JPS5837042B2 - Manufacturing method of shaped steel - Google Patents

Manufacturing method of shaped steel

Info

Publication number
JPS5837042B2
JPS5837042B2 JP8265676A JP8265676A JPS5837042B2 JP S5837042 B2 JPS5837042 B2 JP S5837042B2 JP 8265676 A JP8265676 A JP 8265676A JP 8265676 A JP8265676 A JP 8265676A JP S5837042 B2 JPS5837042 B2 JP S5837042B2
Authority
JP
Japan
Prior art keywords
rolling
flange
rolled
web
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8265676A
Other languages
Japanese (ja)
Other versions
JPS538348A (en
Inventor
滉 米井
彰 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8265676A priority Critical patent/JPS5837042B2/en
Publication of JPS538348A publication Critical patent/JPS538348A/en
Publication of JPS5837042B2 publication Critical patent/JPS5837042B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱間圧延によるH形鋼もしくは■形鋼の圧延方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for rolling H-shaped steel or ■-shaped steel by hot rolling.

周知の通り一般にH形鋼および■形鋼などを圧延方法に
よって製造するには、角形鋼塊を方形もしくは矩形断面
のブルームあるいはスラブまたは粗形鋼片に分塊圧延し
たのち粗および仕上圧延する工程が採用されており、ま
た連続鋳造によってブルームあるいはスラブもしくは粗
形鋼片を直接鋳造する手段も採用されるようになった。
As is well known, in general, in order to manufacture H-shaped steel and ■-shaped steel by the rolling method, a square steel ingot is bloomed into a square or rectangular cross-section bloom, slab, or rough-shaped steel billet, and then rough and finish rolling is performed. In addition, methods for directly casting blooms, slabs, or rough-shaped steel pieces by continuous casting have also come to be adopted.

ところで近時フランジ幅の広い大断面積H形鋼の需要が
多くなったことやーたん粗形鋼片にして冷却し冷間疵手
入れする工程が熱的に極めて損失が大きいため、鋼塊か
ら製品まで通して一気に熱間圧延する手段が採用される
ようになったことから、周知の粗形鋼片製造方法では次
のような問題点が生ずるようになった。
By the way, recently there has been an increase in demand for H-beam steel with a wide flange width and a large cross-sectional area, and the process of turning the steel into a rough shape, cooling it, and cleaning cold defects involves an extremely large thermal loss. Since a method of hot rolling all the way through to the product has been adopted, the following problems have arisen in the well-known method for producing rough-shaped steel billets.

(1)周知の分塊圧延による製造方法は第1図に示すよ
うに角形鋼塊1を上ロール2、下ロール3からなる水平
ミルでウエブ圧下を主体に行ない鋼塊1を被圧延材aの
ように圧延し、同様にして逐次ロール組2′〜3′,2
“〜3“ 2 nt〜3″′で粗形鋼片dに仕上げる
訳であるが、第1図から明らかなようにかかる圧延法で
はフランジの幅方向の延びがないので、フランジ幅の広
い粗形鋼片(最終的には製品)を得るためには厚みの大
きい鋼塊が必要になる。
(1) As shown in Fig. 1, the well-known production method by blooming rolling mainly performs web rolling of a rectangular steel ingot 1 with a horizontal mill consisting of an upper roll 2 and a lower roll 3. Rolling is performed as follows, and roll sets 2' to 3', 2 are sequentially rolled in the same manner.
The rough-shaped steel piece d is finished with a thickness of 2 nt to 3'', but as is clear from Fig. 1, in this rolling method there is no elongation in the width direction of the flange. In order to obtain shaped steel pieces (ultimately products), thick steel ingots are required.

このため鋼塊1から粗形鋼片dを得るにはパス回数が多
くなり分塊能力が低くなる。
Therefore, in order to obtain the rough-shaped steel billet d from the steel ingot 1, the number of passes is increased, and the blooming ability is reduced.

また分塊能率が良いブルームまたはスラブを分塊工程で
製造し、粗圧延工程で粗形鋼片を得る場合は第3図アに
示す矩形鋼片4(これは矩形鋼塊であってもよく、それ
を含めて以下単に矩形鋼片と云う)のフランジ相当側面
5の巾fは第3図イの粗形鋼片6のフランジ幅gより必
ず大きくなければならず、フランジ幅の広い粗形鋼片を
製造するには厚い鋼片を加熱せねばならない。
In addition, when producing blooms or slabs with good blooming efficiency in the blooming process and obtaining rough-shaped steel slabs in the rough rolling process, the rectangular steel slab 4 shown in Figure 3A (this may also be a rectangular steel ingot) is used. The width f of the flange-equivalent side surface 5 of the rectangular steel piece (hereinafter simply referred to as a rectangular steel piece) must be larger than the flange width g of the rough-shaped steel piece 6 in Fig. 3A, and the rough shape with a wide flange width To produce billets, thick billets must be heated.

