JPH0255605A - Manufacture of very thick steel plate of excellent internal quality - Google Patents

Manufacture of very thick steel plate of excellent internal quality

Info

Publication number
JPH0255605A
JPH0255605A JP20386988A JP20386988A JPH0255605A JP H0255605 A JPH0255605 A JP H0255605A JP 20386988 A JP20386988 A JP 20386988A JP 20386988 A JP20386988 A JP 20386988A JP H0255605 A JPH0255605 A JP H0255605A
Authority
JP
Japan
Prior art keywords
rolling
thickness
passes
roll
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20386988A
Other languages
Japanese (ja)
Other versions
JPH0669569B2 (en
Inventor
Kouji Kutogi
久冨木 行治
Yoshifumi Usui
臼井 美文
Yutaka Kurashige
倉繁 裕
Takuzo Kako
卓三 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63203869A priority Critical patent/JPH0669569B2/en
Publication of JPH0255605A publication Critical patent/JPH0255605A/en
Publication of JPH0669569B2 publication Critical patent/JPH0669569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To effectively reduce UST defects by performing plural rolling passes by setting finish rolling speeds in a specific speed range and drafting a stock in the casting thickness direction by a shape ratio not less than a specific value for all the rolling passes. CONSTITUTION:A billet is subjected to width spread rolling in rough rolling stages and then is rolled to have a product thickness in finish rolling stages. In finish rolling stages, plural rolling passes are performed at a rolling speed in 200-350mm/sec and the billet is drafted in the thickness direction by a rolling shape ratio M (roll projected contact length/average sheet thickness between roll gap) of >=0.5 for all the passes. An equivalent diameter of a center porosity and a billet thickness before rolling are denoted by d0 and h0, respectively; the d0 is changed to an equivalent diameter dk after K passes and delta shows a pressure welding progressing degree by plastic deformation of the stock. Progressing degrees are proportional to drafting capability of a rolling roll and plastic deformation progresses with a contacting time of a rolled stock with a roll, so that low speed rolling is effective in this method. Hence, UST defects in the steel are sheet effectively reduced by a combination of the low speed rolling with large drafting rolling and a very thick steel plate are easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被圧延材が連続鋳造法による鋳片である製品板
厚80龍以上の極厚鋼板の圧延方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rolling an extra-thick steel plate having a product thickness of 80 mm or more, in which the material to be rolled is a slab produced by a continuous casting method.

〔従来技術〕[Prior art]

従来、連続鋳造で得られる鋳片は最終凝固位置が鋳片中
央部であるため、その鋳片中央部には連続鋳造特有の中
心偏析およびセンターポロシティが不可避である。特に
センターポロシティは微小な空隙であり、圧延工程で圧
着されないと製品の出荷検査ではUST欠陥で不合格と
なる。現在の連続鋳造法では鋳片厚300龍程度まで可
能となっているが、センターポロシティを完全圧着する
ためには、圧延工程での圧下を充分に加える必要がある
。製品板厚80mm以上の連続鋳造法で得られる鋳片で
は十分な圧下が不可能でありUST欠陥のない製品を製
造することはできない。そのために従来技術での極厚鋼
板の製造法では、特開昭62151201号公報および
特公昭62−13083号公報に示されているように、
被圧延材は、鋼塊法による被圧延材を用いている。
Conventionally, the final solidification position of slabs obtained by continuous casting is at the center of the slab, so center segregation and center porosity, which are unique to continuous casting, are unavoidable at the center of the slab. In particular, center porosity is a minute void, and if it is not crimped during the rolling process, the product will fail the shipping inspection due to a UST defect. Current continuous casting methods allow slab thicknesses up to approximately 300 mm, but in order to completely compress the center porosity, it is necessary to apply sufficient reduction during the rolling process. A slab obtained by continuous casting with a product plate thickness of 80 mm or more cannot be sufficiently rolled down, making it impossible to manufacture a product free of UST defects. For this reason, in the conventional method of manufacturing extra-thick steel plates, as shown in Japanese Patent Application Laid-Open No. 62151201 and Japanese Patent Publication No. 62-13083,
The material to be rolled is a material rolled by the steel ingot method.

このような従来技術での課題は、鋼塊法による製造原価
が連続鋳造法によるものと比較して鋼材トン当り数千円
コスト高になるので、コスト的に不利になる点があげら
れる。
A problem with such conventional techniques is that the production cost using the steel ingot method is several thousand yen higher per ton of steel material than that using the continuous casting method, which is disadvantageous in terms of cost.

