JPH0254408B2 - - Google Patents

Info

Publication number
JPH0254408B2
JPH0254408B2 JP60298015A JP29801585A JPH0254408B2 JP H0254408 B2 JPH0254408 B2 JP H0254408B2 JP 60298015 A JP60298015 A JP 60298015A JP 29801585 A JP29801585 A JP 29801585A JP H0254408 B2 JPH0254408 B2 JP H0254408B2
Authority
JP
Japan
Prior art keywords
alloy powder
strength
alloy
heat treatment
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60298015A
Other languages
Japanese (ja)
Other versions
JPS62158837A (en
Inventor
Tadao Hirano
Fumihiko Oomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP29801585A priority Critical patent/JPS62158837A/en
Publication of JPS62158837A publication Critical patent/JPS62158837A/en
Publication of JPH0254408B2 publication Critical patent/JPH0254408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はAl−Si系合金粉末の成形体の製造に
係り、特に切欠強度等の靭性に優れた粉末成形体
の製造方法に関する。 (従来の技術及び解決しようとする問題点) Al−Si系合金粉末は、アルミニウム合金の有
する軽量性を活かし、高強度、高剛性で、耐摩耗
性などの優れた性能を備えていることから、自動
車、航空機、ロボツト等々の広い分野において軽
量かつ機械的性質に優れた部材を必要とする用途
に利用されており、通常、ビレツト押出成形体の
態様で製造されている。このAl−Si系合金粉末
は主としてSiを10%程度含む亜共晶Al−Si系合
金やSiを12%程度含む過共晶Al−Si系合金が多
用されており、特に過共晶Al−Si系合金は耐熱
性耐摩耗性に優れている。 しかし、その反面、特に過共晶Al−Si系合金
の粉末成形体は、室温付近での伸びが乏しく、延
性が低いため、使用部材、殊に複雑な形状を有す
る部材や厳しい応力状態で使用される部材の場
合、応力集中部で破壊を起こしやすく、安全性乃
至信頼性に欠けるという問題があつた。 本発明は、上記従来技術の欠点を解消し、強
度、耐摩耗性等々の優れた性能を損うことなく、
切欠強度等の延性に優れたAl−Si系合金粉末成
形体を製造できる方法を提供することを目的とす
るものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の
Al−Si系合金粉末成形体の性状を調査検討した
ところ、特に過共晶Al−Si系合金粉末の場合、
その粉末の合金組織は共晶Siが針状又は板状に析
出していることが判明した。そこで、このような
粉末の合金組織を変化させることによつて延性を
向上できる方策を種々研究した結果、上記のよう
な針状又は板状構造の共晶Siを加熱処理によつて
適度に球状化させることが有効であることを見い
出した。 すなわち、本発明に係るAl−Si系合金粉末成
形体の製造方法は、Al−Si系合金粉末につき、
その予備成形体を470〜500℃で0.5時間以上加熱
処理した後、熱間成形することを特徴とするもの
であり、また、その予備成形体を、熱間成形後、
470〜500℃で0.5時間以上加熱処理することを特
徴とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 前述の如く、Al−Si系合金粉末成形体は、従
来、ビレツト押出しの場合、ビレツトを400℃程
度の温度で加熱押出して製造していた。 これに対し、本発明法では、熱間成形の直前
(予備成形体)に、又は予備成形体の熱間成形後
に、所定の加熱条件にて加熱処理するものであ
る。予備成形は、第1図に示すように熱間予備成
形(例、250℃)でも或いは冷間予備成形でもよ
い。熱間成形としては、後述の実施例に示す如く
押出し成形(例、400℃)のほか、鍛造も可能で
ある。 加熱条件としては、材料中に針状又は板状構造
の共晶Siを球状化するために470℃以上、好まし
くは480〜500℃の温度で加熱することが必要であ
る。加熱時間は470℃以上で0.5時間以上が好まし
く、0.5〜2.0時間程度が適当である。それより長
時間(例、5〜6時間以上)加熱しても良いが、
それ以上の効果は得られず、あまり長時間の加熱
では却つて粗大組織となつて延性が劣化するので
望ましくない。470℃以上での温度及び保持時間
の選定は、加熱処理を施す時期(押出加工の直
前、又は加工後)や材料組成等々を考慮して行え
ばよい。なお、加熱処理を施す時期の違いによつ
て効果に特に差異は生じない。 上記加熱処理を施すAl−Si系合金粉末として
は、その成分組成は特に制限されないが、強度、
耐摩耗性、耐熱性等々の性能面からすれば亜共晶
Al−Si系合金や過共晶Al−Si系合金が望ましく、
併わせて本発明の効果が一層発揮される。 例えば、Si含有量は10.0〜30.0%が好ましく、
14.0〜25.0%がより好ましい、また高温強度を高
めるためにFe、Mn及びNiのうちの1種又は2種
以上を1.0〜15.0%、好ましくは5.0〜10.0%添加
することができる。Ti、Zr、Mo、V、Cr、Zn、
Li等の少量添加も同様に高温強度を改善する効果
がある。更にMgやCuは材質を強化する成分とし
て添加してもよい。 なお、上記Al−Si系合金の粉末は、通常採用
されている方法で製造すればよく、アトマイズ
法、遠心力による微粉化法等々が挙げられる。 また、ビレツト押出は、通常の条件で行えばよ
い。勿論、加工直前に本発明による加熱処理を施
す場合(前処理)には、加熱サイクルに引続いて
加工のための適当温度を確保することになり、加
工後に加熱処理を行う場合(後処理)には、加工
後に粉末成形体を加熱サイクルに供することにな
ることは云うまでもない。 (実施例) 第1表に示す組成の過共晶Al−Si系合金粉末
の溶湯を各々エアーアトマイズし、−48メツシユ
の粉末とした。次に、これらの合金粉末を250℃
に加熱し、同温度に予熱した金型中に充填して、
1.5ton/cm2の圧力で圧縮成形し、直径100mm、長
さ200mmのビレツトにした。 次いで、第2表及び第1図に示す条件にて押出
成形並びに加熱処理を行い、押出材(丸棒)を製
造した。なお、押出は400℃にビレツト温度を設
定し、同温度に予熱したコンテナ中に挿入し、押
出比17で丸棒に成形した。 これらの条件で製造した押出材について、引張
試験及び切欠引張試験を室温にて実施し、特性を
評価した。なお、引張試験片は直径3mmで平行部
16mmの寸法のものとし、切欠引張試験片は、5mm
φの直径で1mm深さの60゜切欠を入れ、先端の曲
率半径が0.45のものとし、応力集中係数2の応力
状態で切欠強度を測定した。それらの結果を第3
表に示す。 第3表より明らかなように、従来法(処理条件
A)による場合には高い引張強度が得られるもの
の切欠強度に劣るのに対し、本発明法(処理条件
B、C)による場合には切欠強度が顕著に改善さ
れ、しかも引張強度もほぼ同程度を維持してお
り、引張特性を損うことがない。