そのため加熱炉での加熱時間が長くなるのみならず圧延
パス回数が増加して、圧延能率が著しく低下する。
Therefore, not only does the heating time in the heating furnace become longer, but the number of rolling passes also increases, resulting in a significant reduction in rolling efficiency.

(2)前述のように鋼塊から製品まで途中冷却すること
なく熱間圧延する場合、特に既設の設備では前項(1)
の事情も加わって粗形鋼片化するまでの工程に時間がか
かりすぎて後工程での粗および仕上圧延との能力的アン
バランスを生じやすく、生産性があがらないという問題
がある。
(2) As mentioned above, when hot rolling is carried out from a steel ingot to a product without intermediate cooling, especially in the case of existing equipment, the above (1)
In addition to this, the process of forming rough shaped billets takes too much time, which tends to cause an imbalance in capacity between rough and finish rolling in the subsequent process, resulting in a problem that productivity does not improve.

(3)連続鋳造によってフランジ幅の広い粗形鋼片をつ
くることは鋳型の熱歪や鋳造欠陥が発生しやすいこと、
およびフランジ部の鍛錬不足を招きやすいことなどの問
題が残る。
(3) Making rough shaped steel pieces with wide flanges by continuous casting tends to cause mold thermal distortion and casting defects;
Also, problems remain, such as the fact that the flange part is likely to be insufficiently trained.

(4)さらに上記(1)項に関連し、分塊圧延で矩形鋼
片としたのち粗圧延工程で粗形鋼片とする方法では、第
3図アの矩形鋼片4の厚みfに比較して第3図工の粗形
鋼片8のウエブ厚Sが小さいため或品までのウエブの延
伸は分塊圧延で粗形鋼片としたのち粗圧延を行なう方法
に比べて極度に大きくなる。
(4) Furthermore, in relation to the above item (1), in the method of forming a rectangular steel billet by blooming rolling and then making it into a rough shape steel billet in a rough rolling process, the thickness f of the rectangular steel billet 4 in Fig. 3A is compared. Since the web thickness S of the rough-shaped steel billet 8 shown in Figure 3 is small, the stretching of the web to a certain product is extremely large compared to the method in which the rough-shaped steel billet is made into a rough-shaped steel billet by blooming rolling and then rough rolling is performed.

このためクロツプ長さが増大するわけであり、歩留低下
は著しい。
As a result, the crop length increases, resulting in a significant decrease in yield.

本発明は前述のような問題点のない能率的でしかも歩留
の良い形鋼製造法の提供を目的とするものでその要旨は
、中央膨出部を中心として対称の溝部からなる抑圧面を
有するロール対、もしくはロール対群について前記中央
膨出部の頂部角度を異にする複数の押圧面を設け、つい
で方形もしくは矩形断面被圧延材のフランジ相当側面を
前記中央膨山部中心を前記被圧延材のウエブ中心対応軸
に一致せしめて前記頂部角度の順に圧延して、フランジ
相尚側面を割りひろげたのち、千頂部と外傾斜部からな
るウエブ押圧膨出部と前記ウエブ押圧膨出部を中心とし
て両側に被圧延材のフランジと接触しない深溝を有する
ロール対によって被圧延材のフランジ部を拘束すること
なくウエブ部をくりかえし圧下してフランジ部へのメタ
ルフローを行なわしめつつ粗圧延を行ない、ついで仕上
圧延を行なうことを特徴とする形鋼の製造法にある。
The purpose of the present invention is to provide an efficient method for manufacturing a section steel with a high yield without the above-mentioned problems. A plurality of pressing surfaces having different top angles of the central bulge are provided for the roll pair or roll pair group, and then a side surface corresponding to the flange of the rolled material having a square or rectangular cross section is pressed so that the center of the central bulge is the center of the central bulge. After rolling the rolled material in the order of the apex angle to correspond to the axis corresponding to the web center and splitting the flange-compatible side surface, a web pressing bulge consisting of a crest portion and an outwardly inclined portion and the web pressing bulge portion are formed. A pair of rolls having deep grooves on both sides that do not contact the flange of the material to be rolled are used to repeatedly roll down the web portion of the material to be rolled without restraining the flange of the material to be rolled, thereby performing rough rolling while metal flow to the flange. The method of manufacturing a section steel is characterized by rolling the steel and then finishing rolling.