一方連続鋳造法による鋳片を用いて極厚鋼板を製造する
方法では特公昭62−54561号公報で開示している
ように“厚板圧延機のミルライン入側に被圧延素材をそ
の肉厚の向きに圧下する鍛造プレスを配置してなる厚板
圧延設備”があり、連続鋳造法による鋳片において、U
ST欠陥を考慮した場合には鍛造プレスを用いない極厚
鋼板の製造が不可能であることを示唆している。
On the other hand, in the method of manufacturing extra-thick steel plates using slabs produced by the continuous casting method, as disclosed in Japanese Patent Publication No. 62-54561, ``The material to be rolled is placed on the inlet side of the mill line of a thick plate rolling mill to reduce its wall thickness. There is a "thick plate rolling equipment" which is equipped with a forging press that rolls down in the direction of U.
This suggests that it is impossible to manufacture extra-thick steel plates without using a forging press when ST defects are taken into account.

このような鍛造プレス設備の課題は、ロールを有する圧
延設備に比べると具入な設備費用が必要であり電力等の
用役コストも高い点があげられる。
The problem with such forging press equipment is that compared to rolling equipment having rolls, it requires more expensive equipment and has higher utility costs such as electric power.

上記のような従来技術の課題を解決するために、設備投
資を必要としない手法として、特開昭61−23840
4号公報で示すように“表面と中心部に400℃以上の
温度差を設けた鋼材を形状比(長さ方向有効接触長さ(
鶴)/厚み(鶴))≧0.5で厚さ方向及び/又は幅方
向に圧下を加えることを特徴とする鋼材の熱間加工方法
”がある。か\る技術の課題は鍛造プレスの設備投資が
不要であるというメリットのある反面、“表面と中心部
に400”C以上の温度差を設けた鋼材”という面で (1)連続鋳造法で得られる鋳片の表面と中心部に40
0℃以上の温度差を設けるために、鋳片の表面に水冷が
必要となり、熱量原単位のロスが大きくなる。
In order to solve the above-mentioned problems of the conventional technology, Japanese Patent Application Laid-Open No. 61-23840 is proposed as a method that does not require capital investment.
As shown in Publication No. 4, "Steel materials with a temperature difference of 400°C or more between the surface and the center have a shape ratio (longitudinal effective contact length (
There is a "hot working method for steel materials" which is characterized by applying a reduction in the thickness direction and/or width direction at a ratio of 0.5 to 0.5. On the one hand, it has the advantage of not requiring capital investment, but on the other hand, it is a steel material with a temperature difference of 400"C or more between the surface and the center." 40
In order to provide a temperature difference of 0° C. or more, water cooling is required on the surface of the slab, which increases the loss in unit heat consumption.

(2)鋳片の表面が中心部に対して400 t:以上の
低い状態で形状比0.5以上の大圧下圧延をするために
は、圧延機での圧延能力は、通常の圧延に比べて数倍を
要する。そのため、圧延機の能力増強という大きな設備
投資が必要である。
(2) In order to perform large reduction rolling with a shape ratio of 0.5 or more when the surface of the slab is 400 t: or more lower than the center, the rolling capacity of the rolling mill must be higher than that of normal rolling. It takes several times more. Therefore, a large capital investment is required to increase the capacity of the rolling mill.

という問題点がある。There is a problem.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

本発明は連続鋳造法により極厚鋼板を製造する方法にお
いて、上記のような従来技術の課題、即ち、製造方法に
よるコスト高、又は多額な設備投資を解決するものであ
る。
The present invention solves the above-mentioned problems of the prior art in a method of manufacturing extra-thick steel plates by continuous casting, that is, high costs and large capital investments due to the manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の従来技術の課題を有利に解決するもので
あって以下の特徴よりなるものである。
The present invention advantageously solves the problems of the prior art described above and has the following features.

即ち、 連続鋳造法による鋳片を粗圧延工程で幅出し圧延を行い
、さらに仕上げ圧延工程で製品厚みまで圧延する極厚鋼
板の製造方法において、上記仕上げ圧延工程で圧延速度
を200〜350龍/secで複数パス圧延することを
特徴とし、更に上記パス圧延の全てを0.5以上の形状
比により鋳片厚さ方向に圧下を加えることを特徴とする
ものである。
That is, in a method for manufacturing an extra-thick steel plate in which a continuous casting slab is tentered in a rough rolling process and further rolled to the product thickness in a finish rolling process, the rolling speed is set at a rolling speed of 200 to 350 R/min in the finish rolling process. The method is characterized in that a plurality of passes are rolled at sec, and further, in all of the above-mentioned passes, reduction is applied in the thickness direction of the slab with a shape ratio of 0.5 or more.

