JPH0253566A - Extremely thin cutting blade - Google Patents
Extremely thin cutting bladeInfo
- Publication number
- JPH0253566A JPH0253566A JP20545388A JP20545388A JPH0253566A JP H0253566 A JPH0253566 A JP H0253566A JP 20545388 A JP20545388 A JP 20545388A JP 20545388 A JP20545388 A JP 20545388A JP H0253566 A JPH0253566 A JP H0253566A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- layer
- cutting blade
- ultra
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 73
- 239000000463 material Substances 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 15
- 239000004033 plastic Substances 0.000 claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims abstract description 3
- 238000010030 laminating Methods 0.000 claims abstract 3
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 239000002904 solvent Substances 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 6
- 239000002648 laminated material Substances 0.000 claims 1
- 238000003825 pressing Methods 0.000 claims 1
- 239000006061 abrasive grain Substances 0.000 abstract description 16
- 239000011230 binding agent Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 55
- 239000002356 single layer Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000010432 diamond Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000003082 abrasive agent Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical class [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明はシリコン、フェライト、ガラス、セラミクス等
の硬脆材料を精密に切断、あるいは溝加工するための全
厚みが0.5mm以下の極薄切断ブレードに関するもの
である。Detailed Description of the Invention [Industrial Field of Application] The present invention is an ultra-thin material with a total thickness of 0.5 mm or less for precisely cutting or grooving hard and brittle materials such as silicon, ferrite, glass, and ceramics. It relates to a cutting blade.
[従来の技術]
従来この種の硬脆材料を精密に切断するツレードとして
は砥粒を含む板状材から成る切断ブレードが用いられる
。[Prior Art] Conventionally, a cutting blade made of a plate-shaped material containing abrasive grains has been used as a cutting blade for precisely cutting this type of hard and brittle material.
これらの切断ブレードの砥粒層部はいずれも一般的には
一種類の組成のみがらなる単層の切断ブレードであるこ
とが多いが、たとえば公開特許公報昭62−88577
にあるように切断ブレードの厚み方向に層構造を持つも
のもある。The abrasive grain layer of these cutting blades is generally a single-layer cutting blade consisting of only one type of composition;
Some cutting blades have a layered structure in the thickness direction, as shown in the figure.
[発明が解決しようとしている問題点]前述の層構成方
法(公特公昭62−88577)で示される方法により
製造される3層構造切断ブレードは各層の厚みが、砥粒
と結合用レジンボンド材との混合体を型込めすることに
より決まるのであるから、
■ 混合体の型込めという非常に制御しにくい手法によ
り各層の厚みを決めるために、ひとつの層内での厚みむ
らが発生しやすい。[Problems to be Solved by the Invention] The three-layer structure cutting blade manufactured by the method shown in the above-mentioned layer construction method (KOKAI Publication No. 62-88577) has a thickness of each layer that is equal to or smaller than that of the abrasive grains and the bonding resin bond material. ■ Because the thickness of each layer is determined by molding a mixture with a mold, which is a method that is extremely difficult to control, uneven thickness is likely to occur within a single layer.
■ 同様の理由により極薄い層構造からなる多層構造切
断ブレードを再現性よく製造しにくい。■ For the same reason, it is difficult to manufacture multilayer cutting blades with a good reproducibility consisting of extremely thin layers.
■ 同様の理由により全厚みが極薄い切断ブレードを再
現性よく製造しにくいといった欠点かある。■ For the same reason, there is a drawback that it is difficult to manufacture cutting blades with extremely thin overall thickness with good reproducibility.
また、従来の一種類の組成のみがらなる切断プレートは
図5に示すように切断中に切断プレート刃先か曲がりや
すいため、
■ 被切断材料の切断面が直角にならない。Furthermore, as shown in FIG. 5, in conventional cutting plates made of only one type of composition, the cutting edge of the cutting plate tends to bend during cutting, so that (1) the cut surface of the material to be cut is not at right angles.
■ 切断方向における切断面の真直性か悪い。■ The straightness of the cut surface in the cutting direction is poor.
■ 切断プレートが片あたりしやすく、切断面にキズ、
チッピングか発生しやすい。■ The cutting plate tends to hit one side, causing scratches on the cut surface.
Chipping is likely to occur.