(Industrial Field of Application) The present invention relates to the production of a molded body of Al-Si alloy powder, and more particularly to a method for producing a powder compact having excellent toughness such as notch strength. (Conventional technology and problems to be solved) Al-Si alloy powder takes advantage of the lightness of aluminum alloy and has excellent performance such as high strength, high rigidity, and wear resistance. It is used in a wide range of applications such as automobiles, aircraft, robots, etc., which require lightweight members with excellent mechanical properties, and is usually manufactured in the form of billet extrusion molded products. This Al-Si alloy powder is mainly a hypoeutectic Al-Si alloy containing about 10% Si or a hypereutectic Al-Si alloy containing about 12% Si, especially hypereutectic Al-Si alloy powder. Si-based alloys have excellent heat resistance and wear resistance. However, on the other hand, powder compacts of hypereutectic Al-Si alloys have poor elongation near room temperature and low ductility, so they are used in parts, especially those with complex shapes or under severe stress conditions. In the case of such members, there was a problem in that they were prone to breakage at stress concentration areas and lacked safety and reliability. The present invention eliminates the drawbacks of the above-mentioned prior art, and provides excellent performance such as strength and wear resistance.
The object of the present invention is to provide a method for producing an Al-Si alloy powder compact having excellent notch strength and ductility. (Means for solving the problem) In order to achieve the above object, the present inventor has developed a conventional
When we investigated the properties of Al-Si alloy powder compacts, we found that, especially in the case of hypereutectic Al-Si alloy powder,
The alloy structure of the powder revealed that eutectic Si was precipitated in the form of needles or plates. Therefore, as a result of various research into ways to improve ductility by changing the alloy structure of such powder, we found that the eutectic Si having an acicular or plate-like structure as described above can be made into a moderately spherical shape by heat treatment. We have found that it is effective to That is, in the method for producing an Al-Si alloy powder compact according to the present invention, for Al-Si alloy powder,
The preform is heat-treated at 470 to 500°C for 0.5 hours or more and then hot-formed.
It is characterized by heat treatment at 470 to 500°C for 0.5 hours or more. The present invention will be explained in detail below based on examples. As mentioned above, in the case of billet extrusion, Al--Si alloy powder compacts have conventionally been produced by heating and extruding a billet at a temperature of about 400°C. In contrast, in the method of the present invention, heat treatment is performed under predetermined heating conditions immediately before hot forming (preformed body) or after hot forming of the preformed body. The preforming may be hot preforming (eg, 250° C.) as shown in FIG. 1, or cold preforming. As for hot forming, in addition to extrusion forming (for example, at 400° C.) as shown in Examples below, forging is also possible. As for the heating conditions, it is necessary to heat at a temperature of 470° C. or higher, preferably 480 to 500° C., in order to spheroidize the eutectic Si having an acicular or plate-like structure in the material. The heating time is preferably 0.5 hours or more at 470° C. or higher, and suitably about 0.5 to 2.0 hours. It may be heated for a longer time (e.g. 5 to 6 hours or more), but
No further effect can be obtained, and heating for too long is undesirable because the structure becomes coarser and the ductility deteriorates. The temperature and holding time at 470° C. or higher may be selected in consideration of the timing of heat treatment (immediately before extrusion processing or after processing), material composition, etc. Note that there is no particular difference in the effect depending on the timing of heat treatment. The composition of the Al-Si alloy powder to be subjected to the above heat treatment is not particularly limited, but the strength,
Hypoeutectic in terms of performance such as wear resistance and heat resistance
Al-Si alloys and hypereutectic Al-Si alloys are preferable.
In addition, the effects of the present invention are further exhibited. For example, the Si content is preferably 10.0 to 30.0%,
14.0 to 25.0% is more preferable, and one or more of Fe, Mn and Ni may be added in an amount of 1.0 to 15.0%, preferably 5.0 to 10.0%, in order to increase the high temperature strength. Ti, Zr, Mo, V, Cr, Zn,
Addition of a small amount of Li or the like also has the effect of improving high temperature strength. Furthermore, Mg and Cu may be added as components to strengthen the material. The Al--Si alloy powder may be produced by a commonly used method, such as an atomization method and a pulverization method using centrifugal force. Moreover, billet extrusion may be performed under normal conditions. Of course, when heat treatment according to the present invention is performed immediately before processing (pre-treatment), an appropriate temperature for processing must be ensured following the heating cycle, and when heat treatment is performed after processing (post-treatment). Needless to say, the powder compact must be subjected to a heating cycle after processing. (Example) Molten hypereutectic Al--Si alloy powders having the compositions shown in Table 1 were air atomized to obtain powders of -48 mesh. Next, these alloy powders are heated to 250℃
and fill it into a mold preheated to the same temperature.
Compression molding was performed at a pressure of 1.5 ton/cm 2 to form a billet with a diameter of 100 mm and a length of 200 mm. Next, extrusion molding and heat treatment were performed under the conditions shown in Table 2 and FIG. 1 to produce an extruded material (round bar). For extrusion, the billet temperature was set at 400°C, inserted into a container preheated to the same temperature, and formed into a round bar at an extrusion ratio of 17. The extruded material produced under these conditions was subjected to a tensile test and a notched tensile test at room temperature to evaluate its properties. The tensile test piece has a diameter of 3 mm and a parallel part.
The size of the notched tensile test piece shall be 16 mm.
A 60° notch with a diameter of φ and a depth of 1 mm was made, the radius of curvature at the tip was 0.45, and the notch strength was measured in a stress state with a stress concentration factor of 2. Those results in the third
Shown in the table. As is clear from Table 3, when using the conventional method (processing conditions A), high tensile strength is obtained but the notch strength is inferior, whereas when using the present invention method (processing conditions B and C), the notch strength is poor. The strength is markedly improved, and the tensile strength is also maintained at approximately the same level, with no loss of tensile properties.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 以上詳述したように、本発明によれば、Al−
Si系合金粉末成形体を特定温度にて加熱処理する
という簡易な方法により、軽量かつ高強度、高剛
性で耐摩耗性、耐熱性などの優れた性能を損うこ
となく、切欠強度などの延性を顕著に向上するこ
とができるので、安全性及び信頼性を増し、特に
複雑な形状の部材或いは厳しい応力状態で使用す
る部材等の製造に好適であり、各分野への一層の
利用拡大を図ることが可能となる。
[Table] (Effects of the invention) As detailed above, according to the present invention, Al-
A simple method of heat-treating a Si-based alloy powder compact at a specific temperature allows us to improve ductility such as notch strength without sacrificing its excellent performance such as lightweight, high strength, high rigidity, wear resistance, and heat resistance. Since it can significantly improve safety and reliability, it is particularly suitable for manufacturing parts with complex shapes or parts used under severe stress conditions, and we aim to further expand its use in various fields. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAl−Si系合金粉末成形体の押出し及
び加熱処理条件を示す図で、同図aは従来法の場
合を示し、b及びcは各々本発明法の場合を示し
ている。
FIG. 1 is a diagram showing extrusion and heat treatment conditions for an Al--Si alloy powder compact, where a shows the case of the conventional method, and b and c each show the case of the method of the present invention.

Claims (1)

【特許請求の範囲】 1 Al−Si系合金粉末の予備成形体を、470〜
500℃で0.5時間以上加熱処理した後、熱間成形す
ることを特徴とする切欠強度に優れたAl−Si系
合金粉末成形体の製造方法。 2 Al−Si系合金粉末の予備成形体を、熱間成
形後、470〜500℃で0.5時間以上加熱処理するこ
とを特徴とする切欠強度に優れたAl−Si系合金
粉末成形体の製造方法。
[Claims] 1. A preformed body of Al-Si alloy powder
A method for producing an Al-Si alloy powder compact having excellent notch strength, the method comprising heating at 500°C for 0.5 hours or more and then hot forming. 2. A method for producing an Al-Si alloy powder compact with excellent notch strength, which comprises heating a preform of Al-Si alloy powder at 470 to 500°C for 0.5 hours or more after hot forming. .
JP29801585A 1985-12-28 1985-12-28 Manufacture of al-si alloy powder compact Granted JPS62158837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29801585A JPS62158837A (en) 1985-12-28 1985-12-28 Manufacture of al-si alloy powder compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29801585A JPS62158837A (en) 1985-12-28 1985-12-28 Manufacture of al-si alloy powder compact

Publications (2)

Publication Number Publication Date
JPS62158837A JPS62158837A (en) 1987-07-14
JPH0254408B2 true JPH0254408B2 (en) 1990-11-21

Family

ID=17854016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29801585A Granted JPS62158837A (en) 1985-12-28 1985-12-28 Manufacture of al-si alloy powder compact

Country Status (1)

Country Link
JP (1) JPS62158837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916267B2 (en) 2018-01-19 2021-02-09 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive
US10916268B2 (en) 2018-01-19 2021-02-09 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive
US10923149B2 (en) 2018-01-19 2021-02-16 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177340A (en) * 1987-12-30 1989-07-13 Showa Denko Kk Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121203A (en) * 1983-12-02 1985-06-28 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121203A (en) * 1983-12-02 1985-06-28 Sumitomo Electric Ind Ltd Manufacture of aluminum alloy material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916267B2 (en) 2018-01-19 2021-02-09 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive
US10916268B2 (en) 2018-01-19 2021-02-09 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive
US10923149B2 (en) 2018-01-19 2021-02-16 Showa Denko K.K. Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive

Also Published As

Publication number Publication date
JPS62158837A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
JP2787466B2 (en) Forming method of aluminum alloy for large diameter products
JPH0254408B2 (en)
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
US4832737A (en) High temperature-resistant aluminum alloy and process for its production
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy
JPH02194142A (en) Al-base alloy powder for sintering
JPH0456095B2 (en)
JPH0739615B2 (en) Method for producing Zn-22A1 superplastic powder-potassium titanate composite material
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JP2602893B2 (en) Aluminum alloy member with high strength and excellent forgeability
JP2729479B2 (en) Manufacturing method of aluminum alloy excellent in high temperature strength
JPH03264639A (en) Al alloy product having high strength at high temperature
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JP2572832B2 (en) Al-based alloy powder for sintering
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JPH0565568B2 (en)
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH01108338A (en) Aluminum alloy having excellent tensile and fatigue strength
JPH0730429B2 (en) Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting
JPS63310937A (en) High strength heat resistant aluminum alloy member
JPH03243702A (en) Manufacture of high strength aluminum alloy formed body
JPH03122258A (en) Alloy steel for injection molding powder metallurgy excellent in hardenability