以下、本発明の内容について具体的に説明する。Hereinafter, the content of the present invention will be specifically explained.

連続鋳造法により鋳片(鋳片厚300韮程度)を製造し
その後、加熱炉で加熱したのち、または直接粗圧延機に
て圧延を行う。この粗圧延機による圧延は主に幅出し圧
延をするためであり複数パス圧延を行い、被圧延材の厚
みを製品板厚(例、100〜150鶴)の1.5〜2倍
程度(例、200〜250層層程度)とする。その後、
仕上げ圧延機で複数パス圧延で製品厚まで圧延を行うわ
けであるが、その際ロールの回転速度は200〜350
1m/secの低速圧延が必要である。このような低速
圧延を行うためには、仕上げ圧延機のバックアップロー
ル軸受は、−船釣なモーボイル式油膜軸受であると、軸
受の油膜形成が困難となり、油膜焼付けが生じるため、
耐荷重性能のすぐれたころがり軸受が最も好ましい。ロ
ールの回転速度が200i+■/sec未満であると、
被圧延材とロールとの接触時間が長くなって、−船釣な
圧延ロールではロール自身に熱負荷によるヒートクラッ
ク・肌荒れが生じやすくなるのでロールの回転速度の下
限を200關/secとする。また、ロール回転速度が
350In/secを越えると低速圧延の効果を得るこ
とができず、例えば電子力機器化学プラント用圧力容器
で強度50〜80 kg / +n 2クラスの圧延を
行った際仕上げ圧延機のロールの回転速度を350mm
/sec超えると、形状比を多く (1〜3程度)とっ
ても製品にUST欠陥が生じる。従って仕上げ圧延機の
ロールの回転速度の上限は350mm/secとする。
A slab (slab thickness of about 300 mm) is produced by a continuous casting method, and then heated in a heating furnace or directly rolled in a rough rolling mill. Rolling by this rough rolling mill is mainly for tentering rolling, and multiple passes are rolled, and the thickness of the rolled material is approximately 1.5 to 2 times the product plate thickness (e.g., 100 to 150 Tsuru). , about 200 to 250 layers). after that,
The finish rolling mill performs multiple passes of rolling to reach the product thickness, and the rotational speed of the rolls is 200 to 350.
Low speed rolling of 1 m/sec is required. In order to carry out such low-speed rolling, the backup roll bearings in the finishing rolling mill must be motorized oil film bearings.
Rolling bearings with excellent load-bearing performance are most preferred. When the rotational speed of the roll is less than 200i+■/sec,
The contact time between the material to be rolled and the roll becomes long, and the roll itself tends to suffer from heat cracks and rough skin due to heat load when using a rolling roll, so the lower limit of the rotational speed of the roll is set to 200/sec. In addition, if the roll rotation speed exceeds 350 In/sec, the effect of low-speed rolling cannot be obtained, and for example, when rolling with a strength of 50 to 80 kg/+n 2 class is performed in a pressure vessel for an electronic power equipment chemical plant, finishing rolling may be difficult. The rotation speed of the roll of the machine is 350mm.
/sec, UST defects will occur in the product even if the shape ratio is increased (approximately 1 to 3). Therefore, the upper limit of the rotation speed of the rolls of the finishing rolling mill is set to 350 mm/sec.

こ\で仕上げ圧延機での低速圧延の必要性について更に
説明する。圧延工程で複数パス圧延をするにつれて、セ
ンターポロシティは徐々に小さくなり圧着するまでに到
るのが最も望ましいことであるが、センターポロシティ
が徐々に小さくなる際センターポロシティ回りは圧延ロ
ールからの荷重を受けて塑性変形が行われる。この塑性
変形の進行によって、センターポロシティが効率よく圧
着されるのである。
Here, we will further explain the necessity of low speed rolling in the finish rolling mill. As multiple passes are rolled in the rolling process, it is most desirable that the center porosity gradually decreases to the point where it is crimped. However, as the center porosity gradually decreases, the load from the rolling rolls should be reduced around the center porosity. As a result, plastic deformation occurs. As this plastic deformation progresses, the center porosity is efficiently compressed.