以下図面に従って本発明をさらに詳細に説明する。The present invention will be explained in more detail below with reference to the drawings.

さて第1図で得られた粗形鋼片dはHもしくはI形鋼の
場合第2図のようにカリバーh. i.jの順に水平ロ
ールによって粗造形され、ついで図示していない仕上圧
延工程に送られる。
Now, if the rough shaped steel piece d obtained in Fig. 1 is an H or I section steel, it will have a caliber h as shown in Fig. 2. i. The pieces are roughly shaped in the order of j by horizontal rolls, and then sent to a finish rolling process (not shown).

本発明において得られた粗形鋼片も同様にして冷却過程
を経て疵手入されたのち製品化されるが、もしくは冷却
過程を通ることなく直接熱間粗、仕上圧延工程を通り製
品化されるものである。
The rough-shaped steel pieces obtained in the present invention are similarly processed through a cooling process to remove defects before being manufactured into products, or alternatively, they can be manufactured into products through direct hot roughing and finishing rolling processes without going through the cooling process. It is something that

前述したように粗形鋼片となったのち、フランジ幅の絶
対長さを大きくすることは周知の圧延技術では種々の問
題があるために通常、第3図ウ、工に示すように粗圧延
された時点での被圧延鋼片7,8のフランジ幅t,uは
矩形鋼片4、粗形鋼片6のフランジ相当側面5の幅f、
フランジ幅gよりも小さいのが普通である。
As mentioned above, there are various problems with the well-known rolling technology in increasing the absolute length of the flange width after the slab is made into a rough shape. The flange widths t and u of the rolled steel pieces 7 and 8 at the time of rolling are the width f of the flange-equivalent side surface 5 of the rectangular steel piece 4 and the rough-shaped steel piece 6,
It is usually smaller than the flange width g.

そこで本発明者等はたとえば矩形鋼片4のフランジ相当
側面5の幅fよりも絶対値の大きいフランジ幅を有する
粗形鋼片を前記鋼片4から得る方法を研究した結果、本
発明方法を開発することによってそれに成功し、結果と
して前記幅f換言すると厚みのうすい方形もしくは矩形
断面の鋼塊もしくは鋼片からなる被圧延材から幅広のフ
ランジを有する形鋼を製造することを可能ならしめたも
のである。
Therefore, the present inventors have researched a method for obtaining a rough shaped steel piece from the steel piece 4, for example, having a flange width larger in absolute value than the width f of the flange-equivalent side surface 5 of the rectangular steel piece 4, and as a result, the present invention method has been developed. As a result, they succeeded in developing the above-mentioned width f, in other words, it became possible to manufacture a section steel with a wide flange from a rolled material consisting of a thin rectangular or rectangular cross-section steel ingot or slab. It is something.

而して本発明の説明の便宜上、被圧延材の各部名称につ
いて第4図、第5図のように定義する。
For convenience of explanation of the present invention, the names of each part of the rolled material are defined as shown in FIGS. 4 and 5.

第4図、第5図において被圧延材9,9′の中心を通る
X軸をウエブ中心対応軸と云いこれと直交するY軸を中
心軸と云う。
In FIGS. 4 and 5, the X axis passing through the center of the rolled materials 9, 9' is called the web center corresponding axis, and the Y axis perpendicular to this is called the central axis.

Y軸と平行な両側面10.10’をフランジ相当側面と
称し、X軸と平行な両側面11,11′をウエブ相当側
面と云う。
Both side surfaces 10 and 10' parallel to the Y-axis are referred to as flange-equivalent side surfaces, and both side surfaces 11 and 11' parallel to the X-axis are referred to as web-equivalent side surfaces.

さて前記被圧延材9を第6図に示すロール対1 2 .
1 2’で圧延するが、前記ロール対1 2 . 1
2’は中央膨山部13.13′,該中央膨出部1 3
. 1 3’を中心として対称に設けられた溝部14
,15,14’,15’から構威される押圧面を有して
おり、圧延にあたっては前記中央膨山部13.13’を
通るロール軸心1 6 . 1 6’に直交する軸線1
7.17’を前記X軸と一致せしめる。
Now, the material to be rolled 9 is rolled by a pair of rolls 12. shown in FIG.
1 2', but the roll pair 1 2 . 1
2' is the central bulging part 13.13', the central bulging part 1 3
.. Grooves 14 provided symmetrically around 1 3'
, 15, 14', and 15', and during rolling, the roll axis 16. Axis 1 perpendicular to 1 6'
7.17' is made to coincide with the X-axis.