■ その結果、ひんばんに切断ブレード刃先の形状修正
作業を行う必要がある。■ As a result, it is necessary to frequently modify the shape of the cutting blade edge.
といった欠点かある。この欠点は全厚みが0.5mm以
下の極薄切断ブレードでは顕著となる。There are some drawbacks. This drawback becomes noticeable in ultrathin cutting blades with a total thickness of 0.5 mm or less.
これは、単層の板状材から成る切断ブレードは、切断ブ
レードの成分か均一に分散していれば、理想的には切断
プレート刃先は図3に示すように断面が対称に摩耗して
ゆくか、実際には切断ブレード成分のわずかな不均一性
などにより図4に示すような偏摩耗を起こし、偏摩耗し
たプレートには、ブレード先端に横方向の力か加わるた
め、切断ブレード刃先が図5に示すように曲りやすいか
らである。This means that for a cutting blade made of a single layer of plate material, if the components of the cutting blade are evenly distributed, ideally the cutting edge of the cutting plate will wear out in a symmetrical cross-section as shown in Figure 3. In fact, slight unevenness in the components of the cutting blade causes uneven wear as shown in Figure 4.A lateral force is applied to the tip of the blade on the unevenly worn plate, causing the cutting blade edge to become uneven. This is because it is easy to bend as shown in 5.
[問題点を解決するための手段(及び作用)コ木発明は
多層構造極薄切断ブレードにおいて、各層の砥粒と結合
用レジンボンド材を可塑性材に調整し、この可塑性材を
カレンダーロールにより極く薄いシート状板状材に成形
するというコントロールしやすい方法にすることで各層
ごとの厚みムラを極力排すことを可能とし、なおかつ、
各層の形成にプレス圧力を利用しないので、各層間にプ
レス圧力の不均一性に起因する密度ムラが生じず、従っ
て極薄切断プレート中にアンバランスな内部応力を残さ
ないので一体成形後にソリを生じることもないものとし
た。[Means (and effects) for solving the problem] The present invention is a multi-layer ultra-thin cutting blade in which the abrasive grains and bonding resin bond material of each layer are adjusted to a plastic material, and this plastic material is ultra-thin using a calendar roll. By using an easy-to-control method of forming thin sheets of material, it is possible to eliminate uneven thickness of each layer as much as possible.
Since press pressure is not used to form each layer, density unevenness due to non-uniformity of press pressure does not occur between each layer, and unbalanced internal stress is not left in the ultra-thin cutting plate, so warpage is prevented after integral molding. It was assumed that it would never occur.
以上のように本発明の極薄切断ブレードは。As described above, the ultra-thin cutting blade of the present invention.
各層の厚みをその一層の中でもばらつかず、また精密に
その厚みをコントロールでき、また密度むらかないので
全厚みが0.5mm以下の極薄切断ブレードであっても
そりか生ずることもない。The thickness of each layer does not vary even within a single layer, the thickness can be precisely controlled, and there is no density unevenness, so even an ultra-thin cutting blade with a total thickness of 0.5 mm or less does not cause warpage.
また、単層の板状材からなる極薄切断ブレードの切断中
の曲りという問題を解決するために、中心層の両側面の
層か中心層よりも摩耗率か小さい構造とし、極薄切断ブ
レードの厚み方向に摩耗しやすい部分と摩耗しにくい部
分を設けることにより偏摩耗を起こしにくい構造とする
ことができる。In addition, in order to solve the problem of bending during cutting with an ultra-thin cutting blade made of a single layer of plate material, the layers on both sides of the center layer have a structure that has a lower wear rate than the center layer, and the ultra-thin cutting blade By providing a portion that is easily worn and a portion that is less likely to wear in the thickness direction, it is possible to create a structure that is less likely to cause uneven wear.
[実施例]
本発明の多層構造極薄切断ブレードは、少なくとも外側
層に含有させる砥粒として超砥粒か好ましいか、その他
一般砥粒も場合によっては用いることがてきる。特に、
天然、並びに合成ダイヤモンド、CBN、カーボランダ
ム(C)。[Example] In the multilayer structure ultra-thin cutting blade of the present invention, it is preferable that the abrasive grains contained in at least the outer layer be superabrasive grains, or other general abrasive grains may be used depending on the case. especially,
Natural and synthetic diamonds, CBN, carborundum (C).