前述の塑性変形の進行は、圧延ロールの圧下能力に比例
し、または圧延ロールの圧下能力が同じ場合、被圧延材
とロールとの接触時間が長いほど進行する。このように
圧延ロールの圧下能力を増強しないでセンターポロシテ
ィを効率よく小さくしながら圧着させるためには、被圧
延材とロールとの接触時間を大きくする手法として低速
圧延が極めて有効である。
The progress of the plastic deformation described above is proportional to the rolling capacity of the rolling rolls, or when the rolling capacity of the rolling rolls is the same, the progress of the plastic deformation increases as the contact time between the rolled material and the rolls increases. In order to efficiently reduce the center porosity while crimping the material without increasing the rolling capacity of the rolling rolls, low-speed rolling is extremely effective as a method of increasing the contact time between the material to be rolled and the rolls.

次に本発明の他の特徴である仕上げ圧延機での大圧下圧
延について説明する。即ち、本発明では大圧下圧延の指
標として圧延形状比(M、)を低速圧延の条件のもとで
制限する。各パス毎の圧延形状比M、は M、=1d/hI11 Mi ;圧延形状比 ld ;ロール投影接触長さ く鰭) hm  ;ロール間隙内平均板厚(鶴)R:ロール径 
      (龍) h、:板厚<i=0.1.2・・・) (ho  ;圧延油板厚) (h、;圧延後iパス後の板厚) i ;圧延パス数 であって、この圧延形状比M8の全てが0.5未満であ
ると、仕上げ圧延工程ではセンターポロシティが板厚の
減少に比例して小さくなるが、複数パスを多くしても圧
着には到らない。その理由は鋼材中心部に引張応力が作
用し圧縮応力が全く作用しないため複数パスを多くして
もセンターポロシティの圧着に及ばないからである。こ
のため圧延形状比M、の下限を0.5とする。一方、圧
延形状比Mlの上限は、現状での連続鋳造法で製造可能
な鋳片厚は300〜350■膳程度、極厚鋼板の製品厚
100〜2001m゛を考慮すると3程度である。
Next, large reduction rolling in a finish rolling mill, which is another feature of the present invention, will be explained. That is, in the present invention, the rolling shape ratio (M,) is limited under the conditions of low speed rolling as an index of high reduction rolling. Rolling shape ratio M for each pass is M, = 1d/hI11 Mi ; Rolling shape ratio ld ; Roll projected contact length (fin) hm ; Average sheet thickness in roll gap (crane) R: Roll diameter
(Dragon) h,: plate thickness < i = 0.1.2...) (ho: rolling oil plate thickness) (h,: plate thickness after i passes after rolling) i: number of rolling passes, If all of the rolling shape ratios M8 are less than 0.5, the center porosity decreases in proportion to the decrease in plate thickness in the finish rolling process, but crimping is not achieved even if the number of passes is increased. The reason for this is that tensile stress acts on the center of the steel material and no compressive stress acts on it, so even if the number of passes is increased, it is not enough to crimp the center porosity. Therefore, the lower limit of the rolling shape ratio M is set to 0.5. On the other hand, the upper limit of the rolling shape ratio Ml is about 3, considering that the thickness of the slab that can be manufactured by the current continuous casting method is about 300 to 350 mm, and the product thickness of extra-thick steel plate is 100 to 2001 mm.

次に本発明における特徴である低速圧延と大圧下圧延と
の基本技術の組合せで、連続鋳造法の鋳片内部にあるセ
ンターポロシティを圧着するにいたった技術内容を詳細
に説明する。連続鋳造法による鋳片で圧延前のセンター
ポロシティの等価直径をdo、Kパス圧延後のセンター
ポロシティの等価直径をdKとすると、d*/doは、
f (Mi) ;ポロシティ圧縮応力関数g (Vi)
 ;ポロシティ圧着速度影響係数i  ;圧延パス数(
1,・・・K) ho  ;圧延前の厚さ(1膳) hK   i圧延後の厚さ(、m) である。ただし、M= < 0.5 m/sec 、 
V 、 ’;=0.5m/secのとき(2)式は dx / do #hx / ha         
 (3)となる。第1図は圧延前後のセンターポロシテ
ィ形状を示す図である。第1図(a)は圧延前のセンタ
ーポロシティを示し、等価直径dll、鋳片厚h0であ
る。第1図(b)はにパス圧延後のセンターポロシティ
を示し等価直径dKでδは、であって、低速圧延および
大圧下圧延によって、ロールと被圧延材との接触する長
さ、接触する時間を大きくとったために生じる、材質の
塑性変形による圧着進行度合を示すものである。
Next, we will explain in detail the technical content of crimping the center porosity inside the slab in the continuous casting method by combining the basic techniques of low-speed rolling and high-reduction rolling, which are the characteristics of the present invention. If the equivalent diameter of the center porosity before rolling of a continuous casting slab is do, and the equivalent diameter of the center porosity after K-pass rolling is dK, then d*/do is:
f (Mi); porosity compressive stress function g (Vi)
; Porosity crimping speed influence coefficient i ; Number of rolling passes (
1,...K) ho ; Thickness before rolling (1 plate) hK i Thickness after rolling (, m). However, M=<0.5 m/sec,
When V,';=0.5m/sec, equation (2) is dx/do #hx/ha
(3) becomes. FIG. 1 is a diagram showing the center porosity shape before and after rolling. FIG. 1(a) shows the center porosity before rolling, where the equivalent diameter is dll and the slab thickness is h0. Fig. 1(b) shows the center porosity after pass rolling, and the equivalent diameter dK is δ, which is the contact length and contact time between the roll and the rolled material due to low speed rolling and large reduction rolling. This shows the degree of crimping progress due to plastic deformation of the material, which occurs due to a large value.