第6図は説明の便宜上ロール対1 2 . 1 2’を
離隔して表示しているが、両ロール1 2 . 1 2
’で被圧延材9を同時圧下して圧延するモノテ、ロール
対12.12’は垂直ロールあるいは水平ロールであっ
ても差しつかえない。
For convenience of explanation, FIG. 6 shows roll pair 1 2 . 1 2' are shown separated, but both rolls 1 2 . 1 2
The roll pair 12.12' that simultaneously rolls and rolls the material 9 to be rolled may be a vertical roll or a horizontal roll.

次に圧延要領の詳細を第7図ア、イ、ウに示す前述のよ
うにロール対1 2 . 1 2’で被圧延材9のウエ
ブ中心対応軸Xと一致するように中央膨出部13.13
’の中心をあわせてフランジ相当側面を押圧するとフラ
ンジ相当側面は第7図アのように割りひろげられ、溝部
14,15.14’,15’に充満する。
Next, the details of the rolling procedure are shown in FIG. The central bulge 13.13 is aligned with the axis X corresponding to the web center of the material 9 to be rolled at 1 2'.
When the flange-equivalent side surfaces are pressed while aligning their centers, the flange-equivalent side surfaces are spread out as shown in FIG. 7A, filling the grooves 14, 15, 14', and 15'.

この場合前記中央膨出部1 3 . 1 3’のロール
軸心に平行な縦断面は図に示すように頂および辺がやや
まるみを帯びた2等辺山角形をした山形でその頂部角度
即ち頂角を2αとした場合、最初の押圧而では小さい方
がよく、ついで第7図イ、ウの順にパスにつれて大きく
なる方が好ましい。
In this case, the central bulge 1 3 . As shown in the figure, the longitudinal section parallel to the roll axis of 1 3' is an isosceles angle with slightly rounded apex and sides, and if the apex angle, that is, the apex angle, is 2α, then the initial pressure Therefore, it is better to be small, and then to increase as the pass progresses in the order of A and C in Figure 7.

即ち2αく2βく2γの如く頂角が大きくなる順に被圧
延材9を押圧するとフランジ相当側面は無理なくおしひ
ろげられる。
That is, if the rolled material 9 is pressed in the order of increasing apex angles such as 2α, 2β, and 2γ, the side surface corresponding to the flange can be pushed down and expanded without difficulty.

この場合溝部はたとえば第7図イ、ウの15a,15b
のように変化する。
In this case, the grooves are, for example, 15a and 15b in Fig. 7A and C.
It changes like this.

而して本発明にかかる前記中央膨出部および溝部の形状
および寸法は前述の説明に限定されるものではなく、本
発明の目的を逸脱しない範囲において設計することがで
きる。
The shapes and dimensions of the central bulge and groove according to the present invention are not limited to those described above, and can be designed within the scope of the present invention.

たとえば中央膨山部の形状は断面で表現すると半円形、
台形、正三角形、矩形など圧延上必要な角部のまるみを
有するものであれば適宜な形状のものを同種類用いるか
あるいは組合せて使用することができる。
For example, the shape of the central ampullae is semicircular when expressed in cross section.
It is possible to use the same type or a combination of suitable shapes such as a trapezoid, an equilateral triangle, and a rectangle, as long as they have rounded corners necessary for rolling.

溝部についても同様で、目的とする形鋼にあわせて設計
されるべきである。
The same goes for grooves, which should be designed according to the intended steel section.

而してこのような抑圧面は同一ロールに設けてもよく、
ロールを異にしてもよい。
Therefore, such suppression surfaces may be provided in the same role,
The roles may be different.

本発明では押圧面を異にする複数のロール対を用いる場
合を指してロール対群を用いると云い、押圧面の種類と
数については製品種別と圧延および品質条件に従って設
計することが好ましい。
In the present invention, a group of roll pairs is used to refer to the case where a plurality of pairs of rolls with different pressing surfaces are used, and the type and number of pressing surfaces are preferably designed according to the product type, rolling, and quality conditions.

さて第7図ウの工程を経た被圧延9のウエブ相当側面1
1 .11’をさらに第8図に示すロール対23.23
’によって圧延する。
Now, the side surface 1 corresponding to the web of the rolled object 9 which has gone through the process shown in Fig. 7 C.
1. 11' is further shown in FIG. 8 as a pair of rolls 23.23
'To be rolled by.

