JPH01183371A - Extremely thin cutting blade - Google Patents

Extremely thin cutting blade

Info

Publication number
JPH01183371A
JPH01183371A JP438288A JP438288A JPH01183371A JP H01183371 A JPH01183371 A JP H01183371A JP 438288 A JP438288 A JP 438288A JP 438288 A JP438288 A JP 438288A JP H01183371 A JPH01183371 A JP H01183371A
Authority
JP
Japan
Prior art keywords
blade
cutting
cutting blade
thin cutting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP438288A
Other languages
Japanese (ja)
Inventor
Kiwa Mikuni
三國 喜和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Diamond Industries Co Ltd
Original Assignee
Noritake Diamond Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Diamond Industries Co Ltd filed Critical Noritake Diamond Industries Co Ltd
Priority to JP438288A priority Critical patent/JPH01183371A/en
Publication of JPH01183371A publication Critical patent/JPH01183371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To reduce falling of a blade on relatively severe cutting condition so as to enable linear cutting by providing respective surface grinding material layer on both surfaces of a substrate into a sandwich structure. CONSTITUTION:On both surfaces of a resin made substrate 2, respective grinding material layers 1 are formed by electrodepositing or electroless plating, to provide a desired extremely thin cutting blade in a sandwich structure. In cutting hard and brittle material such as silicon semi-conductor using such a blade 10, since the blade 10 has a higher surface hardness but, in the inside, it has a preferable cutting property depending on the grinding material layer 1, it is possible to reduce falling of the blade 10 so as to perform linear cutting of the hard and brittle material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン半導体材料のような硬脆材料の精密
切断及び溝加工に適した極薄切断ブレードに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultra-thin cutting blade suitable for precision cutting and grooving of hard and brittle materials such as silicon semiconductor materials.

〔従来の技術〕[Conventional technology]

従来、かかる極薄切断ブレードとしては、特開昭48−
23594号公報に記載されているように、砥材をレジ
ン結合材によって結合した単一組成を有し、カレンダー
ロール圧延法、粉末チャージホットプレス法、コールド
プレス法、印刷法等によって製造された厚さが0.5f
flff1以下のレジンボンド型のものが使用され、切
れ味が優れているという利点がある。
Conventionally, such ultra-thin cutting blades have been disclosed in Japanese Patent Application Laid-open No. 48-
As described in Japanese Patent No. 23594, it has a single composition in which an abrasive material is bonded with a resin binder, and is manufactured by a calender roll rolling method, a powder charge hot press method, a cold press method, a printing method, etc. Saga 0.5f
A resin bond type with a flff of 1 or less is used, and has the advantage of excellent sharpness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、半導体製造の効率化に伴い、単結晶材料の切断速
度を早めることがそのキーポイントを締めるに至ってい
る。
In recent years, as semiconductor manufacturing becomes more efficient, increasing the cutting speed of single-crystal materials has become key.

ところが、従来の極薄切断ブレードではブレード強度上
の問題があり、単結晶素材の切断速度の高速度化に際し
て発生ず・る高衝撃に耐えることができない。
However, conventional ultra-thin cutting blades have problems with blade strength, and cannot withstand the high impact that occurs when cutting single crystal materials at high speeds.

本発明の目的は、このような高硬度で、且つ高脆性を有
する半導体材料の高速度切断のニーズに対応するために
、切断時のブレードの折れに対しての強度、曲げ強度を
改善することにある。
The purpose of the present invention is to improve the strength and bending strength of the blade against breakage during cutting, in order to meet the needs for high-speed cutting of semiconductor materials that have high hardness and high brittleness. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の極薄切断ブレードは、ブレード自体をサントイ
フチ構造とすることによってブレードの曲げ強度を高め
て上記目的を達成したものである。
The ultra-thin cutting blade of the present invention achieves the above object by increasing the bending strength of the blade by making the blade itself have a straight-edge structure.

第1図は本発明の極薄切断ブレードの全体構造を示すも
ので、第2図は第1図のA−A線における断面構造を示
す図である。
FIG. 1 shows the overall structure of the ultra-thin cutting blade of the present invention, and FIG. 2 is a diagram showing the cross-sectional structure taken along the line AA in FIG. 1.

本発明の極薄切断ブレード10は、断面構造を示す第2
図を参照して、1は基板2の全表面に薄(形成された砥
材層を示す。
The ultra-thin cutting blade 10 of the present invention has a second cross-sectional structure.
Referring to the figure, 1 indicates a thin (formed) abrasive material layer on the entire surface of the substrate 2.

上記サンドイッチ構造にするに当たっては、ブレード自
体の厚みを厚くしてはならず、また、その切れ味を低下
させてはならないという条件を満たす必要がある。
In creating the above-mentioned sandwich structure, it is necessary to satisfy the conditions that the thickness of the blade itself must not be increased and its sharpness must not be reduced.

第3図はその構造の詳細を示す。FIG. 3 shows details of the structure.

同図を参照して、砥材層1としては、全ブレードの厚み
の約lO%で充分であり、砥材3の種類、粒度はとくに
限定されないが、一般的に刃厚の1/2〜1/3の粒度
のものを使用することが好ましい。
Referring to the figure, it is sufficient for the abrasive material layer 1 to be approximately 10% of the thickness of the entire blade, and the type and particle size of the abrasive material 3 are not particularly limited, but are generally 1/2 to 1/2 of the blade thickness. It is preferable to use particles with a particle size of 1/3.

基材2としては、フェノール、ノボラック等の合成樹脂
ボンド材のように、通電性を有し、薄板に加工容易で、
その上曲げ強度の高い材料を使用する。
The base material 2 may be a synthetic resin bond material such as phenol or novolak, which has electrical conductivity and is easy to process into a thin plate.
Moreover, a material with high bending strength is used.

基板2として樹脂を使用した場合には、表面に形成する
砥材層1は焼結による形成が不可能となるので、電着あ
るいは無電解メッキによって砥材層を形成させるのが良
い。
When resin is used as the substrate 2, it is impossible to form the abrasive layer 1 on the surface by sintering, so it is preferable to form the abrasive layer by electrodeposition or electroless plating.

砥材層1を電着によって形成する場合には、基板2にリ
ード線をつけ、基板2表面に砥材を散布した後に電着浴
において通電させる電気メッキを行うことができる。
When the abrasive material layer 1 is formed by electrodeposition, electroplating can be performed by attaching lead wires to the substrate 2, spreading the abrasive material on the surface of the substrate 2, and then applying electricity in an electrodeposition bath.

また、電着に代わって、無電解N!メッキによる砥材層
1の形成は、非電導体へのメッキが可能で、凹凸のある
表面にも均一な厚さのメッキを析出させることが可能で
あり、さらには、膜厚の制御が容易である、メッキ層の
機械的性質が優れている、メッキに際しての装置や治具
が簡単である等の点から好ましい。
Also, in place of electrodeposition, electroless N! Forming the abrasive material layer 1 by plating allows plating on non-conductors, depositing a uniform thickness of plating even on uneven surfaces, and furthermore, making it easy to control the film thickness. It is preferable because the mechanical properties of the plating layer are excellent, and the equipment and jig used for plating are simple.

〔実施例〕〔Example〕

粉末ホットプレス法によって、厚み0.19m、内径4
0mm、外径52則のサイズの樹脂とダイヤからなる基
板2を作成した。
By powder hot press method, thickness 0.19m, inner diameter 4
A substrate 2 made of resin and diamond with a size of 0 mm and an outer diameter according to the rule of 52 was created.

同基板20表面を脱脂後にセンシタイザ−法で還元力の
強い錫イオンを表面に吸着させて、アクナベ−ター法で
無電解メッキの触媒になるパラジウム金属を吸着させた
後に、ダイヤモンド粒子からなる砥材層を表面に分布し
たのち、90℃、20分の条件で無電解メッキを施して
、均一にNiが分散して、基材2との接着状態が良好の
0.01m5厚みを有する砥材層1を得た。
After degreasing the surface of the substrate 20, a sensitizer method is used to adsorb tin ions with strong reducing power on the surface, and an aqunavator method is used to adsorb palladium metal, which becomes a catalyst for electroless plating. After distributing the layer on the surface, electroless plating was performed at 90° C. for 20 minutes to form an abrasive layer with a thickness of 0.01 m5, in which Ni was uniformly dispersed and the adhesive state with the base material 2 was good. I got 1.

その結果、基材2の全表面に得られた極薄切断ブレード
は、従来の極薄切断ブレードと比較して以下の通りの特
性を有するものであった。
As a result, the ultra-thin cutting blade obtained on the entire surface of the base material 2 had the following characteristics compared to the conventional ultra-thin cutting blade.

すなわち、ダイシングM/Cにて、ガラス、セラミック
からなる複合材料を切断すると、以下の表に示すごとく
、従来に比べて切断速度を少なくとも2倍以上にするこ
とが可能となる。
That is, when a composite material made of glass and ceramic is cut with a dicing M/C, the cutting speed can be at least twice as high as that of the conventional method, as shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明の極薄切断ブレードは表面硬度は高いが、内部は
切れ味の良いレジン砥材層の性質をもち、比較的厳しい
切断の条件下で、ブレードだおれによる曲がり切れおよ
びチッピングの面で優れたもので、以下のとおりの効果
を奏する。
The ultra-thin cutting blade of the present invention has a high surface hardness, but the inside has a resin abrasive layer with good sharpness, and is excellent in terms of bending and chipping due to blade sagging under relatively severe cutting conditions. It has the following effects.

イ、レジン極薄切断作業において、切り込み深さ。A. Depth of cut in ultra-thin resin cutting work.

切断速度を増加させても、従来のブレードと比較してブ
レードの倒れ発生が少なくなり、直線切りが可能となる
Even if the cutting speed is increased, the blade is less prone to collapse compared to conventional blades, making straight cuts possible.

口8表面が熱伝導性に優れており、クールカットが可能
である。
The surface of the mouth 8 has excellent thermal conductivity, allowing for cool cuts.

ハ、基材レジン砥石と電着部との砥粒径をコントロール
して、チッピングの少ないもの、切れ味重視のものとい
うように、ブレード応用範囲が拡大できる。
C. By controlling the abrasive grain size of the base resin grindstone and the electrodeposited part, the range of blade applications can be expanded, such as those with less chipping and those with emphasis on sharpness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の極薄切断ブレードの全体構造を示し、
第2図はその断面構造を示す。また、第3図は本発明の
極薄切断ブレードの構造の詳細を示す。
FIG. 1 shows the overall structure of the ultra-thin cutting blade of the present invention,
FIG. 2 shows its cross-sectional structure. FIG. 3 also shows details of the structure of the ultra-thin cutting blade of the present invention.

Claims (1)

【特許請求の範囲】 1、基板表面に表面砥材層を設け、サンドイッチ構造を
形成したことを特徴とする極薄切断ブレード。 2、基板がボンド材からなり、表面層がメッキ砥材層か
らなることを特徴とする特許請求の範囲第1項に記載の
極薄切断ブレード。
[Claims] 1. An ultra-thin cutting blade characterized in that a surface abrasive layer is provided on the surface of a substrate to form a sandwich structure. 2. The ultra-thin cutting blade according to claim 1, wherein the substrate is made of a bond material and the surface layer is made of a plating abrasive material layer.
JP438288A 1988-01-11 1988-01-11 Extremely thin cutting blade Pending JPH01183371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP438288A JPH01183371A (en) 1988-01-11 1988-01-11 Extremely thin cutting blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP438288A JPH01183371A (en) 1988-01-11 1988-01-11 Extremely thin cutting blade

Publications (1)

Publication Number Publication Date
JPH01183371A true JPH01183371A (en) 1989-07-21

Family

ID=11582807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP438288A Pending JPH01183371A (en) 1988-01-11 1988-01-11 Extremely thin cutting blade

Country Status (1)

Country Link
JP (1) JPH01183371A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691547A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JPH0691548A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JP2006082187A (en) * 2004-09-16 2006-03-30 Mitsubishi Materials Corp Thin blade grinding wheel
JP2012223867A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Cutting blade
JP2012223868A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Cutting blade
JP2013154425A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691547A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JPH0691548A (en) * 1991-05-23 1994-04-05 Mitsubishi Materials Corp Flexible disk grinding wheel
JP2006082187A (en) * 2004-09-16 2006-03-30 Mitsubishi Materials Corp Thin blade grinding wheel
JP2012223867A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Cutting blade
JP2012223868A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Cutting blade
JP2013154425A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade

Similar Documents

Publication Publication Date Title
US6342301B1 (en) Diamond sintered compact and a process for the production of the same
CN104308755A (en) Resin CBN (cubic boron nitride) grinding wheel for machining saw blade base body
KR20080077094A (en) Aluminum/silicon carbide composite and heat radiation part making use of the same
US4460382A (en) Brazable layer for indexable cutting insert
CN114086016B (en) Aluminum-based diamond composite material with high finish and preparation method thereof
JPH01183371A (en) Extremely thin cutting blade
JPS6099443A (en) Die for honeycomb forming and its manufacture
US12037293B2 (en) Laminated cermet tool material with surface self generated micro texture and its preparation method
JPH0215977A (en) Diamond grindstone and manufacture thereof
CN102528166A (en) Grinding type fretsaw
CN116060717A (en) High-precision coating method for diamond metal composite material surface
JPH0536191B2 (en)
KR101113934B1 (en) Method of forming hole in difficult-to-work material and difficult-to-work material having hole formed by the method
JPS6165776A (en) Manufacture of grinder element for lubricated cutting processing
JPH06304820A (en) Cutter and manufacture thereof
JP2002137168A (en) Super abrasive tool
JP2001252876A (en) Super abrasive grain cutting wheel comprising substrate of powder type high speed tool steel
CN103128675B (en) Diamond grinding wheel working layer material and preparation method thereof
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JPH08309666A (en) Electrodeposition grinding wheel and manufacture thereof
JPS6257872A (en) Sintered metal bond grinding wheel
JP2002160166A (en) Super abrasive grain tool
JPH01121176A (en) Wafer-thin cutting blade
JP3132980B2 (en) Cutting whetstone
JPH04115807A (en) Tool incorporating diamond film