通常、圧延速度が0.5m/sec以上ではδ−〇とな
り、(3)式に示すように圧延前後のセンターポロシテ
ィの等偏置径比dK/doは圧延前後の被圧延材の厚み
比hK/hoに等しいため、理論的にはセンターポロシ
ティの圧着による消失はできない。本発明の特徴である
低速圧延および大圧下圧延によるセンターポロシティの
圧着効果について(2)式の内容を説明する。
Normally, when the rolling speed is 0.5 m/sec or more, δ-〇, and as shown in equation (3), the equidistant diameter ratio dK/do of the center porosity before and after rolling is the thickness ratio hK of the rolled material before and after rolling. /ho, so theoretically the center porosity cannot be eliminated by compression. The content of equation (2) will be explained regarding the center porosity crimping effect due to low speed rolling and large reduction rolling, which are the characteristics of the present invention.

第2図は圧延形状比M、とポロシティ圧力応力間数f 
(M、)との関係を示す図であるが、両者は以下の式(
5)により関係ずけられる。
Figure 2 shows the rolling shape ratio M, and the porosity pressure stress number f.
(M,), both of which are expressed by the following equation (
5).

f(員t)=aM、” +bM□+c       (
5)以上の式より、ポロシティ圧力応力関数f (M、
)は圧延形状比M、の増加関数であり、1パスの圧下が
小さく、M+<0.4の領域では圧延形状比によるポロ
シティ圧縮効果は非常に小さく、f(Mi)=0 となる。
f (member t)=aM,” +bM□+c (
5) From the above formula, the porosity pressure stress function f (M,
) is an increasing function of the rolling shape ratio M, where the rolling reduction in one pass is small and in the region of M+<0.4, the porosity compression effect due to the rolling shape ratio is very small, and f(Mi)=0.

第3図は圧延速度V、とポロシティ圧着速度影響係数g
 (Vi)との関係を示す図であるが、両者は式(6)
により関係ずけられる。
Figure 3 shows rolling speed V and porosity crimping speed influence coefficient g
(Vi), both of which are expressed by equation (6).
It is related to

バ ポロシティ厚みは歪速度の減少に伴ない縮小し、また、
圧着時間の増加に伴ないポロシティ内面の接合が促進す
る。即ち、ポロシティ圧着速度影響係数g (Vi)は
圧延速度V、の減少関数として表わされる。また、この
低速効果g(Vi)は、大圧下効果f (ML)との相
乗効果としてポロシティ圧着を促進し、圧延形状比の小
さい領域では、低速効果は小さい。
Vaporosity thickness decreases with decreasing strain rate, and
Bonding of the porosity inner surface is promoted as the crimping time increases. That is, the porosity crimping speed influence coefficient g (Vi) is expressed as a decreasing function of the rolling speed V. Further, this low speed effect g(Vi) promotes porosity crimping as a synergistic effect with the large rolling effect f (ML), and the low speed effect is small in a region where the rolling shape ratio is small.

