JPH07105064B2 - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH07105064B2
JPH07105064B2 JP63266397A JP26639788A JPH07105064B2 JP H07105064 B2 JPH07105064 B2 JP H07105064B2 JP 63266397 A JP63266397 A JP 63266397A JP 26639788 A JP26639788 A JP 26639788A JP H07105064 B2 JPH07105064 B2 JP H07105064B2
Authority
JP
Japan
Prior art keywords
recording
change
thin film
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63266397A
Other languages
Japanese (ja)
Other versions
JPH02113451A (en
Inventor
信夫 赤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63266397A priority Critical patent/JPH07105064B2/en
Priority to DE1989627731 priority patent/DE68927731T2/en
Priority to EP89309138A priority patent/EP0360466B1/en
Publication of JPH02113451A publication Critical patent/JPH02113451A/en
Priority to US07/865,640 priority patent/US5249175A/en
Publication of JPH07105064B2 publication Critical patent/JPH07105064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光・熱等を用いて高速かつ高密度に情報を記
録再生する光学的情報記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium that records and reproduces information at high speed and high density by using light, heat and the like.

従来の技術 レーザー光をレンズ系によって収束させると直径がその
光の長波のオーダーの小さな光スポットを作ることがで
きる。したがって小さい出力の光源からでも単位面積あ
たりのエネルギー密度の高い光スポットを作ることが可
能である。したがって物質の微少な領域を変化させるこ
とが可能であり、またその微少領域の変化を読みだすこ
とも可能である。これを情報の記録・再生に利用したも
のが工学的情報記録媒体である。以下、「光記録媒体」
あるいは単に「媒体」と記述する。
2. Description of the Related Art When a laser beam is focused by a lens system, a light spot whose diameter is on the order of the long wave of the light beam can be formed. Therefore, it is possible to form a light spot having a high energy density per unit area even from a light source having a small output. Therefore, it is possible to change a minute area of the substance, and it is also possible to read out the change of the minute area. An engineering information recording medium uses this for recording / reproducing information. Hereinafter, "optical recording medium"
Or simply described as "medium".

光記録媒体の基本的な構造は表面が平坦な基板上にレー
ザースポット光照射によって何らかの状態が変化する記
録薄膜層を設けたものである。信号の記録・再生は以下
のような方法を用いる。すなわち、平版状の媒体を例え
ばモーター等による回転手段や並進手段により移動さ
せ、この媒体の記録薄膜面上にレーザー光を収束し照射
する。記録薄膜はレーザー光を吸収し昇温する。レーザ
ー光の出力をある閾値以上に大きくすると記録薄膜の状
態が変化して情報が記録される。この閾値は記録薄膜自
体の特性の他に基材の熱的な特性・媒体の光スポットに
対する相対速度等に依存する量である。記録された情報
は記録部に前記閾値よりも十分低い出力のレーザー光ス
ポットを照射し、その透過光強度、反射光強度あるいは
それらの偏光方向等何らかの光学的特性が記録部と未記
録部で異なることを検出して再生する。
The basic structure of an optical recording medium is that a recording thin film layer whose state is changed by laser spot light irradiation is provided on a substrate having a flat surface. The following methods are used for recording / reproducing signals. That is, the planographic medium is moved by rotating means or translation means such as a motor, and laser light is converged and irradiated onto the recording thin film surface of this medium. The recording thin film absorbs laser light and heats up. When the output of laser light is increased above a certain threshold value, the state of the recording thin film changes and information is recorded. This threshold value is an amount that depends on the thermal characteristics of the substrate, the relative speed to the light spot of the medium, and the like in addition to the characteristics of the recording thin film itself. The recorded information is irradiated with a laser beam spot whose output is sufficiently lower than the threshold value, and some optical characteristics such as transmitted light intensity, reflected light intensity or their polarization direction are different between the recorded part and the unrecorded part. It detects that and reproduces.

したがって、小さいレーザーパワーで状態が変化し、大
きな光学的変化を示す材料および構造が望まれる。
Therefore, materials and structures that change state with low laser power and exhibit large optical changes are desired.

記録薄膜としてはBi,Teあるいはこれらを主成分とする
金属薄膜、Teを含む化合物薄膜が知られている。これら
はレーザー光照射により薄膜が溶融あるいは蒸発し小孔
を形成する穴開け型の記録を行い、この記録部とその周
辺部からの反射光あるいは透過光の位相が異なるため干
渉で打ち消しあって、あるいは回折されて検出系に至る
反射光量あるいは透過光量が変化することを検出して再
生を行う。また、他に相変化型と呼ばれる、形状の変化
を伴わずに光学的な変化をする記録媒体がある。材料と
してはアモルファスカルコゲン化物薄膜、テルルおよび
酸化テルルからなるTe−TeO2を主成分とする酸化物系薄
膜がある(特公昭54−3725号公報)。また、Te−TeO2
pdを主成分とする薄膜も知られている(特開昭61−6829
6号公報)。これらはレーザー光照射により薄膜の消衰
係数あるいは屈折率のうち少なくともいずれか1つが変
化して記録を行い、この部分で透過光あるいは反射光の
振幅が変化し、その結果検出系に至透過光量あるいは反
射光量が変化することを検出して信号を再生する。
As the recording thin film, Bi, Te, a metal thin film containing them as a main component, or a compound thin film containing Te is known. These perform punching type recording in which a thin film is melted or vaporized by laser light irradiation to form small holes, and the phases of reflected light or transmitted light from this recording part and its peripheral part are different, so they cancel each other out by interference, Alternatively, reproduction is performed by detecting a change in the amount of reflected light or the amount of transmitted light that is diffracted and reaches the detection system. In addition, there is also a recording medium called a phase change type which changes optically without changing its shape. The material is oxide thin film amorphous chalcogen compound thin film, a Te-TeO 2 consisting of tellurium and tellurium oxide as a main component (JP-B 54-3725 Patent Publication). In addition, Te-TeO 2
A thin film containing pd as a main component is also known (Japanese Patent Laid-Open No. 61-6829).
No. 6). At least one of the extinction coefficient and the refractive index of the thin film changes due to laser light irradiation for recording, and the amplitude of transmitted light or reflected light changes at this portion, and as a result, the maximum amount of transmitted light passes through the detection system. Alternatively, the signal is reproduced by detecting that the amount of reflected light changes.