グリーンカーボランダム(aC)、アランタム(A)、
ホワイトアランダム(WA)、炭化硼素等が目的に応じ
、単独又は混合して用いられる。Green carborundum (aC), arantum (A),
White alundum (WA), boron carbide, etc. are used alone or in combination depending on the purpose.
砥粒の粒径は極薄切断の目的に応じて選択される。砥粒
率(集中度)は普通2〜70vo 1%、−船釣には6
〜30vo 1%、好ましくは7.5〜20vo 1%
程度である。The grain size of the abrasive grains is selected depending on the purpose of ultra-thin cutting. Abrasive grain rate (concentration) is normally 2 to 70vo 1%, - 6 for boat fishing
~30vo 1%, preferably 7.5-20vo 1%
That's about it.
砥材層には砥粒の他の所定の骨材ないし充填剤を適量含
有することは差し支えない。骨材としては、無機質又は
有機質の充填剤が使用され、無機質としてはCa、Mg
、BA、K。The abrasive material layer may contain an appropriate amount of a predetermined aggregate or filler other than the abrasive grains. An inorganic or organic filler is used as the aggregate, and the inorganic materials include Ca, Mg
, B.A., K.
Na等の炭酸塩、Ca、Ba等の硫酸塩、Zn、Zr、
An、Cr、Se等の金属酸化物、真鍮、Cu、AK、
Fe、Ni、Co等の金属粉、アスベスト、ガラス短繊
維、炭素繊維等の無機繊維、その他黒鉛、カーボン。Carbonates such as Na, sulfates such as Ca and Ba, Zn, Zr,
Metal oxides such as An, Cr, Se, brass, Cu, AK,
Metal powders such as Fe, Ni, and Co, asbestos, short glass fibers, inorganic fibers such as carbon fibers, and other graphite and carbon.
MoS、等によって構成される。It is composed of MoS, etc.
その製造法はレジンボンドを使用する場合はカレンダー
ロール圧延法を用いるのが、■ その層厚みをコントロ
・−ルするのが容易である。When a resin bond is used, a calendar roll rolling method is used as the manufacturing method, since it is easy to control the layer thickness.
■ その層内に厚みムラを生じさせない。■ Prevents uneven thickness within the layer.
■ 均一な組成の板状材を安定して得られる。■ A plate material with a uniform composition can be stably obtained.
といった面から望ましい。It is desirable from this point of view.
たとえば、第1図に示すように砥材厚さの方向の両端に
硬質な砥材層lを設ける場合には、各砥材層の組成を変
更し、異なった性質のシートを製造した後、積層圧延し
、硬質部にサンドイッチされたシートを得、これを加圧
焼成して得る。For example, when providing hard abrasive layers l at both ends of the abrasive material thickness as shown in FIG. 1, after changing the composition of each abrasive material layer and manufacturing sheets with different properties, Laminate rolling is performed to obtain a sheet sandwiched between hard parts, which is then pressure fired.
この場合の樹脂結合剤としては、熱硬化性又は熱可塑性
のものを用いることができ、たとえば、エポキシ樹脂、
フェノール樹脂(ノボラック型、レゾール型又はこれら
の混合物)、各種変性フェノール樹脂(エポキシ変性、
アニリン変性、ゴム変性、熱可塑性樹脂変性、フラン変
性等)、メラミン樹脂、ポリイミド樹脂、天然ゴム、剛
性ゴム、ジアリルフタレート樹脂、シェラツク、尿素樹
脂、ナイロン、飽和又は不飽和ポリエステル樹脂、シリ
コン樹脂、弗素樹脂、セルロース系樹脂、アクリル系樹
脂等か用いられる。好ましくはノボラック型又はレゾー
ル型フェノール樹脂、変性フェノール樹脂が用いられる
。これらの外、公知のレジンボンド砥石用結合剤を用い
ることができる。The resin binder in this case can be thermosetting or thermoplastic, such as epoxy resin,
Phenolic resins (novolac type, resol type or mixtures thereof), various modified phenolic resins (epoxy modified,
(aniline modified, rubber modified, thermoplastic resin modified, furan modified, etc.), melamine resin, polyimide resin, natural rubber, rigid rubber, diallyl phthalate resin, shellac, urea resin, nylon, saturated or unsaturated polyester resin, silicone resin, fluorine Resin, cellulose resin, acrylic resin, etc. are used. Preferably, a novolac type or resol type phenolic resin or a modified phenolic resin is used. In addition to these, known binders for resin bonded grindstones can be used.