第7図は圧延形状比M!0.5の場合(本発明の場合)
の圧延速度と残存ポロシティ厚さ比dK/d0の関係を
示す。圧延速度0.35m/see以下で残存ポロシテ
ィ厚さdKはOとなり、大圧下効果f (Mi)と低速
効果g (Vi)の相乗効果を顕著に表わしている。
Figure 7 shows the rolled shape ratio M! In the case of 0.5 (in the case of the present invention)
The relationship between the rolling speed and the residual porosity thickness ratio dK/d0 is shown. At a rolling speed of 0.35 m/see or less, the residual porosity thickness dK becomes O, which clearly represents the synergistic effect of the large rolling effect f (Mi) and the low speed effect g (Vi).

即ち、式(4)の正当性を具体的に表示しているもので
ある。
That is, it specifically indicates the validity of equation (4).

〔実施例〕〔Example〕

(1)スラブ厚300■lの連続鋳造普通鋼鋳片を粗圧
延機に通して幅出し圧延を行い、次いで仕上圧延機に通
して900℃の温度で仕上圧延を行った。
(1) Continuously cast common steel slabs having a slab thickness of 300 μl were passed through a rough rolling mill for tenter rolling, and then passed through a finishing mill for finishing rolling at a temperature of 900°C.

成品圧延サイズは1200 (厚さ) X2800 (
幅)(龍)であった。仕上圧延速度は本発明の方法では
300mmlsecであり、比較例では2000mm/
secであった。
The rolled product size is 1200 (thickness) x 2800 (
width) (dragon). The finish rolling speed is 300 mm/sec in the method of the present invention, and 2000 mm/sec in the comparative example.
It was sec.

この結果を板厚と圧延形状比との関係で第4図に示す。The results are shown in FIG. 4 in terms of the relationship between plate thickness and rolling shape ratio.

これによれば、本発明の方法は比較例に比べ1パス当り
の圧延形状比を大きく取ることが可能であり、低速圧延
効果と相まって、優れた内部性状の圧延成品が得られた
According to this, the method of the present invention was able to obtain a larger rolling shape ratio per pass than the comparative example, and in combination with the low speed rolling effect, a rolled product with excellent internal properties was obtained.

(2)スラブ厚300龍の連続鋳造特殊鋼(海構材のよ
うな低温靭性[)鋳片を粗圧延機に通して幅出し圧延を
行い、次いで仕上圧延機に通して750℃の温度で仕上
圧延を行った。成品圧延サイズは100(厚さ)X25
00 (幅)(鶴)であった。仕上圧延速度は本発明の
方法では300mm/secであり、比較例では200
011/secであった。
(2) Continuously cast special steel slabs with a slab thickness of 300 mm (low-temperature toughness like marine construction materials) are passed through a rough rolling mill for tentering rolling, and then passed through a finishing mill at a temperature of 750°C. Finish rolling was performed. Finished product rolling size is 100 (thickness) x 25
It was 00 (width) (crane). The finish rolling speed is 300 mm/sec in the method of the present invention, and 200 mm/sec in the comparative example.
011/sec.

この結果を板厚と圧延形状比との関係で第5図に示す。The results are shown in FIG. 5 in terms of the relationship between plate thickness and rolling shape ratio.

本発明の材料は制御圧延を行う必要から圧延温度が低く
、大圧下圧延を行うには不利な方向にあるが、実施例1
の一般圧延と同様、比較例に比べlパス当りの圧延形状
比を大きく取ることが可能であり、低速圧延効果と相ま
って優れた内部性状の圧延成品が得られた。
The material of the present invention has a low rolling temperature due to the need for controlled rolling, which is disadvantageous for large reduction rolling, but Example 1
As with the general rolling, it was possible to increase the rolling shape ratio per pass compared to the comparative example, and in combination with the low speed rolling effect, a rolled product with excellent internal properties was obtained.

即ち、本実施例の内部性状を比較例とともに第6図に示
す。本発明の比較例との圧延条件は次の通りであった。
That is, the internal properties of this example are shown in FIG. 6 together with a comparative example. The rolling conditions for the comparative example of the present invention were as follows.

上記図は本発明の低速圧延の効果及び低速圧延と大圧下
圧延との組合せの相乗効果を表わしており、本発明が鋼
板内のUST欠陥の低減に如何に有効であるかを示して
いる。
The above figure shows the effect of low speed rolling of the present invention and the synergistic effect of the combination of low speed rolling and high reduction rolling, and shows how effective the present invention is in reducing UST defects in steel sheets.