該ロール対23,23′は中心軸Yを中心にして左右対
称に形成されており、ウエブ中心対応軸Xに平行な平頂
部24,24′と外傾斜部25.25’からなるウエブ
押圧膨出部26.26’及び深溝部27.27’よりな
っている。
The pair of rolls 23, 23' are formed symmetrically with respect to the central axis Y, and have a flat top part 24, 24' parallel to the axis X corresponding to the web center, and an outer inclined part 25, 25'. It consists of a projecting portion 26.26' and a deep groove portion 27.27'.

かかる形状のロール対を用いる目的は圧下に際しウエブ
押圧膨出部26,26’の外傾斜部25.25’によっ
て被圧延材9のフランジ相当側面10.10’へ積極的
なメタルフローを生じせしめるためであり、その効果を
高めるために本発明者等は実験の結果、ロール形状の条
件に次の要件を見出した。
The purpose of using a pair of rolls having such a shape is to generate a positive metal flow toward the flange-equivalent side surface 10.10' of the rolled material 9 by the outwardly inclined portions 25.25' of the web pressing bulges 26, 26' during rolling. In order to enhance this effect, the present inventors have found the following requirements for the roll shape as a result of experiments.

但し U :ウエブ押圧膨出部の底部長さUo=製品の
ウエブ内法(第9図参照) U1 :ブレークダウン仕上ウエブ内法 S :平頂部長さ 第8図において被圧延材9を所要のウエブ厚t,ブレー
クダウン仕上ウエブ内法U1に仕上げる際、ウエブ押圧
膨出部の底部長さUをUくU。
However, U: Length of the bottom of the web pressing bulge Uo = Product web internal method (see Figure 9) U1: Breakdown finish web internal method S: Flat top length In Figure 8, the rolled material 9 is When finishing the web with thickness t and breakdown finish web internal method U1, the length U of the bottom part of the web pressing bulge is set by U.

<U1なる関係に設計する理由は、次段の粗ユニバーサ
ルミルへの被圧延材9の誘導を容易に行なうためであり
、また、次段の粗ユニバーサルミルでフランジを圧下し
てつぶさないためであり、また乎頂部長さSがウエブ押
圧膨出部の底部長さUに等しい場合は従来の袋孔型によ
る圧延方式と同じ構戎になり、膨出部の底部長さUに等
しい被圧延材9のウエブ部は長さ方向に伸ばされること
になって、フランジ相当側面1 0 . 1 0’方向
へのメタルフローは少なくなる。
The reason for designing the relationship <U1 is to easily guide the rolled material 9 to the next-stage rough universal mill, and to prevent the flange from being rolled down and crushed by the next-stage rough universal mill. In addition, if the top length S is equal to the bottom length U of the web pressing bulge, the structure is the same as the conventional blind hole rolling method, and the rolled part is equal to the bottom length U of the bulge. The web portion of the material 9 is stretched in the length direction, and the side surface 10 corresponding to the flange is extended in the length direction. 1 The metal flow in the 0' direction is reduced.

さらに平頂部長さSがウエブ押圧膨出部の底部長さUの
1/3より小さい場合は外斜傾部25,25′の面がウ
エブ中心対応軸Xとなす傾斜角は小さくなり、その分だ
け被圧延材9のウエブ相当側面に余肉が残存し、次段の
粗ユニバーサルミルでの圧下量が増加し工程バランス上
好ましくない理由にもとすくものである。
Furthermore, when the length S of the flat top part is smaller than 1/3 of the length U of the bottom part of the web pressing bulge, the angle of inclination that the surfaces of the externally inclined parts 25, 25' make with the axis X corresponding to the web center becomes small; As a result, excess thickness remains on the side surface of the material to be rolled 9 corresponding to the web, which increases the amount of rolling reduction in the next rough universal mill, which is unfavorable in terms of process balance.

なお、ウエブ押圧膨出部26,26’の基部P,P′か
ら平頂部24,24’までの高さhはブレークダウンミ
ルでの所要ウエブ仕上寸法t及び前記ウエブ押圧膨出部
の底部長さUとの関係で自ら定まる。
Note that the height h from the bases P, P' of the web pressing bulges 26, 26' to the flat tops 24, 24' is determined by the required web finishing dimension t in the breakdown mill and the bottom length of the web pressing bulges. It is determined by the relationship with SaU.

また深溝部27.27’はフランジ相当側面10,10
′方向へのメクルフローによるウエブ中心対応軸X及び
中心軸Y方向に沿う伸びを拘束しない範囲で適宜設計し
て差支えない。
In addition, the deep groove portions 27 and 27' are flange-equivalent side surfaces 10 and 10.
It may be designed as appropriate as long as the elongation along the web center corresponding axis X and center axis Y direction due to meckle flow in the 'direction is not restricted.

