JPS62224074A - Insulated-gate semiconductor device - Google Patents

Insulated-gate semiconductor device

Info

Publication number
JPS62224074A
JPS62224074A JP61065746A JP6574686A JPS62224074A JP S62224074 A JPS62224074 A JP S62224074A JP 61065746 A JP61065746 A JP 61065746A JP 6574686 A JP6574686 A JP 6574686A JP S62224074 A JPS62224074 A JP S62224074A
Authority
JP
Japan
Prior art keywords
layer
gate
conductive wiring
bonding pad
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61065746A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
哲郎 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61065746A priority Critical patent/JPS62224074A/en
Publication of JPS62224074A publication Critical patent/JPS62224074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4807Shape of bonding interfaces, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

PURPOSE:To reduce the chip area of a semiconductor chip by forming a bonding pad for a gate electrode for an MOSFET onto a cell forming region in the MOSFET. CONSTITUTION:A bonding pad 9 for a gate electrode is shaped onto a plurality of power MOSFETs shaped onto a substrate 1. The bonding pad 9 for the gate electrode is formed by a second layer conductive wiring (Al) 10, and one end of the second layer conductive wiring 10 is connected electrically to the gate electrodes 2 consisting of polycrystalline silicon for a plurality of the power MOSFETs. Layer insulating films 11 and a first layer conductive wiring (Al) 5 are shaped among the second layer conductive wiring 10 and the gate electrodes 2, and the first layer conductive wiring 5 functions as a source electrode for the MOSFET. Accordingly, the power MOSFET is fined while the efficiency of a chip can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート半導体装置、特に二重拡散による縦
形のパワーMO8FET(金属酸化物半導体電界効果ト
ランジスタ)の電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode structure of an insulated gate semiconductor device, particularly a double-diffused vertical power MO8FET (metal oxide semiconductor field effect transistor).

〔従来の技術〕[Conventional technology]

縦形構造のパワーMO8FETはオン抵抗R8Nが小さ
く、増幅率gmが大きくとれることにより、スイッチン
グ用や超音波応用機器の出力用として実用されている。
The power MO8FET with a vertical structure has a small on-resistance R8N and a large amplification factor gm, so it is used for switching purposes and for outputting ultrasonic application equipment.

第4図は縦形nチャネルMO8FETの一例を示し、n
’−IXV、si基体1をドレインとしてその一主表面
上にポリSiからなる絶縁ゲート2が形成され、このポ
リSiを共通のマスクとする2重拡散によって形成した
p型領域3の一部をチャネル部とするとともに、n+型
領領域4ソース領域とするセルを複数個配列し、各ソー
ス領域にA2膜5を並列に接続してその一部をソース電
極端子(ポンディングパッド)とし、ポリSiゲートに
接続したA!膜の一部6をゲート電極端子(ポンディン
グパッド)とするものである。そのことが(株)工業調
査会電子材料1981年9月p22−27に記載されて
いる。
FIG. 4 shows an example of a vertical n-channel MO8FET, with n
'-IXV, an insulated gate 2 made of poly-Si is formed on one main surface of the Si substrate 1 as a drain, and a part of the p-type region 3 is formed by double diffusion using this poly-Si as a common mask. A plurality of cells are arranged to serve as a channel part and an n+ type region 4 as a source region, and an A2 film 5 is connected in parallel to each source region, a part of which is used as a source electrode terminal (ponding pad). A connected to Si gate! A portion 6 of the film is used as a gate electrode terminal (ponding pad). This is described in Kogyo Kenkyukai Electronic Materials, September 1981, p. 22-27.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、半導体デバイスの微細化傾向によりパワーM
O8FETも5mm角のものからさらに2〜3mm角寸
法が指向され、低オン抵抗化が進む中で、ソースポンデ
ィングパッドの他、ゲートポンディングパッド下のデッ
ドスペースが相対的に太き(なりチップ効率向上を阻ん
でいる。
By the way, due to the trend toward miniaturization of semiconductor devices, the power M
O8FETs are also trending from 5 mm square to 2 to 3 mm square, and as the on-resistance is becoming lower, the dead space under the gate bonding pad as well as the source bonding pad is becoming relatively thick (as chip size increases). This is hindering efficiency improvement.

すなわち、第4図に示すように、従来は、ポンディング
パッドを含む11電極5,6は人7単層の構造であるこ
とにより、ゲートパッド(6)下ではMOSセルとのコ
ンタクトができないためこの部分にはMOSセルを配置
することができず、したがってここがデッドスペース1
5となっており、チップ寸法の微細化でこの傾向が顕著
となっている。
That is, as shown in FIG. 4, conventionally, the 11 electrodes 5 and 6 including the bonding pad have a single-layer structure, so that contact with the MOS cell cannot be made under the gate pad (6). MOS cells cannot be placed in this part, so this is dead space 1.
5, and this tendency has become more noticeable as chip dimensions become finer.

本発明は上記した問題を克服するためになされたもので
あり、その目的とするところは、パワーMO3FETの
微細化とともにチップ効率を向上することにある。
The present invention has been made to overcome the above-mentioned problems, and its purpose is to miniaturize power MO3FETs and improve chip efficiency.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔問題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、ゲート電極用ポンディングパッドを基板上に
形成した複数のパワーMO8FETの上に設ける。この
ゲート電極用ポンディングパッドは@2層目の導電性配
線(A−e”)で形成され、該第2層目の導電性配線の
一端は複数のパワーMO8FETの多結晶シリコンから
なるゲート電極に電気的に接続されている。前記@2層
目の導電性配線とゲート電極の間には眉間絶lt1膜と
第1層目の導電性配線(AA )が設けられ、前記第1
層目の導電性配線はMOSFETのソース電極として働
(。
That is, a gate electrode bonding pad is provided on a plurality of power MO8FETs formed on a substrate. This gate electrode bonding pad is formed of the second layer conductive wiring (A-e''), and one end of the second layer conductive wiring is connected to the gate electrode made of polycrystalline silicon of a plurality of power MO8FETs. Between the conductive wiring in the second layer and the gate electrode, a lt1 film and a conductive wiring in the first layer (AA) are provided.
The conductive wiring in the second layer acts as the source electrode of the MOSFET.

〔作用〕[Effect]

ゲート用ポンディングパッド下に眉間絶縁膜と第1層目
の導電性配線層とが設けられているため、このパッドか
らMO5FET形成領域までの距離が大きいという作用
でワイヤボンディング時のダメージが半導体基板上のM
OSFETに影!#すれない。それゆえ、ゲート用ポン
ディングパッド下においてもMO8FETセルを配置す
ることができ、チップの微小寸法化、及びチップ効率を
高め、オン抵抗を向上し、前記発明の目的を達成できる
Since the glabella insulating film and the first conductive wiring layer are provided under the gate bonding pad, the distance from this pad to the MO5FET formation area is large, so damage during wire bonding is less likely to occur on the semiconductor substrate. upper M
Shadow on OSFET! #I can't stand it. Therefore, the MO8FET cell can be placed even under the gate bonding pad, thereby achieving miniaturization of the chip, increasing the chip efficiency, improving the on-resistance, and achieving the object of the invention.

〔実施例〕〔Example〕

第1図は本発明の実施例を示すものであって、縦形MO
8FETの要部縦断面図である。
FIG. 1 shows an embodiment of the present invention, in which a vertical MO
It is a longitudinal cross-sectional view of the main part of 8FET.

1はn−型Si基体で、下側主面にドレイン電極との低
抵抗接続のための高濃度n+層7を形成しである。
Reference numeral 1 denotes an n-type Si substrate, on the lower main surface of which a high concentration n+ layer 7 is formed for low resistance connection with the drain electrode.

2は絶縁ゲートで基板上にうすい酸化膜を介してポIJ
 S iをデポジットしパターニングしたものである。
2 is an insulated gate that connects the poIJ through a thin oxide film on the substrate.
S i was deposited and patterned.

ポリSiゲート20表面には酸化膜8で覆われている。The surface of the poly-Si gate 20 is covered with an oxide film 8.

3は上記ポリSiゲートをマスクにアクセプタを基板に
注入拡散することにより自己整合的に形成したp型層で
ポリSiゲート直下の部分はチャネル部となる。
3 is a p-type layer formed in a self-aligned manner by implanting and diffusing an acceptor into the substrate using the poly-Si gate as a mask, and the portion immediately below the poly-Si gate becomes a channel portion.

4は同じくポリSiゲートをマスクにドナを注入拡散し
て自己整合的に形成したn+型層でソース領域となる。
Reference numeral 4 denotes an n+ type layer formed in a self-aligned manner by implanting and diffusing donors using the poly-Si gate as a mask, and serves as a source region.

5は第1層A1膜よりなるソース電極でソースのn+型
層4と、チャネル部とならないp型層とに対し低抵抗接
続し、ゲート電極の上をaうように形成される。
Reference numeral 5 denotes a source electrode made of the first layer A1 film, which is connected with low resistance to the n+ type layer 4 of the source and the p type layer which does not become a channel portion, and is formed so as to extend over the gate electrode.

9は第2層A4膜よりなるゲート電極端子(ボンディン
グ・パッド)、10は第2層A4膜よりなるソース電極
端子であって、一部層間膜(プラズマSin、、PSG
、5OG)11を介して第2層A7膜の上に形成され、
スルーホールを通じてポリSiゲート、ソース電極に接
続される。
Reference numeral 9 denotes a gate electrode terminal (bonding pad) made of a second layer A4 film, and 10 a source electrode terminal made of a second layer A4 film.
, 5OG) formed on the second layer A7 film via 11,
It is connected to the poly-Si gate and source electrode through a through hole.

12.13はワイヤボンディングされたAuポールであ
る。14はパックベイジョン(保護絶縁膜)であって、
パッド部分を除(第2層A!膜の上をaZている。
12 and 13 are wire-bonded Au poles. 14 is a pack vasion (protective insulating film),
Excluding the pad part (second layer A! The top of the film is aZ.

第2図は縦形MO8FETの電極端子の配置を示す平面
図である。
FIG. 2 is a plan view showing the arrangement of electrode terminals of a vertical MO8FET.

5はソース側ポンディングパッドとなる第2層A!膜、
6はゲート側ポンディングパッドとなる第2層A4膜で
ある。
5 is the second layer A which becomes the source side bonding pad! film,
6 is a second layer A4 film which becomes a gate side bonding pad.

15は層間膜にあげたゲートとの接続部分(スルーホー
ル)の位置を示す。
Reference numeral 15 indicates the position of the connection portion (through hole) with the gate provided in the interlayer film.

16はソース電極取出しのためのコンタクトホールの位
置を示す。
16 indicates the position of a contact hole for taking out the source electrode.

以上実施例で述べた本発明によれば下記の効果が期待さ
れる。
According to the present invention described in the examples above, the following effects are expected.

(1>  A7配線膜を2層構造にしてソース電極とポ
ンディングパッド部分とを別にしたことによりゲート用
パッド直下にもMOSFETのセルを形成することが可
能となり、したがってデッドスペースをなくし、チップ
効率(単位チップ面積当りアクティブ領域面積)を高め
ることができる。たとえば、5.0IIIIm角相当の
チップでチップ効率を77%から88%へ向上できる。
(1> By making the A7 wiring film a two-layer structure and separating the source electrode and the bonding pad part, it is possible to form a MOSFET cell directly under the gate pad, thereby eliminating dead space and improving chip efficiency. (Active region area per unit chip area) can be increased.For example, chip efficiency can be improved from 77% to 88% with a chip equivalent to 5.0m square.

(2)上記(1)にともない、MOSFETのオン抵抗
を12%程度向上することができる。
(2) According to (1) above, the on-resistance of the MOSFET can be improved by about 12%.

(31A42層構造ではIC配線仕様に準じA)膜厚は
1層分で1/2に低減でき微細加工が可能となる。
(For 31A42 layer structure, according to IC wiring specifications A) The film thickness can be reduced to 1/2 by one layer, allowing fine processing.

上記のような発明の効果が得られる理由をさらに詳述す
ると下記のとおりである。
The reason why the above-mentioned effects of the invention can be obtained is as follows.

53IIll角相当のチップでは電流容量が3OAと大
きいため、ボンディングのためのA2ワイヤを500μ
mφと太くする必要がある。このため、パッド面積もゲ
ート、ソース両方で2.7〜3.311112と大きく
なり、2r11T&2角チツプ相当の面積が必要となる
。本発明のようにソース・ゲートパッド下の全面にセル
を配置できる構造とすることで、デッドスペースとなっ
た部分のセルがオン抵抗に寄与することになり、12〜
15%オン抵抗を低減できる。
Since the current capacity of a chip equivalent to 53IIll square is as large as 3OA, the A2 wire for bonding is 500μ
It is necessary to make it as thick as mφ. Therefore, the pad area for both the gate and the source increases to 2.7 to 3.311112, and an area equivalent to a 2r11T&2 square chip is required. By adopting a structure in which cells can be placed over the entire surface under the source and gate pads as in the present invention, the cells in the dead space contribute to the on-resistance.
On-resistance can be reduced by 15%.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で極々変更可
能である。
Although the invention made by the present inventor has been specifically described above based on examples, the present invention is not limited to the above-mentioned examples, and can be modified to a large extent without departing from the gist thereof.

たとえば、ソース用パッドとなる第2層A2膜とソース
電極第1層A4膜とは全面的に接続することができるが
、@3図に示すようにゲート2上で眉間絶縁膜11を残
存させることにより、ワイヤボンディングの際の衝撃を
この層間絶縁膜により緩和しゲート絶縁膜の破壊を防止
することができる。
For example, the second layer A2 film serving as the source pad and the source electrode first layer A4 film can be connected across the entire surface, but as shown in Figure @3, the eyebrow insulating film 11 remains on the gate 2. As a result, the impact during wire bonding can be alleviated by the interlayer insulating film, and breakdown of the gate insulating film can be prevented.

本発明は縦形パワーMO3FETの全てに適用すること
ができる。
The present invention can be applied to all vertical power MO3FETs.

本発明は特にチップ寸法が3.Q!1m角以下1オン抵
抗が50mΩ以下の超低オン抵抗パワーMO3FE、T
に応用した場合に最も効果を奏するものである。
In particular, the present invention has a chip size of 3. Q! Ultra-low on-resistance power MO3FE, T with an on-resistance of 50mΩ or less under 1m square
It is most effective when applied to.

〔発明の効果〕〔Effect of the invention〕

本願によって開示された発明のうち代表的なものにより
て得られる効果を簡単に説明すれば下記のとおりである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

MOSFETのセル形成領域上に該MO8FETのゲー
ト電極用ポンディングパッドを設けることにより、ゲー
ト電極用ポンディングパッド形成のために必要な占有面
積を縮少できるという作用で、°半導体チップのチップ
面積を縮少できる。 、
By providing a bonding pad for the gate electrode of the MO8FET on the cell formation area of the MOSFET, the area required for forming the bonding pad for the gate electrode can be reduced, thereby reducing the chip area of the semiconductor chip. Can be reduced. ,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦形MO8FETの要
部断面図である。 第2図は本発明の一実施例を示す縦形MO8FETの全
体平面図である。 第3図は本発明の他の実施例を示すMOSFETの一部
断面図である。 第4図はこれまでの縦形MO8FETの一例を示す要部
断面図である。 1・・・Si基体(ドレイン)、2・・・ポリSiゲー
ト、3・・・p型拡散層、4・・・n+型型数散層ソー
ス)、5.6・・・第1層人!電極、7・・・n+層、
8・・・酸化膜、9・・・W、2層A!膜(ゲート用ポ
ンプイングツくラド)、10・・・第2層A2膜(ソー
ス用ポンディングパッド)、11・・・層間絶縁膜、1
2.13・・・ボンディングワイヤ、14・・・パッシ
ベイション、15・・・デッドスペース。
FIG. 1 is a sectional view of a main part of a vertical MO8FET showing an embodiment of the present invention. FIG. 2 is an overall plan view of a vertical MO8FET showing an embodiment of the present invention. FIG. 3 is a partial sectional view of a MOSFET showing another embodiment of the present invention. FIG. 4 is a sectional view of a main part of an example of a conventional vertical MO8FET. DESCRIPTION OF SYMBOLS 1...Si base (drain), 2...Poly-Si gate, 3...p-type diffusion layer, 4...n+ type scattering layer source), 5.6...1st layer layer ! electrode, 7...n+ layer,
8...Oxide film, 9...W, 2 layers A! Film (pumping pad for gate), 10... Second layer A2 film (pumping pad for source), 11... Interlayer insulating film, 1
2.13... Bonding wire, 14... Passivation, 15... Dead space.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基体の一主表面に設けられた複数の絶縁ゲー
ト電界効果トランジスタを有し、前記複数の絶縁ゲート
電界効果トランジスタのゲート電極用ワイヤボンディン
グパッドが前記複数の絶縁ゲート電界効果トランジスタ
上に設けられていることを特徴とする絶縁ゲート半導体
装置。
1. A plurality of insulated gate field effect transistors are provided on one main surface of a semiconductor substrate, and wire bonding pads for gate electrodes of the plurality of insulated gate field effect transistors are provided on the plurality of insulated gate field effect transistors. An insulated gate semiconductor device characterized in that:
JP61065746A 1986-03-26 1986-03-26 Insulated-gate semiconductor device Pending JPS62224074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065746A JPS62224074A (en) 1986-03-26 1986-03-26 Insulated-gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065746A JPS62224074A (en) 1986-03-26 1986-03-26 Insulated-gate semiconductor device

Publications (1)

Publication Number Publication Date
JPS62224074A true JPS62224074A (en) 1987-10-02

Family

ID=13295890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065746A Pending JPS62224074A (en) 1986-03-26 1986-03-26 Insulated-gate semiconductor device

Country Status (1)

Country Link
JP (1) JPS62224074A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290265A (en) * 1988-05-18 1989-11-22 Fuji Electric Co Ltd Mos type semiconductor device
JPH01292862A (en) * 1988-05-20 1989-11-27 Toshiba Corp Semiconductor device
JPH0394472A (en) * 1989-09-06 1991-04-19 Matsushita Electron Corp Vertical type mos field-effect transistor
JP2005150348A (en) * 2003-11-14 2005-06-09 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005294872A (en) * 2005-07-05 2005-10-20 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2009105177A (en) * 2007-10-23 2009-05-14 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2012064899A (en) * 2010-09-17 2012-03-29 Toshiba Corp Semiconductor device and method of manufacturing the same
EP3644363A1 (en) * 2013-11-28 2020-04-29 Rohm Co., Ltd. Semiconductor device
JP2022527399A (en) * 2019-04-11 2022-06-01 ウルフスピード インコーポレイテッド Transistor semiconductor die with increased working area

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290265A (en) * 1988-05-18 1989-11-22 Fuji Electric Co Ltd Mos type semiconductor device
JPH01292862A (en) * 1988-05-20 1989-11-27 Toshiba Corp Semiconductor device
JPH0394472A (en) * 1989-09-06 1991-04-19 Matsushita Electron Corp Vertical type mos field-effect transistor
JP2005150348A (en) * 2003-11-14 2005-06-09 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005294872A (en) * 2005-07-05 2005-10-20 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2009105177A (en) * 2007-10-23 2009-05-14 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2012064899A (en) * 2010-09-17 2012-03-29 Toshiba Corp Semiconductor device and method of manufacturing the same
EP3644363A1 (en) * 2013-11-28 2020-04-29 Rohm Co., Ltd. Semiconductor device
US10886300B2 (en) 2013-11-28 2021-01-05 Rohm Co., Ltd. Semiconductor device
US11367738B2 (en) 2013-11-28 2022-06-21 Rohm Co., Ltd. Semiconductor device
US11908868B2 (en) 2013-11-28 2024-02-20 Rohm Co., Ltd. Semiconductor device
JP2022527399A (en) * 2019-04-11 2022-06-01 ウルフスピード インコーポレイテッド Transistor semiconductor die with increased working area

Similar Documents

Publication Publication Date Title
TWI482281B (en) Vertical discrete devices with trench contacts and associated methods of manufacturing
US8294208B2 (en) Semiconductor device having a gate contact on one surface electrically connected to a gate bus on an opposing surface
US6897561B2 (en) Semiconductor power device having a diamond shaped metal interconnect scheme
US7391093B2 (en) Semiconductor device with a guard-ring structure and a field plate formed of polycrystalline silicon film embedded in an insulating film
US5523599A (en) High voltage MIS field effect transistor
US5633525A (en) Lateral field effect transistor
EP0494597A1 (en) Trench-gate power semiconductor device
CN100380679C (en) Chip-scale schottky device
US20090072369A1 (en) Semiconductor device
JPS62224074A (en) Insulated-gate semiconductor device
CN101223644A (en) Semiconductor device
US7385273B2 (en) Power semiconductor device
JP4025063B2 (en) Semiconductor device
JP3489404B2 (en) Insulated gate semiconductor device
US5475243A (en) Semiconductor device including an IGBT and a current-regenerative diode
US20220037524A1 (en) Transistor semiconductor die with increased active area
JP2007281512A (en) Semiconductor device
JP2003101025A (en) Semiconductor device
JP2809998B2 (en) Power MOS device chip and package assembly
JP2001267569A (en) Thin barrier metal for active electrode of mos gate device
JP2004281524A (en) Semiconductor device
JPH10107061A (en) Semiconductor integrated circuit device
US20080036070A1 (en) Bond Wireless Package
JP2003069015A (en) Semiconductor device
JPH0555588A (en) Multi-chip type mos field-effect transistor