実施例1 第1図に本発明を適用した場合の例を示す。Example 1 FIG. 1 shows an example where the present invention is applied.
とからなる原材料を秤量し、乳鉢内に移し、充分混合攪
拌をし可塑性材を得た。The raw materials consisting of were weighed, transferred into a mortar, and sufficiently mixed and stirred to obtain a plastic material.
また、三層構造を目的と゛して、上記可塑性材の調合比
又は材料を変更し硬、軟差すなわち摩耗率の差をつける
。In addition, with the aim of creating a three-layer structure, the blending ratio or material of the plastic material is changed to create differences in hardness and softness, that is, differences in wear rate.
ここでは、前述の調合において、ホワイトアランダム(
WA)の全量をフェノール樹脂とした可塑性材を別途調
合し軟質層用(摩耗率が大きい暦月)とした。Here, in the aforementioned formulation, white alundum (
A plastic material in which the entire amount of WA) was made of phenolic resin was separately prepared and used for the soft layer (calendar months with high wear rate).
得られた可塑性材をそれぞれカレンダーロールにて圧延
しシート状の2種の砥材板状材を得た。The obtained plastic materials were each rolled using a calendar roll to obtain two types of sheet-like abrasive plate materials.
第1図に示すように砥材厚さの方向の両端に摩耗率の小
さい砥材層を設けるため、上記調合例の組成のうち軟質
層用のシートを硬質層用のシートで両面からはさみ、積
層とし、さらに、カレンダーロール法により圧着圧延し
、三層か積層一体となったシートを得た。As shown in FIG. 1, in order to provide abrasive layers with a small wear rate at both ends in the thickness direction of the abrasive material, a sheet for the soft layer of the composition of the above formulation example is sandwiched from both sides with a sheet for the hard layer. This was laminated and then pressure-rolled using a calendar roll method to obtain a three-layer or integrally laminated sheet.
このシートを所定形状に打ち抜き、オーブン中にて室温
から190℃まで約8時間加熱し、全厚2004m、厚
さばらつき±5gm以下の均質な三層構造をもつ極薄切
断プレートを得た。This sheet was punched into a predetermined shape and heated in an oven from room temperature to 190° C. for about 8 hours to obtain an ultra-thin cut plate having a homogeneous three-layer structure with a total thickness of 2004 m and a thickness variation of ±5 gm or less.
この三層構造のレジンボンド切断ブレードを使用して、
シリコンウェハーを繰り返し切断したところ、したいに
切断プレート先端が図2に示すように、外層側に2個の
山を持った形状に摩耗した。これは中心層である第1の
板状材にくらべて、外層である第2の板状材が硬質の砥
材層のため摩耗しにくく、この摩耗しにくい部分か両側
面にあるため互いに進路を規制し合いながら摩耗するか
らである。その結果、偏摩耗を起こしにくく、また摩耗
し易い中心層が早く減り、外側面側か残るので、図2に
示すような形状となる。この際、従来の単層の切断プレ
ートてシリコンウェハーを切断した場合にくらべて、切
断面がわん曲せず、切断の直進性にも憤れ、また切断ブ
レードに無理な力が加わらず切断ブレードの振動も減少
したことにより切断面に発生するキズやチッピングも減
少した。Using this three-layer resin bond cutting blade,
When a silicon wafer was repeatedly cut, the tip of the cutting plate gradually wore out into a shape with two peaks on the outer layer side, as shown in FIG. This is because compared to the first plate-like material which is the center layer, the second plate-like material which is the outer layer is hard to wear because it is a hard abrasive layer. This is because they wear out while regulating each other. As a result, the center layer, which is less likely to cause uneven wear and is more likely to wear, is quickly reduced and only the outer surface remains, resulting in the shape shown in FIG. 2. At this time, compared to when cutting silicon wafers using a conventional single-layer cutting plate, the cut surface does not curve, the straightness of the cut is not as good, and the cutting blade does not have excessive force applied to it. The reduction in vibration also reduces scratches and chipping on the cutting surface.
その理由は、切断ブレードの偏摩耗が少なく、切断ブレ
ードに無理な力が加わらないことと、両側面側の山の部
分が被切断物に最初に当り、この2個の山によりて被切
断材料に2本の溝をつけ、2本の溝が互いに進路を規制
し合いながらブレード厚み全体の切断か進行するからで
ある。また、切断寸法の狂いも小さく、安定した状態で
の切断か長時間行えるので、極薄切断ブレードの形状修
正加工(ツルーイング、トレシング)をする作業間隔か
大幅に伸びた。The reason for this is that the uneven wear of the cutting blade is small and no excessive force is applied to the cutting blade, and the ridges on both sides hit the object to be cut first, and these two ridges cause the material to be cut. This is because two grooves are formed on the blade, and the two grooves mutually restrict the course of the blade as it cuts through the entire thickness of the blade. In addition, deviations in cutting dimensions are small, and cutting can be performed in a stable state for a long time, so the time required for shape correction processing (truing, tracing) of ultra-thin cutting blades has been significantly extended.
実施例2
実施例1中の合成ダイヤモンドからなる砥粒とレジン結
合剤の比を変化させ、すなわち集中度を変化させること
で三層構成の硬軟差をつけた。ここでは、合成ダイヤモ
ンド砥粒が10vo1%のものを軟質材とし、25vo
1%のものを硬質材とする。他は実施例1と同様にして
三層構造をもつ極薄切断ブレードを得た。Example 2 The ratio of the abrasive grains made of synthetic diamond in Example 1 to the resin binder was changed, that is, the degree of concentration was changed to create a hardness/softness difference in the three-layer structure. Here, synthetic diamond abrasive grains of 10vo 1% are used as soft materials, and 25vo
1% is considered a hard material. The rest was the same as in Example 1 to obtain an ultra-thin cutting blade with a three-layer structure.
本実施例においても実施例1と同様の効果が得られた。In this example as well, the same effects as in Example 1 were obtained.
[他の実施例]
実施例3
実施例2と同じく、ダイヤモンド砥粒と結合用レジンボ
ンド材を混合して成る第1の板状材の両側面に、その摩
耗率が第1の板状材よりも小さくなるようにダイヤモン
ド砥粒と結合用レジンボンド材の配合割合を変えた第2
の板状材を積層した三層の板状材のさらに外側に第1の
板状材と同一組成の第3の板状材を積層して五層構造の
板状材とし、五層構造の極薄切断ブレードとした。製造
方法は五層構成とした以外は、実施例2と同じである。[Other Examples] Example 3 Similar to Example 2, a first plate-shaped material made of a mixture of diamond abrasive grains and a bonding resin bond material was coated on both sides with a wear rate equal to that of the first plate-shaped material. The second method, in which the blending ratio of diamond abrasive grains and bonding resin bond material was changed so that the size was smaller than
A third plate material having the same composition as the first plate material is further laminated on the outside of the three-layer plate material made of laminated plate materials to form a five-layer structure plate material. It has an ultra-thin cutting blade. The manufacturing method was the same as in Example 2 except for the five-layer structure.
以上のようにして作成した五層構造のレシンボンド極薄
切断ブレードを使用してシリコンウェハーを繰り返し切
断したところ、実施例工。When silicon wafers were repeatedly cut using the resin bond ultra-thin cutting blade with the five-layer structure created as described above, an example work was obtained.
実施例2と同様の効果が得られたばかりでなく、最も外
側の層である第3の板状材が相対的に砥粒含有率が小さ
いため、被切断材料の切断面に発生するキズ、チッピン
グ等が実施例2よりもさらに減少した。Not only was the same effect as in Example 2 obtained, but the third plate material, which is the outermost layer, has a relatively low abrasive grain content, which reduces scratches and chipping that occur on the cut surface of the material to be cut. etc. were further reduced than in Example 2.
