この反対導電型不純物領域に選
択的に形成される高濃度の一導電型高濃度不純物領域と
、この一導電型高濃度不純物領域と前記一導電型不純物
領域とに挟まれる前記反対導電型不純物領域が前記基板
主面に露出する部分のチャネル形成領域と、このチャネ
ル形成領域と第1絶縁層を介して対向する第1導電層か
ら成るMOS構造とを、有する半導体素子において、 この素子形成領域内で最外側に位置する前記MOS構造
の第1導電層が、第1絶縁層を介して該MOS構造より
外側に所定大きさだけはみだして延在し、前記第1導電
層を覆う第2絶縁層を介して前記第1導電層より更に外
側に所定大きさはみだして形成される第2導電層を有し
、且つこの第2導電層が第1導電層と第2絶縁層の開口
部を通して電気的に接続されていることを特徴とする半
導体素子を具備する半導体装置。 2 特許請求の範囲第1項記載の半導体素子において、
前記半導体基板が一導電型基板であり、該基板をドレイ
ン領域、前記反対導電型不純物領域をベース領域、前記
一導電型高濃度不純物領域をソース領域、前記第1導電
層をゲート電極層、及び前記第2導電層をゲート配線電
極層とし、且つ前記最外側のMOS構造より外側に延在
する前記第1絶縁層の層厚が、外側に向かつて階段状に
増加していることを特徴とする縦型MOS電界効果トラ
ンジスタ素子を具備する半導体装置。
[Claims] 1. A semiconductor substrate having one conductivity type impurity region on one principal surface, an opposite conductivity type impurity region selectively formed in the one conductivity type impurity region, and an opposite conductivity type impurity region formed in the opposite conductivity type impurity region. A selectively formed high concentration impurity region of one conductivity type, and the opposite conductivity type impurity region sandwiched between the high concentration impurity region of one conductivity type and the one conductivity type impurity region are exposed on the main surface of the substrate. In a semiconductor device having a MOS structure including a channel forming region in a portion where the channel forming region is formed and a first conductive layer facing the channel forming region with a first insulating layer interposed therebetween, A first conductive layer of a MOS structure extends outward from the MOS structure by a predetermined amount via a first insulating layer, and extends through a second insulating layer covering the first conductive layer to the first conductive layer. The second conductive layer is formed to protrude outward from the layer by a predetermined amount, and the second conductive layer is electrically connected to the first conductive layer through the opening in the second insulating layer. A semiconductor device comprising a semiconductor element characterized by: 2. In the semiconductor device according to claim 1,
The semiconductor substrate is a one conductivity type substrate, the substrate is a drain region, the opposite conductivity type impurity region is a base region, the one conductivity type high concentration impurity region is a source region, the first conductive layer is a gate electrode layer, and The second conductive layer is a gate wiring electrode layer, and the layer thickness of the first insulating layer extending outward from the outermost MOS structure increases in a stepwise manner toward the outside. A semiconductor device comprising a vertical MOS field effect transistor element.
JP63123412A 1988-05-20 1988-05-20 Semiconductor device Pending JPH01292862A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63123412A JPH01292862A (en) 1988-05-20 1988-05-20 Semiconductor device
KR1019890006788A KR920009751B1 (en) 1988-05-20 1989-05-20 Semiconductor device and its manufacturing method with field plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63123412A JPH01292862A (en) 1988-05-20 1988-05-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01292862A true JPH01292862A (en) 1989-11-27

Family

ID=14859917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63123412A Pending JPH01292862A (en) 1988-05-20 1988-05-20 Semiconductor device

Country Status (2)

Country Link
JP (1) JPH01292862A (en)
KR (1) KR920009751B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213614A (en) * 1994-08-02 1996-08-20 Sgs Thomson Microelectron Srl Mos-technology power-device chip and package assembly
WO1999012214A1 (en) * 1997-08-29 1999-03-11 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method for manufacturing the same
JP2009509342A (en) * 2005-09-16 2009-03-05 インターナショナル レクティファイアー コーポレイション Power semiconductor devices
WO2011102254A1 (en) * 2010-02-16 2011-08-25 住友電気工業株式会社 Silicon carbide insulated gate semiconductor element and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224074A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Insulated-gate semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224074A (en) * 1986-03-26 1987-10-02 Hitachi Ltd Insulated-gate semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213614A (en) * 1994-08-02 1996-08-20 Sgs Thomson Microelectron Srl Mos-technology power-device chip and package assembly
WO1999012214A1 (en) * 1997-08-29 1999-03-11 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method for manufacturing the same
US6285058B1 (en) 1997-08-29 2001-09-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device and method of manufacturing the same
JP2009509342A (en) * 2005-09-16 2009-03-05 インターナショナル レクティファイアー コーポレイション Power semiconductor devices
WO2011102254A1 (en) * 2010-02-16 2011-08-25 住友電気工業株式会社 Silicon carbide insulated gate semiconductor element and method for producing same
JP2011171374A (en) * 2010-02-16 2011-09-01 Sumitomo Electric Ind Ltd Silicon carbide insulated gate type semiconductor element and method of manufacturing the same
US8901568B2 (en) 2010-02-16 2014-12-02 Sumitomo Electric Industries, Ltd. Silicon carbide insulating gate type semiconductor device and fabrication method thereof

Also Published As

Publication number Publication date
KR920009751B1 (en) 1992-10-22
KR900019222A (en) 1990-12-24

Similar Documents

Publication Publication Date Title
JP2585331B2 (en) High breakdown voltage planar element
JP4860821B2 (en) Semiconductor device manufacturing method
US5525821A (en) PN junction trench isolation type semiconductor device
KR100415490B1 (en) Power mos element and method for producing the same
US7968941B2 (en) Semiconductor device
US5474946A (en) Reduced mask process for manufacture of MOS gated devices
US7186618B2 (en) Power transistor arrangement and method for fabricating it
JP2000156503A (en) Mos gated device and its manufacture
KR100194661B1 (en) Power transistor
JPH0216021B2 (en)
WO2006115125A1 (en) Semiconductor device and method for manufacturing same
US6030870A (en) High density MOS technology power device
US6160288A (en) Vertical type misfet having improved pressure resistance
US4816882A (en) Power MOS transistor with equipotential ring
US5396097A (en) Transistor with common base region
JPS6243549B2 (en)
US7230300B2 (en) Semiconductor device with peripheral trench
US5703389A (en) Vertical IGFET configuration having low on-resistance and method
JP3114069B2 (en) Power element having double field plate structure
JP4463888B2 (en) Insulated gate semiconductor device and manufacturing method thereof
US6127709A (en) Guard ring structure for semiconductor devices and process for manufacture thereof
JPH0237777A (en) Vertical type field-effect transistor
JP2003273127A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP3448138B2 (en) Method for manufacturing semiconductor device
JPH01292862A (en) Semiconductor device