光は波動であり振幅と位相によって記述される。上記の
ように信号の再生は透過光量あるいは反射光量の変化に
よって検出されるが、その原因としては膜自体の微少領
域の透過光振幅あるいは反射光振幅が変化する場合(振
幅変化記録)と、透過光あるいは反射光の位相が変化す
る場合(位相変化記録)がある。
Light is a wave and is described by its amplitude and phase. As described above, the signal reproduction is detected by the change in the transmitted light amount or the reflected light amount. The cause is that the transmitted light amplitude or the reflected light amplitude in the minute area of the film itself changes (amplitude change recording). There is a case where the phase of light or reflected light changes (phase change recording).

発明が解決しようとする課題 以上のような光記録媒体の中で穴開け型のものは反射光
量変化は大きく取れ、位相変化記録であるため記録密度
が大きい記録が行えるが、きれいな穴を形成することが
難しく再生時のノイズが大きい。また、密着した保護構
造がとれず、いわゆるエアーサンドイッチ構造といわれ
る複雑な中空構造をとる必要があり、製造が難しくコス
ト高である。また、変形記録であるので消去書き換えが
不可能である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Among the above optical recording media, the perforated type has a large change in the amount of reflected light, and since it is phase change recording, recording with a high recording density can be performed, but a clear hole is formed. It is difficult and the noise during playback is large. Further, it is necessary to take a complicated hollow structure, which is a so-called air sandwich structure, because a protective structure in close contact cannot be obtained, which makes manufacturing difficult and costly. In addition, since it is a modified recording, it cannot be erased and rewritten.

これに比べて相変化型の記録媒体は形状変化を伴わない
ので簡単な構造がとれ製造が容易で低コストの媒体であ
るが、反射率変化記録であるため穴開け型の記録にくら
べて記録密度が小さいという課題がある。さらに、位相
変化型の記録媒体である凹凸ピットによる複製盤(オー
ディオディスク,ビデオディスク等)との互換が取りに
くいいう課題もある。
Compared to this, the phase-change recording medium is a medium with a simple structure that is easy to manufacture because it does not change the shape, and it is a low-cost medium. There is a problem of low density. Further, there is a problem in that it is difficult to achieve compatibility with a duplication board (audio disk, video disk, etc.) due to the concave-convex pit which is a phase change type recording medium.

課題を解決するための手段 基材上に、レーザー光照射によって光学定数が変化する
薄膜材料を設けて、変化の前後で入射した光の反射光あ
るいは透過光の位相が変化しこの位相変化による全体の
反射光量あるいは透過光量の変化を検知する構成とす
る。さらに、その際に変化の前後で反射光振幅あるいは
透過光振幅は変化がない、あるいは小さい構成とする。
Means for solving the problem By providing a thin film material whose optical constant is changed by laser light irradiation on the base material, the phase of the reflected light or the transmitted light of the incident light changes before and after the change, and The configuration is such that a change in the amount of reflected light or the amount of transmitted light is detected. Further, at that time, the reflected light amplitude or the transmitted light amplitude does not change or is small before and after the change.

作用 上記のような構成にすると光学的には凹凸による位相変
化記録と等価な記録が行える。従って、相変化記録であ
りながら記録密度の大きい記録が行なえ、凹凸ピットに
よる複製盤(オーディオディスク、ビデオディスク等)
との互換も取り易い。また、相変化記録は形状変化を伴
わず材料を選ぶことによって記録した状態をもとに戻
す、すなわち消去・書き換えも可能であり、書き換え型
の位相変化記録が実現できる。
Operation With the above-mentioned configuration, optically equivalent recording to phase change recording by unevenness can be performed. Therefore, although it is a phase change recording, recording with a high recording density can be performed, and a duplication board (audio disc, video disc, etc.) with uneven pits
It is easy to take compatibility with. Further, in the phase change recording, the recorded state can be returned to the original state by selecting a material without changing the shape, that is, erasing / rewriting is possible, and rewritable phase change recording can be realized.

実施例 従来の相変化形光記録媒体の構造の一例を第2図に示
す。相変化形記録材料はレーザー光を照射して発熱昇温
させその相を変化させると複素屈折率が変化する。その
変化は一般的に屈折率と消衰係数が同方向に変化する。
例えばアモルファス状態が結晶状態に変化すると一般に
屈折率と消衰係数が増大する。この様な記録薄膜層の反
射率は記録薄膜層3の膜厚t2に依存する。基材1側から
光を入射した場合の記録薄膜の反射率Rは記録薄膜の光
入射側の界面からの反射光とその反射側の界面からの反
射光の多重干渉の結果である。膜厚t2を変化させると反
射率は干渉の結果、波長と屈折率によって決まる周期で
増減するが膜厚が増加するにしたがい吸収により光入射
側と反対の界面に到達して反射する光量が減少するため
干渉の効果がなくなっていく。その結果として干渉によ
る増減が膜厚の増加にともないしだいに減衰する曲線を
描く。複素屈折率が大きくなると屈折率の増加により干
渉による膜厚周期が小さくなると同時に消衰係数の増加
により減衰する膜厚が小さい方向にシフトする。以上の
結果、相変化した時の反射率差ΔRも膜厚により変化す
るが一般には複素屈折率の小さい相で反射率が極小にな
る膜厚で極大になる。一方このような構成では反射光の
位相の相変化の前後での変化は小さい。従来相変化形の
記録媒体はこの反射率変化が極大になる膜厚で用いてい
た。従って記録状態の再生はこの反射率の差を検出する
ことによってなされる。ミクロンオーダーの微少な領域
の記録再生の場合には、記録された部分の大きさと再生
に用いる光ビームの大きさが同じオーダーになる。例え
ば、波長800nm前後のレーザー光をNA0.5程度のレンズ系
で絞ると半値幅が約0.9μmのビームに絞れる。この様
なビームを用いて強いパワーで記録を行うと約0.5〜1
μm前後の範囲が相変化をおこして記録状態となる。こ
れを同じビームで読みだす場合を考えると、読み出しビ
ームの光強度は一般的にはガラス分布あるいはそれに近
い形状の分布をしており相変化した記録状態よりも外側
に広がっているため反射光量は記録状態の反射率と回り
の未記録状態の反射率にそれぞれの面積と光強度分布を
加重して平均した値に比例する。したがって、読み出し
ビームの大きさに比べて十分大きな範囲の記録状態の面
積がないと十分な再生信号が得られない。この大きさに
よって記録密度が制限される。
Example An example of the structure of a conventional phase change type optical recording medium is shown in FIG. The complex refractive index of the phase-change recording material changes when the phase of the phase-change recording material is changed by changing the phase by irradiating a laser beam to generate heat. The change generally changes the refractive index and the extinction coefficient in the same direction.
For example, when the amorphous state changes to the crystalline state, the refractive index and the extinction coefficient generally increase. The reflectance of such a recording thin film layer depends on the film thickness t 2 of the recording thin film layer 3. The reflectance R of the recording thin film when light is incident from the substrate 1 side is the result of multiple interference of the reflected light from the light incident side interface of the recording thin film and the reflected light from the reflective side interface. When the film thickness t 2 is changed, the reflectance increases or decreases as a result of interference, with the period determined by the wavelength and the refractive index, but as the film thickness increases, the amount of light that reaches the interface opposite to the light incident side and is reflected by absorption increases. Since it decreases, the effect of interference disappears. As a result, a curve is drawn in which the increase / decrease due to interference gradually attenuates as the film thickness increases. When the complex refractive index increases, the film thickness period due to interference decreases due to the increase in the refractive index, and at the same time, the attenuation film thickness shifts toward the smaller direction due to the increase in the extinction coefficient. As a result of the above, the reflectance difference ΔR at the time of phase change also changes depending on the film thickness, but generally it becomes maximum at the film thickness at which the reflectance is minimal in the phase with a small complex refractive index. On the other hand, in such a configuration, the change in the phase of the reflected light before and after the phase change is small. Conventionally, the phase change type recording medium has been used with a film thickness that maximizes this change in reflectance. Therefore, reproduction of the recorded state is performed by detecting this difference in reflectance. In the case of recording / reproducing in a minute area of micron order, the size of the recorded portion is the same as the size of the light beam used for reproducing. For example, if a laser beam with a wavelength of around 800 nm is narrowed down by a lens system with an NA of about 0.5, it will be narrowed down to a beam with a half width of about 0.9 μm. When recording with strong power using such a beam, it is about 0.5-1.
A range of about μm causes a phase change and becomes a recording state. Considering the case of reading this with the same beam, the light intensity of the read beam generally has a glass distribution or a shape distribution close to it, and since the light intensity spreads outside the phase-changed recording state, the reflected light amount is It is proportional to the average of the reflectance in the recorded state and the reflectance in the surrounding unrecorded state, weighted by their respective areas and light intensity distributions. Therefore, a sufficient reproduction signal cannot be obtained unless there is a recording state area that is sufficiently larger than the read beam size. This size limits the recording density.

一方、穴開け形の場合には記録状態は凹凸の形状であり
周辺部と記録部からの反射光が干渉しあって反射光量が
変化することを利用している。従って周辺部と穴部での
反射光の位相差が(1±2n)π(nは整数、πは円周
率)のとき最も反射光量変化が大きく、この値に近いこ
とが、特に略々等しいことが望ましい。また、読み出し
ビームの強度分布として穴部に入射する強度と周辺部に
入射する強度が等しいとき最も干渉の効果が大きく、従
って反射光強度変化が大きい。すなわち、読み出しビー
ムの大きさよりも小さい記録状態のときが再生信号が大
きくとれる。
On the other hand, in the case of the perforated type, the recording state has an uneven shape, and the fact that the reflected light from the peripheral portion interferes with the reflected light and the amount of reflected light changes. Therefore, when the phase difference of the reflected light at the peripheral portion and the hole is (1 ± 2n) π (n is an integer, π is the circular constant), the change in the reflected light amount is the largest, and it is particularly close to this value. It is desirable to be equal. Further, as the intensity distribution of the read beam, when the intensity incident on the hole is equal to the intensity incident on the peripheral portion, the effect of interference is greatest, and thus the change in reflected light intensity is large. That is, the reproduction signal can be large in a recording state smaller than the size of the read beam.

以上から反射率変化記録よりも位相変化記録の方が高密
度な記録再生ができることがわかる。
From the above, it is understood that the phase change recording can achieve higher density recording and reproduction than the reflectivity change recording.

従って相変化記録において位相変化を得ることが出来れ
ば凹凸記録並の記録密度が得られる。しかも反射率変化
はないことあるいは小さいことが望ましい。相変化型の
記録薄膜材料を用いて上述のような位相変化型の光記録
媒体を構成するには、記録薄膜層の少なくとも片面に基
材あるいは保護層と使用するレーザー光の波長において
屈折率の異なる透明層を設けることによって実現でき
る。記録薄膜に接する材料の屈折率が変化すると各界面
での反射率が変化する。記録薄膜からの反射光は記録薄
膜の光入射側の界面からの反射光とその反対側の界面か
らの反射光の多重干渉の結果である。記録薄膜が十分薄
く記録薄膜の光入射側と反対の界面まで到達する光の大
きさが十分大きい場合には、未記録状態の光学定数の小
さいときは光入射側と反対の界面まで到達して反射され
る光が光入射側の界面からの反射光よりも大きく、記録
状態の光学定数の大きいときは逆に光入射側の界面から
の反射光が光入射側と反対の界面まで到達して反射され
る光よりも大きくなる条件が存在する。両者は光路長が
異なるため位相差を持っている。この位相差が大きけれ
ば干渉による打ち消しあいの結果、記録により光学定数
が変化した時に全体の反射光の位相が大きく変化するこ
とが可能になる。さらに両者の振幅の差が記録の前後で
ほぼ等しければ(もちろん大小関係は逆転するのである
が)反射光振幅の変化はほとんどないということが可能
である。
Therefore, if the phase change can be obtained in the phase change recording, the recording density comparable to the uneven recording can be obtained. Moreover, it is desirable that the reflectance does not change or is small. In order to configure the above-mentioned phase change type optical recording medium using the phase change type recording thin film material, a base material or a protective layer on at least one side of the recording thin film layer and a refractive index at the wavelength of laser light used This can be achieved by providing different transparent layers. When the refractive index of the material in contact with the recording thin film changes, the reflectance at each interface changes. The reflected light from the recording thin film is the result of multiple interference between the reflected light from the light incident side interface of the recording thin film and the reflected light from the opposite side interface. The recording thin film is thin enough to reach the interface on the opposite side of the light incident side of the recording thin film.If the light intensity is sufficiently large, it reaches the interface on the opposite side of the light incident side when the optical constant in the unrecorded state is small. When the reflected light is larger than the reflected light from the light incident side interface and the optical constant in the recorded state is large, the reflected light from the light incident side interface reaches the interface opposite to the light incident side. There are conditions that make it larger than the reflected light. Both have a phase difference because the optical path lengths are different. If this phase difference is large, as a result of cancellation due to interference, the phase of the entire reflected light can change significantly when the optical constant changes due to recording. Furthermore, if the difference in amplitude between the two is almost equal before and after recording (although the magnitude relationship is reversed, of course), it is possible that there is almost no change in the reflected light amplitude.

さらに基材上に基材と屈折率が異なる第一の透明層を設
け、その上に記録薄膜層を設け、さらにその上に第二の
透明層を設け、その上に反射層を設け、その上に反射層
を設けた構成にして前記第一の透明層、記録薄膜層、第
二の透明層および反射層の膜厚を選ぶことによってより
効率的な位相変化型の光記録媒体を得ることができる。
それは記録薄膜層を透過した光が反射層によって反射さ
れて上記の干渉による打ち消し合いが効率的に行われる
からである。
Furthermore, a first transparent layer having a refractive index different from that of the substrate is provided on the substrate, a recording thin film layer is provided thereon, a second transparent layer is further provided thereon, and a reflective layer is provided thereon. A more efficient phase change type optical recording medium is obtained by selecting the film thicknesses of the first transparent layer, the recording thin film layer, the second transparent layer and the reflective layer with a structure in which a reflective layer is provided above. You can
This is because the light transmitted through the recording thin film layer is reflected by the reflective layer and the cancellation due to the above interference is efficiently performed.

つぎに、具体的な実施例を使って説明する。Next, a specific example will be described.

記録媒体の構成としては第1図に示すように基材1上に
透明な誘電体等の光学層2を設けその上に記録薄膜3を
設けさらに透明な誘電体層4を設けさらに反射層5を設
ける。さらにその上に透明な密着した保護層6を設け
る。この他に図には示さないが保護層を施さない構成で
もよい。この場合は保護層の代わりに空気(屈折率1.
0)を考えると光学的には同等であり同じ効果が得られ
る。透明層2には基材1と屈折率の異なる材質を用い
る。
As the structure of the recording medium, as shown in FIG. 1, an optical layer 2 such as a transparent dielectric is provided on a base material 1, a recording thin film 3 is provided thereon, a transparent dielectric layer 4 is further provided, and a reflective layer 5 is provided. To provide. Further, a transparent protective layer 6 is provided thereon. In addition, although not shown in the figure, a structure in which a protective layer is not provided may be used. In this case, air (refractive index 1.
Considering 0), they are optically equivalent and the same effect can be obtained. A material having a refractive index different from that of the substrate 1 is used for the transparent layer 2.

これらの記録薄膜の厚さt2、透明光学層の厚さt1,t3
よび反射層の厚さt4を適当に選ぶことによって位相変化
の大きい媒体を得ることができる。
By appropriately selecting the thickness t 2 of these recording thin films, the thicknesses t 1 and t 3 of the transparent optical layers, and the thickness t 4 of the reflective layers, a medium having a large phase change can be obtained.

基材としてはガラス・樹脂等の透明で平滑な平板を用い
る。また基材表面にトラッキングガイド用の溝状の凹凸
があってもよい。
As the base material, a transparent and flat plate such as glass or resin is used. Further, the surface of the base material may have groove-shaped irregularities for a tracking guide.

保護層としては樹脂を溶剤にとかして塗布・乾燥したも
のや樹脂板を接着剤で接着したもの等が使える。
As the protective layer, a resin coated with solvent and dried, or a resin plate bonded with an adhesive can be used.