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明は仕上圧延時の低速圧延及び大圧
下圧延との組合せにより鋼板内のUST欠陥を効果的に
低減せしめるものであるから、極厚鋼板例えば80龍以
上の鋼板でも連続鋳造鋳片より容易に製造することがで
きるので、その工業的価値は極めて高い。
As mentioned above, the present invention effectively reduces UST defects in steel sheets by combining low-speed rolling and high-reduction rolling during finish rolling, so even extremely thick steel sheets, such as steel sheets with a diameter of 80 mm or more, can be continuously cast. Since it can be manufactured more easily than slabs, its industrial value is extremely high.

【図面の簡単な説明】 第1図は圧延前後のセンターポロシティを示す図で(a
)は圧延前(b)は圧延後の ものを示し、 第2図は圧延形状比(Mi)とポロシティ圧力応力関数
f(Mi)との関係を示す図、 第3図は圧延速度(Vi)とポロシティ圧着速度影響係
数g CVりとの関係を示す図、第4図は一般圧延(仕
上げ圧延温度900℃)の場合の各パス間の板厚と圧延
形状比と の関係を示す図、 第5図は制御圧延(仕上げ圧延温度750℃)の場合の
各パス間の板厚と圧延形状比と の関係を示す図、 第6図は、本発明と従来法との効果を示すUST欠陥個
数のヒストグラムであり、 第7図は、圧延速度と残存ポロシティ厚比との関係を示
す図である。 第2図 第1 図 圧延速度mm/Sec 纂 図 板 厚(mm ) 第 図 板厚 (mm) 第 図
[Brief explanation of the drawings] Figure 1 is a diagram showing the center porosity before and after rolling (a
) is before rolling (b) is after rolling, Figure 2 is a diagram showing the relationship between rolling shape ratio (Mi) and porosity pressure stress function f (Mi), Figure 3 is rolling speed (Vi) Figure 4 shows the relationship between the plate thickness and rolling shape ratio between each pass in the case of general rolling (finish rolling temperature 900°C). Figure 5 is a diagram showing the relationship between plate thickness and rolling shape ratio between each pass in the case of controlled rolling (finish rolling temperature 750°C). Figure 6 is the number of UST defects showing the effects of the present invention and the conventional method. FIG. 7 is a diagram showing the relationship between rolling speed and residual porosity thickness ratio. Fig. 2 Fig. 1 Fig. Rolling speed mm/Sec Estimated plate thickness (mm) Fig. Plate thickness (mm) Fig.

Claims (2)

【特許請求の範囲】[Claims] (1)連続鋳造法による鋳片を粗圧延工程で幅出し圧延
を行い、さらに仕上げ圧延工程で製品厚みまで圧延する
極厚鋼板の製造方法において、上記仕上げ圧延工程では
圧延速度を200〜350mm/secで複数パス圧延
することを特徴とする内部性状の優れた極厚鋼板の製造
方法。
(1) In a method for producing extra-thick steel plates, in which a continuous casting slab is tentered in a rough rolling process and further rolled to the product thickness in a finish rolling process, the rolling speed is set at 200 to 350 mm/min in the finish rolling process. A method for producing an extra-thick steel plate with excellent internal properties, characterized by rolling multiple passes at sec.
(2)連続鋳造法による鋳片を粗圧延工程で幅出し圧延
を行い、さらに仕上げ圧延工程で製品厚みまで圧延する
極厚鋼板の製造方法において、上記仕上げ圧延工程では
圧延速度を200〜350mm/secで複数パス圧延
し、かつパス圧延の全てを下記式に示す圧延形状比0.
5以上で厚さ方向に圧下を加えることを特徴とする内部
性状の優れた極厚鋼板の製造方法。 ▲数式、化学式、表等があります▼ M_i:圧延形状比 ld:ロール投影接触長さ(mm) hm:ロール間隙内平均板厚(mm) R:ロール径(mm) h_i:板厚(i=0、1、2・・・) (h_0:圧延前板厚) (h_i:圧延後iパス後の板厚) i:圧延パス数
(2) In a method for producing extra-thick steel plates, in which a continuous casting slab is tentered in a rough rolling process and further rolled to the product thickness in a finish rolling process, the rolling speed is set at 200 to 350 mm/min in the finish rolling process. sec for multiple passes, and all passes are rolled at a rolling shape ratio of 0.
A method for manufacturing an extra-thick steel plate with excellent internal properties, characterized by applying a reduction in the thickness direction at a thickness of 5 or more. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ M_i: Rolling shape ratio ld: Roll projected contact length (mm) hm: Average sheet thickness in the roll gap (mm) R: Roll diameter (mm) h_i: Sheet thickness (i = 0, 1, 2...) (h_0: Plate thickness before rolling) (h_i: Plate thickness after i passes after rolling) i: Number of rolling passes
JP63203869A 1988-08-18 1988-08-18 Manufacturing method of extra thick steel plate with excellent internal properties Expired - Fee Related JPH0669569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63203869A JPH0669569B2 (en) 1988-08-18 1988-08-18 Manufacturing method of extra thick steel plate with excellent internal properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63203869A JPH0669569B2 (en) 1988-08-18 1988-08-18 Manufacturing method of extra thick steel plate with excellent internal properties

Publications (2)

Publication Number Publication Date
JPH0255605A true JPH0255605A (en) 1990-02-26
JPH0669569B2 JPH0669569B2 (en) 1994-09-07

Family

ID=16481056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63203869A Expired - Fee Related JPH0669569B2 (en) 1988-08-18 1988-08-18 Manufacturing method of extra thick steel plate with excellent internal properties

Country Status (1)

Country Link
JP (1) JPH0669569B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059962A (en) * 2014-09-22 2016-04-25 新日鐵住金株式会社 Method for manufacturing thick steel plate
CN114669621A (en) * 2022-03-23 2022-06-28 中铝材料应用研究院有限公司 Aluminum alloy ultra-thick plate and preparation method thereof
US11415196B2 (en) 2017-12-18 2022-08-16 Daido Kogyo Co., Ltd. Roller chain

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240075904A (en) 2021-11-19 2024-05-29 제이에프이 스틸 가부시키가이샤 Heavy steel plate and manufacturing method thereof
KR20240075905A (en) 2021-11-19 2024-05-29 제이에프이 스틸 가부시키가이샤 Heavy steel plate and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58921A (en) * 1981-06-26 1983-01-06 テキサコ・デイベロツプメント・コ−ポレ−シヨン Manufacture of alkanol from synthetic gas
JPS60124401A (en) * 1983-12-08 1985-07-03 Sumitomo Metal Ind Ltd Thick plate rolling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58921A (en) * 1981-06-26 1983-01-06 テキサコ・デイベロツプメント・コ−ポレ−シヨン Manufacture of alkanol from synthetic gas
JPS60124401A (en) * 1983-12-08 1985-07-03 Sumitomo Metal Ind Ltd Thick plate rolling method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059962A (en) * 2014-09-22 2016-04-25 新日鐵住金株式会社 Method for manufacturing thick steel plate
US11415196B2 (en) 2017-12-18 2022-08-16 Daido Kogyo Co., Ltd. Roller chain
CN114669621A (en) * 2022-03-23 2022-06-28 中铝材料应用研究院有限公司 Aluminum alloy ultra-thick plate and preparation method thereof
CN114669621B (en) * 2022-03-23 2024-03-08 中铝材料应用研究院有限公司 Aluminum alloy super-thick plate and preparation method thereof

Also Published As

Publication number Publication date
JPH0669569B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US5303766A (en) Apparatus and method for the manufacture of hot-rolled steel
RU2057601C1 (en) Method of hot rolling of steel strip and plant for performing the method
JPH0255605A (en) Manufacture of very thick steel plate of excellent internal quality
WO1997009138A1 (en) Molten steel thin cast piece and method for producing the same and cooling drum for a thin cast piece continuous casting device
JPH0513721B2 (en)
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
CA1213762A (en) Method and apparatus for controlling width and thickness of strip
JP2515514B2 (en) Method for manufacturing thin plate of α + β type titanium alloy
JPH06292906A (en) Manufacture of bar and wire rod of titanium and titanium alloy
JPS5837042B2 (en) Manufacturing method of shaped steel
JPH0426921B2 (en)
JPH0214122B2 (en)
JPH0263650A (en) Production of austenitic stainless strip
JPH03254336A (en) Production of austenitic stainless steel strip having good surface characteristic
JP2000140906A (en) Manufacture of ultra-heavy steel plate at extremely large reduction ratio
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JPS63171255A (en) Non-solidified rolling method
JPS60121009A (en) Manufacture of hot rolled strip
JPS63171216A (en) Manufacture of shape steel
JPS63171254A (en) Non-solidified rolling method
JPH02175001A (en) Method for rolling shaped bloom
RU2288075C1 (en) Method for continuous rolling of belt of magnesium alloy pellets
SU1026852A1 (en) Metal rolling method
JPS609503A (en) Rolling mill
JPH02179303A (en) Manufacture of thick steel sheet having discontinuous projections in length direction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees