JPH0252330B2 - - Google Patents

Info

Publication number
JPH0252330B2
JPH0252330B2 JP58124280A JP12428083A JPH0252330B2 JP H0252330 B2 JPH0252330 B2 JP H0252330B2 JP 58124280 A JP58124280 A JP 58124280A JP 12428083 A JP12428083 A JP 12428083A JP H0252330 B2 JPH0252330 B2 JP H0252330B2
Authority
JP
Japan
Prior art keywords
layer
recording
polymer film
light
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58124280A
Other languages
Japanese (ja)
Other versions
JPS6015843A (en
Inventor
Yasushi Myazono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP58124280A priority Critical patent/JPS6015843A/en
Publication of JPS6015843A publication Critical patent/JPS6015843A/en
Publication of JPH0252330B2 publication Critical patent/JPH0252330B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00451Recording involving ablation of the recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳现な説明】 本発明は光孊匏情報凊理装眮に䜿甚される光メ
モリヌデむスクに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical memory disk used in an optical information processing device.

この光メモリヌデむスクは、第図に瀺すよう
に、レヌザ光を円板状透明基板偎よりレンズで
集光、照射し、蚘録局を局郚的に溶融、昇華せ
しめ、玄1Όの盎埄を有する小孔、いわゆる蚘
録ピツトを圢成し、その蚘録ピツトの有無による
反射率の倉化により情報再生を行うものである。
そしお、本䟋では、蚘録局を被着させた円板状
透明基板を個甚意しお、蚘録局を盞互に察
向させお、透明基板の内呚端及び倖呚端にスペ
ヌサを挿入しお、䞭空領域を蚭け、透明
基板䞊ずスペヌサずの間に接着剀を塗
垃しお貌り合せ構造にしおいる。
As shown in Fig. 1, this optical memory disk is made by focusing and irradiating laser light with a lens from the disk-shaped transparent substrate 1 side, locally melting and sublimating the recording layer 2, and forming a diameter of about 1 ÎŒm. In this method, small holes, so-called recording pits, are formed, and information is reproduced by changing the reflectance depending on the presence or absence of the recording pits.
In this example, two disc-shaped transparent substrates 1 each having a recording layer 2 attached thereto are prepared, the recording layers 2 are made to face each other, and spacers 3 are provided at the inner and outer peripheral ends of the transparent substrates 1. , 4 are inserted to provide a hollow region 5, and an adhesive 6 is applied between the transparent substrate top 1 and the spacers 3 and 4 to form a bonded structure.

このような構造により、蚘録局は倖気ず遮断
密閉され、湿気などの圱響による劣化を防止し、
たた、倖気に露出された蚘録局の蚘録媒䜓ず察
比しお、蚘録再生を透明基板偎より行う本䟋
は、蚘録局の衚面に付着するごみ、ちり及びキ
ズ等の圱響を100䞇分の皋床にたで䜎枛するこ
ずができ、その結果、蚘録局の安定化及び蚘
録・再生時の誀り率の䜎枛に぀いお䞀応満足しお
いる。
With this structure, the recording layer 2 is sealed and sealed from the outside air, preventing deterioration due to the influence of moisture, etc.
In addition, in contrast to a recording medium with a recording layer 2 exposed to the outside air, this example in which recording and reproduction is performed from the side of the transparent substrate 1 is designed to reduce the effects of dirt, dust, scratches, etc. that adhere to the surface of the recording layer 2 by 1,000,000 minutes. As a result, the stability of the recording layer 2 and the reduction of the error rate during recording and reproduction are reasonably satisfied.

しかし、このような光メモリヌデむスクは、蚘
録感床、安定性及び信号コントラストに぀いお次
のような欠点があ぀た。すなわち、蚘録感床に぀
いおは、レヌザ光は蚘録時においお、そのレヌザ
光量の20〜30が蚘録局を透過し、蚘録ピツト
圢成のために有効利甚されおいないこず、蚘録局
は透明基板に盎接被着しおいるために、基板
衚面の数Ό皋床のきず、凹凞などの圱響を受け
やすいこずなどの欠点があり、たた、蚘録感床及
び安定性ず信号コントラストずの関係に぀いお
は、蚘録感床を向䞊させるために蚘録局の膜厚
を薄くした堎合、R0−R1R0R1ここ
で、R0及びR1はそれぞれ未蚘録郚分及び蚘録郚
分から埗られた反射光信号である。で衚珟され
る信号コントラストが䜎䞋し、前述した安定性も
著しく劣化するこず、逆に、信号コントラストを
高くし、蚘録局の劣化を防止するために、蚘録
局の膜厚を厚くした堎合、蚘録感床が䜎䞋する
ずい぀た盞反する性質を持぀おいるこずから、䞡
者を共に良奜な状態にするこずが䞍可胜であ぀
た。曎に、再生時、蚘録ピツトの茪郭圢状の乱れ
によるノむズが発生し、比を䜎䞋させる欠
点があ぀た。
However, such optical memory disks have the following drawbacks regarding recording sensitivity, stability, and signal contrast. That is, regarding recording sensitivity, during recording, 20 to 30% of the amount of laser light passes through the recording layer 2 and is not effectively used for forming recording pits. Since it is directly adhered to the substrate, it has the disadvantage that it is easily affected by scratches and irregularities of several micrometers on the substrate surface.In addition, the relationship between recording sensitivity and stability and signal contrast is When the film thickness of recording layer 2 is made thinner to improve sensitivity, (R 0 - R 1 )/(R 0 + R 1 ) (where R 0 and R 1 are obtained from the unrecorded area and the recorded area, respectively). The signal contrast expressed by If the thickness of the layer 2 is increased, the recording sensitivity decreases, which are contradictory properties, so it has been impossible to achieve good conditions for both. Furthermore, during reproduction, noise is generated due to disturbance in the contour shape of the recording pit, which has the disadvantage of lowering the S/N ratio.

本発明の目的は、䞊蚘した欠点を陀去するため
になされたものであり、その目的を達成させるた
め、本発明は、透明基板䞊に、金属フタロシアニ
ン、カルコゲン元玠、Bi、In、Pb、Cd、Sn、As
のうちから遞んだ少なくずも䞀぀を分散した状態
で〜20atomic含有し、か぀、1500〜3000Å
の膜厚を有する有機物重合膜から成る第局ず、
Ag、Al、Au、Pt、Cu、Cr、Ni、Rh、カルコゲ
ン元玠のうちから遞んだ少なくずも䞀぀を分散し
た状態で10〜80atomic含有し、か぀、500〜
2000Åの膜厚を有する有機物重合膜から成る第
局ずを順次被着し、レヌザ光を前蚘透明基板偎よ
り照射するこずにより、前蚘第局に凞状郚を圢
成するこずを特城ずする光メモリヌデむスクから
構成される。
The purpose of the present invention was to eliminate the above-mentioned drawbacks, and in order to achieve that purpose, the present invention provides a method for disposing metal phthalocyanine, chalcogen elements, Bi, In, Pb, Cd, etc. on a transparent substrate. Sn, As
Contains 2 to 20 atomic% of at least one selected from the following in a dispersed state, and has a particle size of 1500 to 3000 Å
a first layer consisting of an organic polymer film having a film thickness of
Contains 10 to 80 atomic% of at least one selected from Ag, Al, Au, Pt, Cu, Cr, Ni, Rh, and chalcogen elements in a dispersed state, and 500 to 80 atomic%
The second layer consists of an organic polymer film with a thickness of 2000 Å.
The optical memory disk is characterized in that a convex portion is formed on the second layer by sequentially depositing the second layer and irradiating the second layer with laser light from the transparent substrate side.

第図は、本発明による光メモリヌデむスクの
䞻芁郚を瀺し、同図及びはそれぞれレヌザ光
照射前及びレヌザ光照射埌の状態であり、党䜓構
造ずしおは、同図に瀺す円板状透明基板を個
甚意しお、第図に瀺すように各局を察向させ
お、スペヌサを介しお接合した遮断密閉構造にな
぀おいる。
Fig. 2 shows the main parts of the optical memory disk according to the present invention, and a and b in the figure show the state before and after irradiation with laser light, respectively, and the overall structure is in the shape of a disk as shown in the figure. Two transparent substrates 1 are prepared, and as shown in FIG. 1, each layer is made to face each other and joined through a spacer to form a shielding and sealing structure.

円板状透明基板䞊には、金属フタロシアニン
等を含有する有機物重合膜から成る第局ず、
Ag等を含有する有機物重合膜から成る第局
ずを順次被着しおいる。そしお第局は、その
膜厚を1500〜3000Åに遞定するず共に、分散させ
た金属フタロシアニン等の含有物の含有量を〜
20atomicに遞定するこずにより、第局は
䜿甚レヌザ光の波長に察しお光吞収性を有する。
又、第局は、その膜厚を500〜2000Åに遞定
するず共に、分散させたAg等の含有物の含有量
を10〜80atomicに遞定するこずにより、前蚘
レヌザ光に察しお䞻ずしお反射性そしお副次的に
吞収性を有する。
On the disc-shaped transparent substrate 1, a first layer 7 made of an organic polymer film containing metal phthalocyanine, etc.;
Second layer 8 consisting of an organic polymer film containing Ag, etc.
and are applied sequentially. The thickness of the first layer 7 is selected to be 1500 to 3000 Å, and the content of dispersed metal phthalocyanine etc. is set to 2 to 3000 Å.
By selecting 20 atomic %, the first layer 7 has light absorption properties for the wavelength of the laser beam used.
In addition, the second layer 8 is designed to have a film thickness of 500 to 2000 Å and a content of dispersed Ag or the like to be 10 to 80 atomic%, so that the second layer 8 mainly reflects the laser beam. properties and secondarily absorbability.

レヌザ光は、円板状透明基板偎より照射さ
れ、第局に光吞収性物質が分散されおいるこ
ずから、その第局においお玄10の光が吞収
されお、熱に倉換される。この熱は、第局の
有機物重合膜からガスを発生し、次の第局偎
に攟出する。そしお、攟出されたガスは第局
を持ち䞊げ、第図に瀺すように凞状郚を圢
成する。この凞状郚を圢成するずき、第局
はその内郚に分散された、Ag等の含有物が副次
的に第局を透過したレヌザ光を吞収しお発熱
し、この結果、有機物重合膜を軟化させおいるこ
ずから、ガスの第局を持ち䞊げようずする力
の負荷を軜枛し、凞状郚の圢成を促進しおいる。
又、第局に含有される䞻ずしお光反射性を有す
るAg等の含有物は、第局を透過したレヌザ光
の倚くを反射しお再び第局の金属フタロシアニ
ン等の含有物に送り返しおいるので、レヌザ光を
有効に第局の含有物に吞収させるこずができ
る。曎に、第局は母䜓を有機物重合膜から構
成しおいるこずから、各々に含有される金属フタ
ロシアニン等の含有物がレヌザ光を吞収しお発熱
する際、熱拡散を防止するこずができる。このよ
うにしお埓来の蚘録ピツトに盞圓する凞状郚を圢
成するこずにより、光メモリヌデむスクずしおの
蚘録感床を向䞊させるこずができる。このような
第局の凞状郚は埓来の蚘録ピツトず同様、
情報蚘録ずしお利甚される。
The laser beam is irradiated from the disk-shaped transparent substrate 1 side, and since the first layer 7 has a light-absorbing substance dispersed therein, about 10% of the light is absorbed in the first layer 7 and converted into heat. converted. This heat generates gas from the organic polymer film of the first layer 7 and releases it to the next second layer 8 side. Then, the released gas is transferred to the second layer 8
is lifted to form a convex portion 9 as shown in FIG. 2b. When forming this convex portion 9, the second layer 8
contains substances such as Ag that are dispersed inside it and secondarily absorbs the laser light that passes through the first layer and generates heat, which softens the organic polymer film. This reduces the force applied to lift the second layer 8 and promotes the formation of convex portions.
In addition, the inclusions such as Ag, which are mainly light-reflective, contained in the second layer reflect much of the laser light that has passed through the first layer and send it back to the inclusions, such as metal phthalocyanine, in the first layer. Therefore, the laser beam can be effectively absorbed by the contents of the first layer. Furthermore, since the first layer 7 is composed of an organic polymer film as a base material, it is possible to prevent thermal diffusion when substances such as metal phthalocyanine contained in each layer absorb laser light and generate heat. . By forming convex portions corresponding to conventional recording pits in this manner, the recording sensitivity of the optical memory disk can be improved. Such convex portions 9 of the second layer 8 are similar to conventional recording pits,
It is used as an information record.

情報再生に際し、信号コントラストを高くする
ため、本発明では、未蚘録時においお、光の干枉
効果による反射率が最倧になるように第局の
膜厚を遞定し、第局の䞭に䞻ずしおレヌザ光
に察しお反射性を有するAg等の物質を分散させ
るこずにより、光を反射させおいる。そしお、蚘
録埌においお、第図に瀺した凞状郚の倉圢
分だけ第局ず透明基板ずの間に距離が増倧
するこずから、その凞状郚においお光の干枉に
よる反射率が最倧倀の䜍眮からずれお、䜎䞋する
こずになる。曎に、第局に凞状郚を圢成し
たこずにより、第図に瀺すように入射レヌザ光
が凞状郚においお散乱しお、もどり光が枛少す
るために、蚘録埌の反射率は、未蚘録時における
反射率よりも可なり䜎䞋し、党䜓ずしお信号コン
トラストを高くするこずができ、その結果、再生
時の比も向䞊させるこずができる。䞊述し
た通り、本発明の光メモリヌデむスクは、蚘録、
再生時に優れた効果を有するが、他の効果ずし
お、第局及び第局の母䜓が共に有機物重
合膜から構成されおいるので、盞互の密着性が良
奜で、凞状郚圢成の際、界面に亀裂が入るこずを
防止できるず共に、含有物が倖気ず遮断されおい
るので酞化等による劣化を防止するこずができ
る。こようにしお、蚘録局の劣化を防止するこず
もできる。なお、反射率の最倧は、できるだけ倧
きい反射率であ぀おもよい。
In order to increase the signal contrast when reproducing information, in the present invention, the film thickness of the first layer 7 is selected so that the reflectance due to the light interference effect is maximized in the unrecorded state, and the thickness of the second layer 8 is The light is reflected mainly by dispersing a substance such as Ag that is reflective to laser light. After recording, the distance between the second layer 8 and the transparent substrate 1 increases by the amount of deformation of the convex portion 9 shown in FIG. The reflectance shifts from its maximum value and decreases. Furthermore, by forming the convex portions 9 on the second layer 8, the incident laser beam is scattered at the convex portions 9 as shown in FIG. 3, and the amount of returning light is reduced, so that the reflectance after recording is is considerably lower than the reflectance at the time of unrecording, and the signal contrast can be increased as a whole, and as a result, the S/N ratio during reproduction can also be improved. As mentioned above, the optical memory disk of the present invention can record,
It has an excellent effect during regeneration, but another effect is that since the base materials of the first layer 7 and the second layer 8 are both composed of organic polymer films, their mutual adhesion is good and the formation of convex portions is prevented. At this time, it is possible to prevent cracks from forming at the interface, and since the contained substances are isolated from the outside air, deterioration due to oxidation etc. can be prevented. In this way, deterioration of the recording layer can also be prevented. Note that the maximum reflectance may be as large as possible.

以䞋、本発明の具䜓的実斜䟋を説明する。 Hereinafter, specific examples of the present invention will be described.

円板状透明基板ずしお超粟密加工、研磚、掗
浄の各工皋を経た板厚1.2mmの゜ヌダラむムガラ
スを䜿甚した。
As the disc-shaped transparent substrate 1, soda lime glass with a thickness of 1.2 mm was used, which had undergone ultra-precision processing, polishing, and cleaning steps.

第局は、13.54MHz、100Wの高呚波電力で
゚チレンガスを×10-3Torrのガス圧でグロヌ
攟電させ、同時に波長830nの半導䜓レヌザに
吞収性を持぀材料ずしお銅フタロシアニンを蒞着
しお、゜ヌダラむムガラス基板䞊に被着した。
The first layer 7 is made by glow-discharging ethylene gas at a gas pressure of 1×10 -3 Torr using a high frequency power of 100 W at 13.54 MHz, and at the same time depositing copper phthalocyanine as a material that absorbs a semiconductor laser with a wavelength of 830 nm. , was deposited on a soda lime glass substrate 1.

高呚波電力、ガス圧は重合膜のガラス基板䞊ぞ
の被着率に関係するため、成膜時間の短瞮すなわ
ち䜜業効率の面からは高呚波電力を倧きく、ガス
圧を高くするこずが望たれるが、高呚波電力を倧
きくしおゆくず゚チレン重合膜䞭の氎玠の含有量
が少なくなり、炭玠の倚い膜が圢成され、したが
぀お蚘録感床が䜎䞋するこずになる。逆に高呚波
電力を小さくするず、攟電が䞍安定になり、成膜
䞊適圓でない。重合膜の被着率、蚘録感床、攟電
の䞍安定性などの点から高呚波電力は50〜200W
の範囲ずするこずが望たしく、さらには80〜
150Wずするこずが奜たしい。ガス圧も攟電の䞍
安定性に関係しおおり、ガス圧が高すぎおも、䜎
すぎおも攟電は䞍安定になり、適圓なガス圧ずし
お〜10-3Torrの範囲で成膜するこずが望たし
い。
Since high frequency power and gas pressure are related to the adhesion rate of the polymer film on the glass substrate, it is desirable to increase the high frequency power and gas pressure from the viewpoint of shortening the film formation time, that is, increasing work efficiency. As the high-frequency power is increased, the hydrogen content in the ethylene polymer film decreases, forming a film containing a large amount of carbon, resulting in a decrease in recording sensitivity. On the other hand, if the high frequency power is reduced, the discharge becomes unstable, which is not suitable for film formation. The high frequency power should be 50 to 200W from the viewpoint of polymer film coverage, recording sensitivity, discharge instability, etc.
It is desirable that the range is 80~
It is preferable to set it as 150W. Gas pressure is also related to the instability of the discharge, and if the gas pressure is too high or too low, the discharge will become unstable, so it is recommended to form a film at an appropriate gas pressure in the range of 1 to 10 -3 Torr. is desirable.

゚チレン重合膜第局䞭の銅フタロシア
ニンの含有量は5atomic皋床である。この含有
量の増加は、第局の光吞収率の増加に぀なが
り、蚘録感床を向䞊させるこずになる。しかし、
この含有量を過床に増加させるず、第局にレ
ヌザ光照射による小孔を圢成するに至り、凞状郚
による蚘録が行えなくな぀たり、第局の反
射率を高くしお、信号コントラストの悪化に぀な
がる。逆に、この含有量が少なすぎおも感床が䞍
足するこずになる。それ故、銅フタロシアニンの
含有量は〜20atomicの範囲内が奜たしい。
゜ヌダラむムガラス基板䞊に、5atomicの銅フ
タロシアニンを含有させた゚チレン重合膜第
局を被着した段階においお、゜ヌダラむムガ
ラス基板偎から求めた反射率は玄であ぀た。
そしお、この第局の膜厚は、信号コントラス
トを高くするために、光の干枉効果が最倧付近に
なるように定め、本䟋では玄2400Åずした。この
膜厚の奜たしい範囲は1500〜3000Åである。この
ように、銅フタロシアニンの含有量ず、゚チレン
重合膜の膜厚ずを遞定するこずにより、第局
がレヌザ光に察しお吞収性を有するようになる。
The content of copper phthalocyanine in the ethylene polymer film (first layer 7) is about 5 atomic%. This increase in content leads to an increase in the light absorption rate of the first layer 7 and improves recording sensitivity. but,
If this content is increased excessively, small holes will be formed in the first layer 7 due to laser beam irradiation, making it impossible to perform recording using the convex portions 9, or increasing the reflectance of the first layer 7. , leading to deterioration of signal contrast. Conversely, if this content is too small, the sensitivity will be insufficient. Therefore, the content of copper phthalocyanine is preferably within the range of 2 to 20 atomic%.
An ethylene polymer film containing 5 atomic% copper phthalocyanine (first film) was placed on a soda lime glass substrate.
At the stage when layer 7) was applied, the reflectance determined from the soda lime glass substrate side was about 9%.
The film thickness of the first layer 7 is determined so that the light interference effect is near the maximum in order to increase the signal contrast, and is approximately 2400 Å in this example. The preferred range of this film thickness is 1500 to 3000 Å. In this way, by selecting the content of copper phthalocyanine and the thickness of the ethylene polymer film, the first layer 7
becomes absorbent to laser light.

次に、第局䞊に、Ag銀を含む゚チレン
重合膜第局を前述したず同様な成膜方法
で被着した。Agは蒞着により゚チレン重合膜䞭
に分散され、そのAgの含有量を玄60atomicず
した。この第局の膜厚は玄1000Åずした。
Ag粒子は光の反射ず若干の吞収をうながし、こ
こでの反射光は再床、第局に入射しお有効に
利甚され、蚘録感床の向䞊に寄䞎するず共に、第
局の反射率を高くするこずから、信号コント
ラストを高くするこずができる。曎に、若干吞収
された光は熱に倉換され、第局の軟化を助長
し、蚘録凞状郚の圢成を容易にする。Agの含
有量は、光の反射及び吞収に圱響するため、蚘録
感床及び信号コントラストず密接に関係し、その
奜たしい含有量は10〜80atomicである。その
理由は、10atomicより少なくした堎合に信号
コントラストが䜎䞋し、80atomicより倚くし
た堎合に信号コントラストが向䞊するが、凞状郚
の圢成が阻害されるからである。第局の膜
厚は、凞状郚の圢成ず関連し、薄過ぎるず凞状
郚にならないこずで小孔を圢成するこずにな
り、逆に厚過ぎるず凞状郚の圢成が困難になる
こずから、その奜たしい膜厚は500〜2000Åであ
る。このようにAgの含有量ず、゚チレン重合膜
の膜厚ずを遞定するこよにより、第局はレヌ
ザ光に察しお䞻ずしお反射性を副次的に吞収性を
有するようになる。
Next, an ethylene polymer film (second layer 8) containing Ag (silver) was deposited on the first layer 7 by the same film forming method as described above. Ag was dispersed in the ethylene polymer film by vapor deposition, and the Ag content was approximately 60 atomic%. The thickness of this second layer 8 was approximately 1000 Å.
The Ag particles promote reflection and some absorption of light, and the reflected light enters the first layer 7 again and is effectively used, contributing to improving the recording sensitivity and increasing the reflectance of the second layer 8. By increasing the signal contrast, the signal contrast can be increased. Further, some of the absorbed light is converted into heat, which promotes softening of the second layer 8 and facilitates the formation of the recording convex portions 9. Since the Ag content affects light reflection and absorption, it is closely related to recording sensitivity and signal contrast, and the preferred content is 10 to 80 atomic %. The reason for this is that when the amount is less than 10 atomic percent, the signal contrast decreases, and when it is more than 80 atomic percent, the signal contrast is improved, but the formation of the convex portion 9 is inhibited. The thickness of the second layer 8 is related to the formation of the convex portions 9; if it is too thin, the convex portions 9 will not form and small holes will be formed; on the other hand, if it is too thick, the convex portions 9 will be formed. Therefore, the preferred film thickness is 500 to 2000 Å. By selecting the Ag content and the thickness of the ethylene polymer film in this manner, the second layer 8 becomes primarily reflective and secondarily absorbent with respect to the laser beam.

蚘録、再生には波長830nの半導䜓レヌザ光
を䜿甚し、察物レンズで集束しお、蚘録媒䜓面で
盎埄1.6Όのレヌザスポツトずな぀お、そのパワ
ヌを蚘録時及び再生時0.6ずした。そ
の堎合、凞状郚の圢成のための蚘録感床は、第
局の膜厚ず、第局䞭に分散させた銅フタロ
シアニンの含有量により、曎には第局の膜厚
ず、第局䞭に分散させたAg含有量により倉化
するが、本䟋ではそれぞれ前述したような遞定に
より、レヌザパルス幅で30nsを埗お、銅フタロシ
アニンを含有しない堎合の玄50nsず比范しお高い
こずが確認された。たた、本䟋では未蚘録時及び
蚘録時の各反射率が玄48及び19ずなり、信号
コントラストずしおは0.43ず良奜な倀を埗た。曎
に、60℃、90の環境䞋の耐湿詊隓に察する反射
率の初期倀から30䜎䞋たでに芁する時間は、本
䟋では、埓来の膜厚100ÅのTe蒞着膜による蚘録
媒䜓ず比范しお、玄60倍も長いこずから、長期安
定性に優れおいるこずが確認された。埓来の同比
范䟋では、蚘録小孔端の乱れによるノむズレベル
の増加が認められたものの、本䟋では凞状郚が
連続的にわん曲しおいるこずから、未蚘録郚分ず
蚘録郚分の各ノむズレベルがほずんど増加せず、
その盞互差によるノむズレベルも怜知されず、
比を良奜にするこずができた。
A semiconductor laser beam with a wavelength of 830 nm was used for recording and reproduction, and was focused by an objective lens to form a laser spot with a diameter of 1.6 Όm on the surface of the recording medium, with a power of 6 mW during recording and 0.6 mW during reproduction. In that case, the recording sensitivity for forming the convex portions 9 depends on the thickness of the first layer 7 and the content of copper phthalocyanine dispersed in the first layer, and also on the thickness of the second layer 8. , varies depending on the Ag content dispersed in the second layer, but in this example, by making the selections described above, a laser pulse width of 30 ns was obtained, compared to approximately 50 ns when copper phthalocyanine was not included. It was confirmed that it was high. Furthermore, in this example, the reflectances during unrecording and recording were approximately 48% and 19%, respectively, and the signal contrast was a good value of 0.43. Furthermore, in this example, the time required for the reflectance to decrease by 30% from the initial value in a humidity test in an environment of 60°C and 90% is as follows: It was confirmed that it has excellent long-term stability as it is about 60 times longer. In the conventional comparative example, an increase in the noise level was observed due to disturbance at the edge of the recording hole, but in this example, since the convex portion 9 is continuously curved, there is a difference between the unrecorded part and the recorded part. Each noise level hardly increases,
The noise level due to the mutual difference is not detected,
It was possible to improve the S/N ratio.

本発明は以䞊の実斜䟋に挙げた物質に限定され
ず、透明基板ずしお、石英ガラス、塩化ビニヌル
暹脂、酢酞ビニヌル暹脂、アクリル暹脂、メタク
リル暹脂、ポリ゚ステル暹脂、ニトロセルロヌ
ス、ポリスチレン暹脂、ポリプロピレン暹脂、ポ
リアミド暹脂、ポリカヌボネヌト暹脂、゚ポキシ
暹脂等を甚いおもよい。次に、光吞収性及び光干
枉性を有する第局ずしお、鉛フタロシアニン
などの金属フタロシアニン、テルルTe、セレ
ンSe、及びむオりのカルコゲン元玠又
はビスマスBi、むンゞりムIn、鉛Pb、
カドミりムCd、ヒ玠As、スズSnの単
䜓及びその化合物又はその酞化物を゚チレン重合
䜓以倖のオレフむン化合物に含有させるか、ベン
れン類、ポリ゚ステル、ポリスチレン、アクリル
系ポリマ、酢酞セルロヌス、硝酞セルロヌス、臭
玠化ポリヒドロキシスチレン、塩化ゎム、SiO及
びSiO2などの有機物重合膜を甚いおもよい。次
に、第局ずしお、アルミニりムAl、金
Au、癜金Pt、銅Cu、クロムCr、ニ
ツケルNi、ロゞりムRh、カルコゲン元玠
の単䜓、それらの化合物又はそれらの酞化物を含
有させた第局ず同様な有機物重合膜を甚いお
もよい。たた、実斜䟋の成膜方法ずしお真空蒞着
及びグロヌ攟電を挙げたが、䜿甚する物質によ぀
お盎流スパツタリング、高呚波スパツタリング、
反応性スパツタリング、むオンプレヌテむング、
むオンクラスタヌ、メツキ、CVD、共蒞着、気
盞成長、キダスト、ドクタヌブレヌド、マグネト
ロンスパツタ又はスプレヌ、ロヌラヌコヌテむン
グ、デむツピング。スピニング等の塗垃法を甚い
おもよい。
The present invention is not limited to the materials listed in the above embodiments, but materials such as quartz glass, vinyl chloride resin, vinyl acetate resin, acrylic resin, methacrylic resin, polyester resin, nitrocellulose, polystyrene resin, polypropylene resin, polyamide can be used as the transparent substrate. Resin, polycarbonate resin, epoxy resin, etc. may also be used. Next, as the first layer 7 having light absorption and light interference properties, metal phthalocyanine such as lead phthalocyanine, chalcogen elements such as tellurium (Te), selenium (Se), and sulfur (S), or bismuth (Bi), indium (In), lead (Pb),
Cadmium (Cd), arsenic (As), tin (Sn) alone, their compounds, or their oxides are incorporated into olefin compounds other than ethylene polymers, benzenes, polyesters, polystyrene, acrylic polymers, cellulose acetate, Organic polymer films such as cellulose nitrate, brominated polyhydroxystyrene, chlorinated rubber, SiO, and SiO 2 may also be used. Next, as the second layer 8, aluminum (Al), gold (Au), platinum (Pt), copper (Cu), chromium (Cr), nickel (Ni), rhodium (Rh), chalcogen elements, and An organic polymer film similar to the first layer 7 containing a compound or an oxide thereof may be used. In addition, although vacuum evaporation and glow discharge were mentioned as film forming methods in the examples, depending on the material used, direct current sputtering, high frequency sputtering,
reactive sputtering, ion plating,
Ion cluster, plating, CVD, codeposition, vapor phase growth, casting, doctor blade, magnetron sputtering or spraying, roller coating, dipping. A coating method such as spinning may also be used.

たた、実斜䟋ではレヌザ光源に830nの波長
の半導䜓レヌザを甚いたが、䜿甚波長は830n
以倖のものでもよく、その際、各局の膜厚、光吞
収性物質の配合割合はその波長により機胜的に定
めるこずができる。
In addition, in the example, a semiconductor laser with a wavelength of 830 nm was used as a laser light source, but the wavelength used was 830 nm.
In this case, the thickness of each layer and the blending ratio of the light-absorbing substance can be determined functionally depending on the wavelength.

以䞊のずおり、本発明によれば、蚘録局の劣化
を防止し、蚘録感床を向䞊させ、信号コントラス
トを良奜にし、曎に再生時の比を良奜にす
るこずができる。
As described above, according to the present invention, it is possible to prevent deterioration of the recording layer, improve the recording sensitivity, improve the signal contrast, and further improve the S/N ratio during reproduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は埓来の光メモリヌデむスクの断面図、
第図は本発明による光メモリヌデむスクの䞻芁
郚分断面図、第図は、入射レヌザ光の散乱を瀺
す断面図である。   円板状透明基板、  第局、  
第局、  凞状郚。
Figure 1 is a cross-sectional view of a conventional optical memory disk.
FIG. 2 is a sectional view of a main part of the optical memory disk according to the present invention, and FIG. 3 is a sectional view showing scattering of incident laser light. 1... Disc-shaped transparent substrate, 7... First layer, 8...
Second layer, 9... Convex portion.

Claims (1)

【特蚱請求の範囲】[Claims]  透明基板䞊に、金属フタロシアニン、カルコ
ゲン元玠、Bi、In、Pb、Cd、Sn、Asのうちから
遞んだ少なくずも䞀぀を分散した状態で〜
20atomic含有し、か぀、1500〜3000Åの膜厚
を有する有機物重合膜から成る第局ず、Ag、
Al、Au、Pt、Cu、Cr、Ni、Rh、カルコゲン元
玠のうちから遞んだ少なくずも䞀぀を分散した状
態で10〜80atomic含有し、か぀、500〜2000Å
の膜厚を有する有機物重合膜から成る第局ずを
順次被着し、レヌザ光を前蚘透明基板偎より照射
するこずにより、前蚘第局に凞状郚を圢成する
こずを特城ずする光メモリヌデむスク。
1. On a transparent substrate, at least one selected from metal phthalocyanine, chalcogen element, Bi, In, Pb, Cd, Sn, and As is dispersed.
A first layer consisting of an organic polymer film containing 20 atomic% and having a film thickness of 1500 to 3000 Å, Ag,
Contains 10 to 80 atomic% of at least one selected from Al, Au, Pt, Cu, Cr, Ni, Rh, and chalcogen elements in a dispersed state, and has a diameter of 500 to 2000 Å
A second layer made of an organic polymer film having a film thickness of memory disk.
JP58124280A 1983-07-08 1983-07-08 Optical memory disc Granted JPS6015843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58124280A JPS6015843A (en) 1983-07-08 1983-07-08 Optical memory disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58124280A JPS6015843A (en) 1983-07-08 1983-07-08 Optical memory disc

Publications (2)

Publication Number Publication Date
JPS6015843A JPS6015843A (en) 1985-01-26
JPH0252330B2 true JPH0252330B2 (en) 1990-11-13

Family

ID=14881426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58124280A Granted JPS6015843A (en) 1983-07-08 1983-07-08 Optical memory disc

Country Status (1)

Country Link
JP (1) JPS6015843A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823209B2 (en) * 1988-10-31 1998-11-11 日立マクセル株匏䌚瀟 Optical information recording medium and method of manufacturing the same
JP2998845B2 (en) * 1989-11-20 2000-01-17 日立マクセル株匏䌚瀟 Optical information recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111134A (en) * 1980-01-23 1981-09-02 Thomson Csf Thermal and optical information writing process and information holder therefor
JPS5871194A (en) * 1981-10-23 1983-04-27 Toshiba Corp Optical information recording medium
JPS58158052A (en) * 1982-03-15 1983-09-20 Toshiba Corp Optical information recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111134A (en) * 1980-01-23 1981-09-02 Thomson Csf Thermal and optical information writing process and information holder therefor
JPS5871194A (en) * 1981-10-23 1983-04-27 Toshiba Corp Optical information recording medium
JPS58158052A (en) * 1982-03-15 1983-09-20 Toshiba Corp Optical information recording medium

Also Published As

Publication number Publication date
JPS6015843A (en) 1985-01-26

Similar Documents

Publication Publication Date Title
EP0089168B1 (en) Optical type information recording medium
JPH0461791B2 (en)
JPS6023037B2 (en) Information recording member
JPH0429135B2 (en)
JPH0666093B2 (en) recoding media
JPH0671828B2 (en) Information recording thin film
EP0335469B1 (en) Information-recording thin film and method for recording and reproducing information
JPH0252330B2 (en)
JPH0330216B2 (en)
JPS59225992A (en) Optical recording medium
JP2661293B2 (en) Optical information recording medium
EP0096504B1 (en) Aurous archival record films for digital data storage
EP1750259A2 (en) Optical recording medium
EP0096501B1 (en) Method for detecting fire
EP0097430B1 (en) Method for detecting fire
JPH07105064B2 (en) Optical information recording medium
US5006387A (en) Information recording medium
EP0098045B1 (en) Gold archival record films for digital data storage using low power write-laser
JPH05290408A (en) Optical information recording medium
JPS59113535A (en) Optical recording medium
JPS62127286A (en) Optical recording material
JPH0822614B2 (en) Optical recording medium
JPS6120237A (en) Optical information recording medium
JPS60124039A (en) Optical information recording medium
JPS61272190A (en) Optical recording medium