また、本実施例では三層、五層構造の極薄切断ブレード
について述べたが、複数の薄い層を厚みの中心から徐々
にその組成を変更しながら層を重ね合わせていった多層
構造の極薄切断ブレードも得ることができる。ただし、
この場合には同一の組成の厚みを厚さ方向に対称に配置
する必要かある。In addition, in this example, ultra-thin cutting blades with a three-layer or five-layer structure were described, but an ultra-thin cutting blade with a multi-layer structure in which multiple thin layers are stacked one on top of the other while gradually changing the composition from the center of the thickness is also described. Thinning blades can also be obtained. however,
In this case, it is necessary to arrange the thicknesses of the same composition symmetrically in the thickness direction.
[発明の効果]
本発明により多層構造極薄切断ブレードか、■ 各層ご
との厚みムラを極力排する構成となり、
■ 一体成形後のソリが発生しに〈〈なり、■ 全厚み
な極く薄くしたものが可能となり、■ 精密に各層の厚
みをコントロールされたものとなる。[Effects of the invention] According to the present invention, the multi-layered ultra-thin cutting blade has a structure that ■ minimizes uneven thickness of each layer, ■ prevents warping after integral molding, and ■ makes the total thickness extremely thin. ■ The thickness of each layer can be precisely controlled.
また、製造の管理自動化がしやすいカレンダーロール法
を採用しているので、均質な性能の極薄切断ブレードの
量産を実施しやすい。さらに本極薄切断ブレードにおい
て、両側面層の摩耗率を中心層よりも小さくすることに
よって、全厚みが0.5mm以下という極薄切断ブレー
ドであるにもかかわらず、偏摩耗を起こしにくく、その
結果、■切断面が曲からない、■切断の直進性が良い、
■切断面にキズ、チッピング等を発生しにくい、■極薄
切断ブレードの形状修正作業を大幅に省くことができる
層構造を有する極薄切断ブレードを得られる。In addition, it uses a calendar roll method that facilitates automated manufacturing management, making it easy to mass-produce ultra-thin cutting blades with uniform performance. Furthermore, in this ultra-thin cutting blade, by making the wear rate of both side layers smaller than that of the center layer, even though it is an ultra-thin cutting blade with a total thickness of 0.5 mm or less, uneven wear is less likely to occur. As a result, ■The cut surface does not curve, ■Good straightness of cutting.
It is possible to obtain an ultra-thin cutting blade with a layered structure that is less likely to cause scratches, chipping, etc. on the cutting surface, and which greatly reduces the need to modify the shape of an ultra-thin cutting blade.
第1図は本発明を実施した三層構造の極薄切断ブレード
外観図。
第2図は第1図のA−A’断面図で、本発明を実施した
使用中の切断ブレードの使用中の先端の摩耗の状態を示
す。
第3図は従来の均一な組成の単層切断ブレード先端の断
面図で、理想的に摩耗した状態を示す。
第4図は従来の均一な組成の単層切断ブレード先端の断
面図で、偏摩耗した状態を示す。
第5図は従来の均一な組成の単層切断ブレードが切断中
に曲がる様子を模式的に示した断面図である。
l・・・切断ブレードを構成する第1層(内層)2.3
・・・切断ブレードを構成する第2層(外層)4・・・
三層構造を有する切断ブレード5・・・均一な組成の単
層切断プレート6・・・被切断材料FIG. 1 is an external view of a three-layer ultra-thin cutting blade according to the present invention. FIG. 2 is a cross-sectional view taken along the line AA' in FIG. 1, showing the state of wear at the tip of the cutting blade in use according to the present invention. FIG. 3 is a cross-sectional view of the tip of a conventional monolayer cutting blade having a uniform composition, showing an ideally worn state. FIG. 4 is a sectional view of the tip of a conventional single-layer cutting blade having a uniform composition, showing a state of uneven wear. FIG. 5 is a cross-sectional view schematically showing how a conventional single-layer cutting blade having a uniform composition bends during cutting. l...First layer (inner layer) constituting the cutting blade 2.3
...Second layer (outer layer) 4 constituting the cutting blade...
Cutting blade 5 having a three-layer structure...Single layer cutting plate 6 with uniform composition...Material to be cut
Claims (3)
た可塑性材をロールによって圧延し第1の板状材とし、
前記可塑性材と組成の異なる可塑性材をロールによって
圧延し第2の板状材とし、第1の板状材の両側面に第2
の板状材を積層したのちロールによって圧延し、積層材
を圧着したのち加圧しながら加熱することによって成形
された層構造を有することを特徴とする全厚みが0.5
mm以下の極薄切断ブレード。(1) A plastic material made by adding a solvent to fine abrasive powder and a bonding resin bond material is rolled with a roll to form a first plate-shaped material,
A plastic material having a different composition from the plastic material is rolled with a roll to form a second plate material, and a second plate material is formed on both sides of the first plate material.
It has a layered structure formed by laminating plate-like materials, rolling them with rolls, compressing the laminated materials, and then heating while applying pressure.The total thickness is 0.5.
Ultra-thin cutting blade less than mm.
第1の板状材に比べて小さいことを特徴とする第1項記
載の全厚みが0.5mm以下の極薄切断ブレード。(2) Extremely thin with a total thickness of 0.5 mm or less according to item 1, wherein the second plate material has a lower wear rate than the first plate material. cutting blade.
様な方法において複数の板状材を設けたことを特徴とす
る全厚みが0.5mm以下の極薄切断ブレード。(3) Ultra-thin cutting with a total thickness of 0.5 mm or less characterized by providing a plurality of plate-like materials on the outside of the second plate-like material in item 1 by the same method as described in item 1. blade.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20545388A JPH0253566A (en) | 1988-08-18 | 1988-08-18 | Extremely thin cutting blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20545388A JPH0253566A (en) | 1988-08-18 | 1988-08-18 | Extremely thin cutting blade |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0253566A true JPH0253566A (en) | 1990-02-22 |
Family
ID=16507131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20545388A Pending JPH0253566A (en) | 1988-08-18 | 1988-08-18 | Extremely thin cutting blade |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0253566A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012223867A (en) * | 2011-04-21 | 2012-11-15 | Mitsubishi Materials Corp | Cutting blade |
JP2012223868A (en) * | 2011-04-21 | 2012-11-15 | Mitsubishi Materials Corp | Cutting blade |
-
1988
- 1988-08-18 JP JP20545388A patent/JPH0253566A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012223867A (en) * | 2011-04-21 | 2012-11-15 | Mitsubishi Materials Corp | Cutting blade |
JP2012223868A (en) * | 2011-04-21 | 2012-11-15 | Mitsubishi Materials Corp | Cutting blade |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100563932C (en) | Milling tool and manufacture method thereof with patterned grit distribution | |
JP5506064B2 (en) | Grinding wheel for fine trimming, its use and its manufacturing method and apparatus | |
JP4084070B2 (en) | Manufacturing method of multilayer blade | |
US20090094902A1 (en) | Grinding Tools that Contain Uniform Distribution of Abrasive Grits and Method of Manufacture Thereof | |
JPS6336905B2 (en) | ||
CA2426532A1 (en) | A method of making a composite abrasive compact | |
JPH0543462B2 (en) | ||
US4448591A (en) | Cutting insert having unique cross section | |
KR100623304B1 (en) | Cutting segment, method for manufacturing cutting segment and cutting tool | |
KR20050118074A (en) | Cutting segment, method for manufacturing cutting segment and cutting tool | |
TW478995B (en) | Method of polishing stainless steel laminate press plates to a nondirectional finish | |
JPH0253566A (en) | Extremely thin cutting blade | |
KR100794297B1 (en) | Manufactoring process for multi-layer abrasive material | |
JP2644545B2 (en) | Ultra-thin cutting blade | |
JP2644546B2 (en) | Ultra-thin cutting blade | |
JPH01121175A (en) | Wafer-thin cutting blade | |
JPH01121176A (en) | Wafer-thin cutting blade | |
JP2644544B2 (en) | Ultra-thin cutting blade | |
KR100872905B1 (en) | Manufactoring apparatus of grouped abrasive material | |
JPH01183371A (en) | Extremely thin cutting blade | |
JPH0457473B2 (en) | ||
JPH0265973A (en) | Super finishing grindstone consisting of plural super abrasive grain sheet and manufacture thereof | |
JP2602074B2 (en) | Grinding wheel having multiple superabrasive layers and method for producing the same | |
JPH01121177A (en) | Cutting blade | |
JPS6294262A (en) | Manufacture of super abrasive grain grindstone |