さらにロール23.23’は垂直ロールあるいは水平ロ
ールであってもよく、前記の中央膨出部と溝部を有する
ロール対12.12’と同一ロールに設けてもよく、ロ
ールを異にしても差支えない。
Further, the rolls 23, 23' may be vertical rolls or horizontal rolls, and may be provided on the same roll as the pair of rolls 12, 12' having the central bulge and groove, or may be different rolls. do not have.

第10図イは本発明法を実施するロールの構或例であり
、上ロール28、下ロール28′からなる一対のロール
にkat1〜kat4が設けられている6ka71〜k
at3を形成する孔型は上ロール28に中央膨出部13
,13a.13b同様に下ロール28′には中央膨出部
13’,13a’.13b’及び上下各ロールに溝部1
5.15a,15bを有してなる。
Figure 10A shows an example of the structure of a roll for carrying out the method of the present invention, in which a pair of rolls consisting of an upper roll 28 and a lower roll 28' are provided with kat1 to kat4.
The hole forming at3 has a central bulge 13 on the upper roll 28.
, 13a. 13b, the lower roll 28' has central bulges 13', 13a'. Groove 1 on 13b' and each upper and lower roll
5.15a and 15b.

又、ka7 4は平頂部24,24’、外斜傾部25,
25’、深溝27.27’からなっている。
In addition, ka7 4 has flat top portions 24, 24', externally inclined portion 25,
25', deep groove 27.27'.

第10図口は上下水平ロール29.29’及び左右竪ロ
ール30.30’からなる周知の中間ユニバーサルミル
であり、第10図ハは上下水平ロール31 ,31’及
び左右竪ロール32.32’からなる周知の仕上ユニバ
ーサルミルである。
Figure 10 shows a well-known intermediate universal mill consisting of upper and lower horizontal rolls 29, 29' and left and right vertical rolls 30, 30', and Figure 10 (c) shows upper and lower horizontal rolls 31, 31' and left and right vertical rolls 32, 32'. This is a well-known finishing universal mill consisting of:

以上のような構成になる圧延装置列でウエブ高さ300
mm、フランジ幅300皿、ウエブ厚10mm、フラン
ジ厚15泪のH形鋼を圧延した実施例を第1表に示す。
With the rolling equipment row configured as above, the web height is 300 mm.
Table 1 shows an example in which an H-beam steel with a flange width of 300 mm, a web thickness of 10 mm, and a flange thickness of 15 mm was rolled.

比較の対象とする従来の粗圧延法は第1図に示す矩形鋼
塊(又は鋼片)1を上下一対のロール2−3 .2’−
3’,2“−3“ *2/// 3 /l/で圧延
し粗形鋼片dとしさらに第2図のカリバーh,i,jの
順で仕上げた後第10図口の中間ユニバーサルミル、第
10図八の仕上ユニバーサルミルで圧延する方法である
In the conventional rough rolling method to be compared, a rectangular steel ingot (or billet) 1 shown in FIG. 1 is rolled between a pair of upper and lower rolls 2-3. 2'-
3', 2"-3" *2/// 3 /l/ to form a rough shaped billet d, and then finished in the order of calibers h, i, and j in Figure 2, and then the middle universal at the opening in Figure 10. This is a method of rolling with a finishing universal mill shown in FIG. 10.

第1表から明らかなように本発明は厚みのうすい方形も
しくは矩形断面の鋼片から幅広のフランジを有する形鋼
を極めて能率よく、しかも歩留よく製造する方法を提供
するもので実用上極めて有用なものである。
As is clear from Table 1, the present invention provides a method for manufacturing sections with wide flanges from thin square or rectangular cross-section steel pieces in an extremely efficient manner and with a high yield, and is extremely useful in practice. It is something.

而して本発明は分塊圧延機に続き粗仕上圧延機を有する
周知の圧延機列からなるプロセスに適用して直ちに高能
率を得ることができる。
Therefore, the present invention can be applied to a process consisting of a well-known rolling mill train having a roughing mill followed by a blooming mill, and high efficiency can be obtained immediately.

つまり分塊圧延機で被圧延材を方形もしくは矩形断面に
圧延することは極めて容易であり、それに続き粗の水平
ミルで本発明方法を適用して粗形鋼片をつくることは圧
延バランス上極めて有利となるためであり、また同一の
方形もしくは矩形鋼片から各部寸法の異なった粗形鋼片
を容易に製造できることは、これまた圧延スケジュール
上著しく有利であり、生産性向上を可能ならしめる。
In other words, it is extremely easy to roll the material to be rolled into a rectangular or rectangular cross-section with a blooming mill, and it is extremely difficult in terms of rolling balance to subsequently apply the method of the present invention to a rough-shaped steel billet with a rough horizontal mill. This is because it is advantageous, and the ability to easily produce rough-shaped steel pieces with different dimensions from the same square or rectangular steel piece is also extremely advantageous in terms of rolling schedules, making it possible to improve productivity.

また再加熱工程を採用する場合つまり一たん冷却手入れ
工程を経た矩形断面の被圧延材を利用する場合、より厚
みのうすいものを活用できるため再加熱が容易で、能率
も向上する。
Furthermore, when a reheating process is adopted, that is, when a rolled material with a rectangular cross section that has undergone a cooling treatment process is used, a thinner material can be used, making reheating easier and improving efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周知のウエブ圧下方式による圧延方法の概略説
明図、第2図は周知の粗形鋼片以降のロール力リバー説
明図、第3図ア、イ、ウ、工は周知の被圧延材と粗形鋼
片の寸法比較説明図、第4図、第5図は本発明にかかる
各部名称説明図、第6図は本発明にかかる圧延要領説明
図、第7図ア、イ、ウは本発明にかかるフランジ相当側
面の圧延手順説明図、第8図は本発明にかかる圧延要領
説明図、第9図はH形鋼の断面概略図、第10図は本発
明の圧延実施例を示す説明図である。 1・・・・・・鋼塊、2・・・・・・上ロール、3・・
・・・・下ロール、4・・・・・・矩形鋼片、5・・・
・・・フランジ相当側面、6・・・・・・粗形鋼片、7
,8・・・・・・被圧延鋼片、9,9/−・・・・・被
圧延材、12,12’・・・・・・ロール、1 3 ,
1 3’・・・・・・中央膨出部、14,14’,1
5.15’・・・・・・溝部、1 6 . 1 6’・
・・・・・ロール軸心、1 7 , 1 7’・・・・
・・軸線、1 8 . 1 8’・・・・・・ウエブ圧
下用ロール、1 9 , 1 9’・・・・・・膨出部
、20,20’・・・・・・頂部押圧面、21・・・・
・・フランジ部、22・・・・・・ウエブ部、23.2
3’・・・・・・ロール、24.24’・・曲乎頂部、
25,25’・・・・・・外傾斜部、26,26’・曲
・ウェブ押圧膨出部、27,27’・・・・・・深溝部
、2B,28′・・・・・・ロール、29,29’,3
1 ,31’・・・・・・水平ロール、30.30’,
32.32’・・聞竪ロール。
Fig. 1 is a schematic explanatory diagram of a rolling method using the well-known web rolling method, Fig. 2 is an explanatory diagram of the roll force lever after the well-known rough shaped steel billet, and Fig. 3 A, B, C, and D are well-known rolling methods. 4 and 5 are diagrams explaining the names of each part according to the present invention. Figure 6 is a diagram explanatory of rolling procedures according to the present invention. Figure 7 A, B, and C. 8 is an explanatory diagram of the rolling procedure of the side surface corresponding to the flange according to the present invention, FIG. 8 is an explanatory diagram of the rolling procedure according to the present invention, FIG. 9 is a schematic cross-sectional diagram of the H-beam steel, and FIG. 10 is a rolling example of the present invention. FIG. 1... Steel ingot, 2... Upper roll, 3...
...Lower roll, 4...Rectangular steel piece, 5...
... Flange equivalent side surface, 6 ... Rough shaped steel piece, 7
, 8... Rolled steel piece, 9, 9/-... Rolled material, 12, 12'... Roll, 1 3 ,
1 3'... Central bulge, 14, 14', 1
5.15'...Groove, 16. 1 6'・
...Roll axis center, 17, 17'...
...Axis, 1 8. 1 8'...Roll for rolling down the web, 19, 19'...Bulging portion, 20, 20'...Top pressing surface, 21...
...Flange part, 22... Web part, 23.2
3'...roll, 24.24'...curved top,
25, 25'...Outward inclined part, 26, 26', curved/web pressing bulge part, 27, 27'...Deep groove part, 2B, 28'... Roll, 29, 29', 3
1, 31'...Horizontal roll, 30.30',
32.32'...Montachi roll.

Claims (1)

【特許請求の範囲】[Claims] 1 中央膨山部を中心として対称の溝部からなる抑圧面
を有するロール対、もしくはロール対群について前記中
央膨出部の頂部角度を異にする複数の押圧面を設け、つ
いで方形もしくは矩形断面被圧延材のフランジ相当側面
を、前記中央膨山部中心を前記被圧延材のウエフ沖心対
応軸に一致せしめ前記頂部角度の順に圧延して、フラン
ジ相当側面を割りひろげたのち、乎頂部と外傾斜部から
なるウエブ押圧膨出部と前記ウエブ押圧膨山部を中心と
して両側に被圧延材のフランジと接触しない深溝を有す
るロール対によって被圧延材のフランジ部を拘束するこ
となくウエブ部をくりかえし圧下してフランジ部へのメ
タルフローを行なわしめつつ粗圧延を行ない、ついで仕
上圧延を行なうことを特徴とする形鋼の製造法。
1. For a pair of rolls or a group of roll pairs each having a pressing surface consisting of grooves symmetrical about the central bulge, a plurality of pressing surfaces with different angles at the top of the central bulge are provided, and then a square or rectangular cross-section covering is provided. The flange-equivalent side surface of the rolled material is rolled in the order of the apex angle, with the center of the central bulge aligned with the axis corresponding to the wafer offshore center of the rolled material, and the flange-equivalent side surface is split open, and then the apex and the outer surface are separated. The web portion is repeated without restraining the flange portion of the material to be rolled by a pair of rolls having a web pressing bulge portion consisting of an inclined portion and a deep groove on both sides of the web pressing bulging portion that does not contact the flange of the material to be rolled. A method for manufacturing a section steel, characterized by performing rough rolling while rolling down to allow metal flow to a flange portion, and then performing finish rolling.
JP8265676A 1976-07-12 1976-07-12 Manufacturing method of shaped steel Expired JPS5837042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8265676A JPS5837042B2 (en) 1976-07-12 1976-07-12 Manufacturing method of shaped steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8265676A JPS5837042B2 (en) 1976-07-12 1976-07-12 Manufacturing method of shaped steel

Publications (2)

Publication Number Publication Date
JPS538348A JPS538348A (en) 1978-01-25
JPS5837042B2 true JPS5837042B2 (en) 1983-08-13

Family

ID=13780466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8265676A Expired JPS5837042B2 (en) 1976-07-12 1976-07-12 Manufacturing method of shaped steel

Country Status (1)

Country Link
JP (1) JPS5837042B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020081B2 (en) * 1979-09-11 1985-05-20 川崎製鉄株式会社 Method of forming rough shaped steel pieces
JPS5924882B2 (en) * 1980-05-21 1984-06-13 川崎製鉄株式会社 Rough rolling method for H-beam steel
JPS5942563B2 (en) * 1980-06-26 1984-10-16 川崎製鉄株式会社 Method of forming rough shaped steel pieces
JPS57142701A (en) * 1981-02-28 1982-09-03 Sumitomo Metal Ind Ltd Production of wide flange beam using flat slab as blank material
JPS5919766B2 (en) * 1981-05-21 1984-05-08 住友金属工業株式会社 Manufacturing method of H-beam steel

Also Published As

Publication number Publication date
JPS538348A (en) 1978-01-25

Similar Documents

Publication Publication Date Title
US4420961A (en) Method for producing beam blank for universal beam
US4503700A (en) Method of rolling rails
CA1151913A (en) Method of forming beam blank
JPS5837042B2 (en) Manufacturing method of shaped steel
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JP2512240B2 (en) Rough rolling method for Z-shaped steel sheet pile
US1623273A (en) Process of rolling flanged beams
US4295354A (en) Method for producing beam blank for large size H-beam from flat slab
JPS5919764B2 (en) Manufacturing method of square steel
JPS5930481B2 (en) Billet rolling method
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JPH0596304A (en) Method for rolling angle steel having unequal side and unequal thickness
JPH0824926B2 (en) Rolling method for profile with flange
US1885861A (en) Method of making rails
JPS6023881B2 (en) Method of forming rough shaped steel pieces
JPS5918124B2 (en) Manufacturing method of rough shaped steel billet
JPS5919763B2 (en) Manufacturing method of square steel
JPS62214802A (en) Blooming method for circular columnar titanium ingot
JPH02112801A (en) Universal rolling method and rolling machine for flanged shape steel
JPS5893501A (en) Rolling method for approximately h-shaped steel ingot
JPH0255605A (en) Manufacture of very thick steel plate of excellent internal quality
JPS58218301A (en) Manufacture of unequal angle steel
JPH07265902A (en) Forming method for shaped bloom
SU900882A1 (en) Method of producing sections and plate for localizing segregation zones