記録薄膜材料としてはアモルファス・結晶間の合い変化
をする材料たとえばSbTe系、InTe系、GeTeSn系、SbSe
系、TeSeSb系、SnTeSe系、InSe系、TeGeSnO系、TeGeSnA
u系、TeGeSnSb系、等のカルコゲン化合物を用いる。Te
−TeO2系、Te−TeO2−Au系、Te−TeO2−Pd系等の酸化物
系材料も誓える。また、結晶・結晶間の相転移をするAg
Zn系、InSb系等の金属化合物も使える。
As the recording thin film material, a material that changes the phase between amorphous and crystalline, such as SbTe-based, InTe-based, GeTeSn-based, SbSe
System, TeSeSb system, SnTeSe system, InSe system, TeGeSnO system, TeGeSnA
A chalcogen compound such as u-based or TeGeSnSb-based is used. Te
-TeO 2 system, Te-TeO 2 -Au system, even oxide material of 2 -Pd system such as Te-TeO Chikaeru. In addition, Ag, which has a phase transition between crystals
Metal compounds such as Zn type and InSb type can also be used.

透明な光学層としてはSiO2・SiO,TiO2,MgO,GeO2等の酸
化物、Si3N4,BN、等の窒化物、ZnS,ZnTe,PbS等の硫化物
が使える。
As the transparent optical layer, oxides such as SiO 2 · SiO, TiO 2 , MgO and GeO 2 , nitrides such as Si 3 N 4 and BN, and sulfides such as ZnS, ZnTe and PbS can be used.

反射層としてはAu,AI,Cu等の金属材料あるいは所定の波
長の反射率の大きな誘電体多層膜等が使える。
As the reflection layer, a metal material such as Au, AI, Cu or a dielectric multilayer film having a large reflectance at a predetermined wavelength can be used.

これらの材料を作る方法としては多元蒸着源を用いた真
空蒸着法やモザイク状の複号ターゲットを用いたスパッ
タリング法その他が使える。
As a method for producing these materials, a vacuum evaporation method using a multi-source evaporation source, a sputtering method using a mosaic-shaped compound target, and the like can be used.

比較例 記録薄膜として相変化材料であるGe2Sb2Te5の組成を持
つゲルマニウム、アンチモンおよびテルルの3元化合物
を用いる。形成法としてGe,Sb,Teの3つの蒸発源を用い
た電子ビーム蒸着法を用いる。記録薄膜はアモルファス
状態で形成される。ガラス板上に上記組成のGe2Sb2Te5
だけを蒸着したアモルファス状態の光学定数を測定した
ところ、波長830nmにおいて複素屈折率n+kiが4.8+1.
3iであった。これを300℃で5分間熱処理して結晶状態
にすると5.8+3.6iに変化する。
Comparative Example A ternary compound of germanium, antimony and tellurium having a composition of Ge 2 Sb 2 Te 5 which is a phase change material is used as a recording thin film. As a forming method, an electron beam evaporation method using three evaporation sources of Ge, Sb and Te is used. The recording thin film is formed in an amorphous state. Ge 2 Sb 2 Te 5 with the above composition was placed on a glass plate.
When the optical constant of the amorphous state was measured, the complex refractive index n + ki was 4.8 + 1 at the wavelength of 830 nm.
It was 3i. When this is heat-treated at 300 ° C. for 5 minutes to be in a crystalline state, it changes to 5.8 + 3.6i.

この膜をポリカーボネート樹脂板(PC、屈折率1.58)上
に蒸着しさらに同じ屈折率の材質の樹脂をコーティング
した第2図のような従来例の構成の場合の熱処理前後す
なわちアモルファス状態と結晶状態での波長830nmの光
の反射率Rの変化ΔRのおよび反射光の位相変化の膜厚
依存性の計算値を第3図(a),(b)に示す。
This film was vapor-deposited on a polycarbonate resin plate (PC, refractive index 1.58) and coated with resin of the same refractive index material before and after heat treatment in the case of the conventional structure as shown in FIG. 2, that is, in an amorphous state and a crystalline state. The calculated values of the change ΔR in the reflectance R of the light having the wavelength of 830 nm and the film thickness dependence of the phase change in the reflected light are shown in FIGS. 3 (a) and 3 (b).

反射率および反射光の位相の計算には各層の複素屈折率
と膜厚からマトリックス法で計算した(例えば、久保田
広著「波動光学」岩波書店、1971年第3章参照)また、
基材1と密着保護層は6は無限大の膜厚をもつものとし
て(基材−空気界面、密着保護層−空気界面の効果を無
視)、反射率Rは基材から入射した光の基材中に出射し
てくる比率としてもとめ、位相は基材1と透明層2の界
面での位相を基準としてもとめた。位相は2πの周期で
等価であるので図中ではこれを考慮してある。
The reflectance and the phase of the reflected light were calculated by the matrix method from the complex refractive index and the film thickness of each layer (see, for example, Hiro Kubota "Wave Optics" Iwanami Shoten, 1971 Chapter 3).
Assuming that the base material 1 and the adhesion protection layer 6 have infinite film thickness (ignoring the effects of the base material-air interface and the adhesion protection layer-air interface), the reflectance R is the base of the light incident from the base material. The phase was determined as the ratio of light emitted into the material, and the phase was determined based on the phase at the interface between the base material 1 and the transparent layer 2. Since the phase is equivalent to a period of 2π, this is taken into consideration in the figure.

アモルファス状態と結晶状態の反射率差ΔRは膜厚15nm
および85nmで極大になりそれぞれ14%および24%になる
が位相変化は殆どなくπ/6以下である。
The reflectance difference ΔR between the amorphous state and the crystalline state is a film thickness of 15 nm.
It becomes maximum at and 85 nm and becomes 14% and 24% respectively, but there is almost no phase change and it is π / 6 or less.

実施例1 本発明の一実施例として第1図に示すように基材1とし
てポリカーボネート樹脂板(PC、屈折率1.58)上に透明
層2として硫化亜鉛(ZnS、屈折率2.10)をエレクトロ
ンビーム蒸着法で厚さt1=142nm蒸着したうえに記録薄
膜層3として比較例に示した記録薄膜Ge2Sb2Te5を比較
例と同様の方法で形成しさらに透明層4としてZnSを厚
さt3=235nm同様に蒸着した。この上に反射層5として
金(Au、屈折率0.20+5.04i)を厚さt4=20nmエレクト
ロンビーム蒸着法で形成し、さらに保護層6として基材
と同じ屈折率の材質の樹脂をコーティングした。
Example 1 As one example of the present invention, as shown in FIG. 1, zinc sulfide (ZnS, refractive index 2.10) was electron beam evaporated as a transparent layer 2 on a polycarbonate resin plate (PC, refractive index 1.58) as a substrate 1. The recording thin film Ge 2 Sb 2 Te 5 shown in the comparative example was formed as the recording thin film layer 3 by the same method as the comparative example, and ZnS was formed as the transparent layer 4 with the thickness t 1 = 142 nm by the method. 3 = 235nm It vapor-deposited similarly. On this, gold (Au, refractive index 0.20 + 5.04i) is formed as a reflective layer 5 by an electron beam vapor deposition method with a thickness t 4 = 20 nm, and a resin having the same refractive index as the base material is coated as a protective layer 6. did.

このような構成の場合の熱処理前後すなわちアモルファ
ス状態と結晶状態での反射率Rの記録薄膜層の膜厚t2
存性の計算値を第4図に、反射率変化ΔRおよび反射光
の位相変化の膜厚t2依存性の計算値を第5図(a)
(b)に示す。記録薄膜層の膜厚t2が10nmのとき反射率
変化がなく反射光の位相変化が約−0.9π得られほぼπ
に近いことが示されている。
FIG. 4 shows the calculated values of the dependence of the reflectance R on the thickness t 2 of the recording thin film layer before and after the heat treatment in such a structure, that is, in the amorphous state and the crystalline state, and the reflectance change ΔR and the phase change of the reflected light. Figure 5 (a) shows the calculated value of the film thickness t 2 dependence of
It shows in (b). When the film thickness t 2 of the recording thin film layer is 10 nm, there is no change in reflectance and a phase change of reflected light of approximately −0.9π is obtained, which is approximately π.
It is shown to be close to.

次に同様の構成で記録薄膜層の厚さを10nmに固定して他
の層の厚さを変化させた場合を考える。
Next, let us consider a case where the thickness of the recording thin film layer is fixed to 10 nm and the thicknesses of other layers are changed in the same configuration.

記録薄膜層の厚さt2が10nm、透明層4の厚さt3が235n
m、反射層5の厚さt4が20nmの場合の反射率変化ΔRお
よび反射光の位相変化の透明層2の膜厚t1依存性の計算
値を第6図(a),(b)に示す。透明層は吸収がない
ため厚さは位相πに相当する周期でおなじ効果を与え
る。この実施例の場合は198nm周期で同じ特性を与える
ため図ではその厚さまで示しているがこれですべての厚
さを論じることができる。厚さt1が(142+198k)nm
(k:整数)のとき反射率変化がなく反射光の位相変化が
約−0.9π得られほぼπに近いことが示されている。こ
れ以外の膜厚では反射率変化が大きく位相変化が小さい
ことがわかる。
The thickness t 2 of the recording thin film layer is 10 nm, and the thickness t 3 of the transparent layer 4 is 235n.
The calculated values of the reflectance change ΔR and the film thickness t 1 dependence of the phase change of the reflected light when the thickness t 4 of the reflective layer 5 is 20 nm are shown in FIGS. 6 (a) and 6 (b). Shown in. Since the transparent layer has no absorption, the thickness gives the same effect in the period corresponding to the phase π. In the case of this embodiment, the same characteristics are given at a period of 198 nm, so that the thickness is shown in the figure, but all the thicknesses can be discussed. Thickness t 1 is (142 + 198k) nm
It is shown that when (k: integer), there is no reflectance change and a phase change of reflected light of about -0.9π is obtained, which is close to π. It can be seen that for other film thicknesses, the reflectance change is large and the phase change is small.

透明層1の厚さt1が142nm、記録薄膜層の厚さt2が10n
m、反射層5の厚さt4が20nmの場合の反射率変化ΔRお
よび反射光の位相変化の透明層2の膜厚t3依存性の計算
値を第7図(a)(b)に示す。厚さt3が(37+198k)
nm(k:整数)のとき反射率変化がなく反射光の位相変化
が約−0.9π得られることが示されている。
10n thickness t 1 of the transparent layer 1 is 142 nm, the thickness t 2 of the recording thin film layer
m and the calculated values of the reflectance change ΔR when the thickness t 4 of the reflection layer 5 is 20 nm and the film thickness t 3 dependency of the phase change of the reflected light on the thickness t 3 of the transparent layer 2 are shown in FIGS. Show. Thickness t 3 is (37 + 198k)
It is shown that when nm (k: integer), there is no change in reflectance and a phase change of reflected light of about −0.9π is obtained.

以上の結果から各層の厚さを適当に選ぶことによって反
射率の変化がほとんどなく、反射光の位相だけが変化す
る構成を得ることがわかる。この計算をもとに以下の実
験を行った。
From the above results, it can be seen that by appropriately selecting the thickness of each layer, there is almost no change in the reflectance and only the phase of the reflected light changes. The following experiments were performed based on this calculation.

基材に厚さ1.2mm・直径200mmのPC樹脂円板を用いこれを
真空中で回転させながら上記の方法でZnS薄膜を142nm蒸
着しさらに記録薄膜Ge2Sb2Te5を同右に10nmの膜厚でア
モルファス状態で形成した。さらにZnS薄膜を厚さ235nm
蒸着しAuを厚さ20nm蒸着した。また同じ構成の多層薄膜
18×18mm、厚さ0.2mmのガラス基板上にも形成した。さ
らに樹脂円盤上に成膜したものは同じPC樹脂円盤を紫外
線硬化性の接着材で張り付けて密着保護層を設け光記録
媒体を形成した。
Using a PC resin disk with a thickness of 1.2 mm and a diameter of 200 mm as a substrate, a ZnS thin film was deposited to 142 nm by the above method while rotating it in a vacuum, and a recording thin film Ge 2 Sb 2 Te 5 was deposited to the same right as a 10 nm film. It was formed in a thick and amorphous state. Furthermore, a ZnS thin film with a thickness of 235 nm
The Au was vapor-deposited to a thickness of 20 nm. Multi-layer thin film with the same structure
It was also formed on a glass substrate of 18 × 18 mm and a thickness of 0.2 mm. Further, for the film formed on the resin disk, the same PC resin disk was attached with an ultraviolet curable adhesive to provide an adhesion protection layer to form an optical recording medium.

ガラス基板上に形成したサンプルを300℃で5分間アル
ゴン雰囲気中で加熱して全面を結晶化し結晶化前後で基
材側からの反射率を測定したところともに約11%で変化
がなかった。
The sample formed on the glass substrate was heated at 300 ° C. for 5 minutes in an argon atmosphere to crystallize the entire surface, and the reflectance from the base material side was measured before and after crystallization.

この媒体を回転させ線速度10m/secの線速度で波長830nm
の半導体レーザー高を開口数0.5のレンズ系で絞って記
録薄膜上に焦点をあわせて照射した。記録薄膜面上で8m
Wの出力で単一周波数5MHz変調度50%で変調した光を照
射して記録薄膜を部分的に結晶化させて記録を行ない、
1mWの連続出力を照射してその反射光をフォトディテク
ターで検出して再生を行ったところ、再生信号振幅が観
測された。
This medium is rotated and the linear velocity is 10 m / sec and the wavelength is 830 nm.
The semiconductor laser height was squeezed by a lens system with a numerical aperture of 0.5 and focused on the recording thin film for irradiation. 8m on the recording thin film surface
Recording is performed by irradiating light modulated at a single frequency of 5 MHz and a modulation rate of 50% with the output of W to partially crystallize the recording thin film,
When a continuous output of 1 mW was emitted and the reflected light was detected by a photodetector for reproduction, the reproduction signal amplitude was observed.

前記のガラス基板上のサンプルにおいては結晶化で反射
率変化が見られないことからこの再生信号は記録部と未
記録部で反射光の位相が異なることによるものであるこ
とがわかる。
In the above sample on the glass substrate, no change in reflectance was observed due to crystallization, so it can be seen that this reproduced signal is due to the difference in the phase of the reflected light between the recorded portion and the unrecorded portion.

さらに記録する信号の周波数を変化させて記録再生を行
ったところ、第2図に示すような従来例の記録薄膜の膜
厚85nmの構成に比べて周波数特性が高域側に伸びること
が確認された。
Further, when the frequency of the signal to be recorded was changed and recording / reproduction was performed, it was confirmed that the frequency characteristic extended to the high frequency side as compared with the conventional recording thin film having a film thickness of 85 nm as shown in FIG. It was

また信号を記録した上に線速度10m/secで記録薄膜面上
で16mWの出力で同様にレーザーを連続的に照射したとこ
ろ記録薄膜が熔融してアモルファス状態に変化し、すで
に記録されていた信号が消去されたことが確認された。
In addition, when a signal was recorded on the recording thin film surface at a linear velocity of 10 m / sec and a laser of 16 mW was continuously irradiated in the same manner, the recording thin film melted and changed to an amorphous state. It was confirmed that was deleted.

発明の効果 本発明によれば光学的には凹凸による位相変化記録と等
価な記録が行える。従って、相変化記録でありながら記
録密度の大きい記録が行え、凹凸ピットによる複製盤
(オーディオディスク、ビデオディスク等)との互換も
取り易い。また、相変化記録は形状変化を伴わず材料を
選ぶことによって記録した状態をもとに戻す、すなわち
消去・書き換えも可能であり、書き換え型の位相変化記
録が実現できる。
EFFECTS OF THE INVENTION According to the present invention, recording that is optically equivalent to phase change recording due to unevenness can be performed. Therefore, it is possible to perform recording with a high recording density even though it is phase change recording, and it is easy to obtain compatibility with a duplication disk (audio disk, video disk, etc.) due to uneven pits. Further, in the phase change recording, the recorded state can be returned to the original state by selecting a material without changing the shape, that is, erasing / rewriting is possible, and rewritable phase change recording can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成を示す模式図、第2図
は従来例の構成を示す模式図、第3図は従来例の構成で
の反射率変化と反射光の位相変化の記録薄膜の膜厚依存
性を示すグラフ、第4図は本発明の一実施例の反射率の
記録薄膜の膜厚依存性を示すグラフ、第5図は本発明の
一実施例の反射率変化と反射光の位相変化の記録薄膜の
膜厚依存性を示すグラフ、第6図,第7図は本発明の一
実施例の反射率変化と反射光の位相変化の透明層の膜厚
依存性を示すグラフである。 1……基材、2,4……透明層、3……記録薄膜層、5…
…反射層、6……保護層。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a schematic diagram showing the configuration of a conventional example, and FIG. 3 is a diagram showing the reflectance change and the phase change of reflected light in the configuration of the conventional example. FIG. 4 is a graph showing the film thickness dependence of the recording thin film, FIG. 4 is a graph showing the film thickness dependence of the reflectance of the embodiment of the present invention, and FIG. 5 is a change of the reflectance of the embodiment of the present invention. And graphs showing the film thickness dependence of the phase change of the reflected light, and FIGS. 6 and 7 are the film thickness dependence of the transparent layer of the reflectance change and the phase change of the reflected light in one embodiment of the present invention. It is a graph which shows. 1 ... Substrate, 2,4 ... Transparent layer, 3 ... Recording thin film layer, 5 ...
… Reflective layer, 6 …… Protective layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基材上に、レーザー光照射によって光学的
に検知し得る変化を生じる記録薄膜材料層を設けた光学
的情報記録媒体であって、 薄膜材料はレーザー光照射により形状の変化を伴わずに
光学定数が変化し、検知し得る変化が主として入射した
光の反射光あるいは透過光の位相の変化によるものであ
ることを特徴とする光学的情報記録媒体。
1. An optical information recording medium comprising a substrate and a recording thin film material layer which produces a change which can be optically detected by laser light irradiation, wherein the thin film material changes its shape by laser light irradiation. An optical information recording medium characterized in that the optical constant changes without being accompanied, and the detectable change is mainly due to a change in the phase of reflected light or transmitted light of incident light.
【請求項2】変化の前後で入射した光の透過率あるいは
反射率の変化が小さいことを特徴とする請求項1記載の
光学的情報記録媒体。
2. The optical information recording medium according to claim 1, wherein a change in transmittance or reflectance of incident light before and after the change is small.
【請求項3】基材上に基材と屈折率が異なる第1の透明
層を設け、その上に記録薄膜層を設け、さらにその上に
第2の透明層を設け、その上に反射層を設けた構造の光
学的情報記録媒体であって、前記第1の透明層、記録薄
膜層、第2の透明層および反射層の膜厚を記録材料の形
状の変化を伴わない光学定数の変化に際して入射した光
の透過光あるいは反射光の位相が変化するように選ぶこ
とを特徴とする請求項1あるいは2記載の光学的情報記
録媒体。
3. A first transparent layer having a refractive index different from that of the substrate is provided on a substrate, a recording thin film layer is provided thereon, and a second transparent layer is provided thereon, and a reflective layer is provided thereon. An optical information recording medium having a structure in which the thickness of the first transparent layer, the recording thin film layer, the second transparent layer and the reflective layer is changed in optical constant without changing the shape of the recording material. 3. The optical information recording medium according to claim 1, wherein the optical information recording medium is selected so that the phase of transmitted light or reflected light of incident light is changed.
【請求項4】位相変化が略々 (1±2n)π n:整数 であることを特徴とする請求項1あるいは2記載の光学
的情報記録媒体。
4. The optical information recording medium according to claim 1, wherein the phase change is approximately (1 ± 2n) π n: an integer.
JP63266397A 1988-09-09 1988-10-21 Optical information recording medium Expired - Fee Related JPH07105064B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63266397A JPH07105064B2 (en) 1988-10-21 1988-10-21 Optical information recording medium
DE1989627731 DE68927731T2 (en) 1988-09-09 1989-09-08 Optical data recording medium and associated recording and playback process
EP89309138A EP0360466B1 (en) 1988-09-09 1989-09-08 Optical information recording medium and information recording and reproducing method therefor
US07/865,640 US5249175A (en) 1988-09-09 1992-04-09 Optical information recording medium and information recording and reproducing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266397A JPH07105064B2 (en) 1988-10-21 1988-10-21 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH02113451A JPH02113451A (en) 1990-04-25
JPH07105064B2 true JPH07105064B2 (en) 1995-11-13

Family

ID=17430365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266397A Expired - Fee Related JPH07105064B2 (en) 1988-09-09 1988-10-21 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPH07105064B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249175A (en) * 1988-09-09 1993-09-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and information recording and reproducing method therefor
US5527661A (en) * 1992-11-25 1996-06-18 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
JP2812181B2 (en) * 1993-06-17 1998-10-22 日本電気株式会社 Optical information recording medium
JP3138661B2 (en) * 1996-10-24 2001-02-26 日本電気株式会社 Phase change optical disk
JP3159374B2 (en) * 1997-06-03 2001-04-23 日本電気株式会社 Optical information recording medium

Also Published As

Publication number Publication date
JPH02113451A (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US5249175A (en) Optical information recording medium and information recording and reproducing method therefor
JP2909913B2 (en) Optical information recording medium, method of manufacturing the same, and optical information recording method
JPH0429135B2 (en)
US5410534A (en) Optical information recording medium
JP4339999B2 (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus
JP3076412B2 (en) Optical information recording medium and optical information recording / reproducing method
JP3087433B2 (en) Optical information recording medium and structure design method thereof
EP0360466B1 (en) Optical information recording medium and information recording and reproducing method therefor
JP2661293B2 (en) Optical information recording medium
JP3012734B2 (en) Optical information recording medium and structure design method thereof
JPH07105064B2 (en) Optical information recording medium
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
US5527661A (en) Optical information recording medium
JPH07105063B2 (en) Optical information recording medium
JPWO2003025923A1 (en) Optical information recording medium and recording method using the same
JP3356488B2 (en) Optical recording medium recording method and manufacturing method
JP2001023236A (en) Optical information recording medium and its initialization method
JP2002251778A (en) Optical information recording medium, manufacturing method therefor, recording method therefor and recording device
JP2782910B2 (en) Optical information recording method, reproducing method and erasing method
JPH07109654B2 (en) Optical information recording medium and information recording / reproducing method thereof
JP3156418B2 (en) Optical information recording medium and optical information recording / reproducing method
JP2001028148A (en) Optical information recording medium, its manufacture, recording/reproducing method and recording/ reproducing device
JP2506787B2 (en) Optical information recording member
JP2979620B2 (en) Optical information recording medium and optical information recording / reproducing method
JPH0822614B2 (en) Optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees