JPS59225992A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS59225992A
JPS59225992A JP58099577A JP9957783A JPS59225992A JP S59225992 A JPS59225992 A JP S59225992A JP 58099577 A JP58099577 A JP 58099577A JP 9957783 A JP9957783 A JP 9957783A JP S59225992 A JPS59225992 A JP S59225992A
Authority
JP
Japan
Prior art keywords
layer
recording medium
semiconductor
composite layer
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58099577A
Other languages
Japanese (ja)
Other versions
JPH0575595B2 (en
Inventor
Sadaaki Shigeta
重田 定明
Yoshio Yokogawa
横川 義雄
Kozo Ezaki
弘造 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP58099577A priority Critical patent/JPS59225992A/en
Publication of JPS59225992A publication Critical patent/JPS59225992A/en
Publication of JPH0575595B2 publication Critical patent/JPH0575595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24304Metals or metalloids group 2 or 12 elements (e.g. Be, Ca, Mg, Zn, Cd)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain an optical recording medium high in sensitivity, showing an extremely high S/N ratio of reproduced signals, stable and having low toxicity, by using a composite layer comprising particulates of a specified metal or a semiconductor dispersed therein and a recording layer consisting of a specified semiconductor. CONSTITUTION:The composite layer 1 comprising particulates of a metal or a semiconductor dispersed in a metallic oxide is provided on a base 3, and a semiconductor layer 2 is provided on the surface thereof. An energy beam incident on the optical recording medium is absorbed into the semiconductor layer and the composite layer, the resultant heat melts the composite layer, and recording and reproduction are performed by utilizing the change in the optical property (reflectance, transmittance or the like) of the part irradiated with the energy beam. Examples of the metal or semiconductor used for the composite layer include Sn, In, Sb, Pb, Al, Zn, Cu, Ag, Au, Ge and alloys comprising one of them as a main constituent. Examples of the metallic oxide include oxides of Sn, In, Al, Zr and Zn. When Ge is used for the semiconductor layer, a recording medium having high sensitivity and showing a high S/N ratio of reproduced signals can be obtained.

Description

【発明の詳細な説明】 本発明は、レーザ光等のエネルギー線を照射することに
よって、記n層のエネルギー線照射部が溶融等により変
形または除去されることによって生じる反射率もしくは
透過率の変化を利用して光学的に情報の記録、再生を行
うのに適した記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to changes in reflectance or transmittance that occur when the energy ray irradiated portion of the n layer is deformed or removed by melting or the like by irradiating energy rays such as laser light. The present invention relates to a recording medium suitable for optically recording and reproducing information using.

光ディスク等の光記録媒体に要求される性質としては、
記録光源に用いるレーザの波長領域での記録感度が高い
こと、再生信号のSN比が高いこと、記録密度が高いこ
と、保存安定性にすぐれていること、及び毒性が低いこ
とが挙げられる。
The properties required for optical recording media such as optical discs are as follows:
These include high recording sensitivity in the wavelength range of the laser used as the recording light source, high signal-to-noise ratio of the reproduced signal, high recording density, excellent storage stability, and low toxicity.

レーザ光照射部の温度上昇により記録層が融解し、ビッ
トを形成するいわゆるヒートモード型記録媒体に於て、
記録感度を高くするためには、記録層の分光吸収率が高
いこと、融点、比熱および熱伝導率が低いことが必要で
、また記nWsの厚さは薄いことが望ましい。再生信号
のSN比を高(するためには、ビットの形状、大きさが
揃っていて、ビット周辺に乱れが無いこと、及び再生に
反射光を使用する場合には、記録部と未記録部との反射
率の差が大きいこと、また記録密度を高くするためには
、熱伝導率が低いことが要求される。また保存安定性に
すぐれた記録媒体を得るためには、記録層の酸化安定性
及び耐湿性が高いことが要求される。
In so-called heat mode recording media, the recording layer melts due to the temperature rise of the laser beam irradiation area and forms bits.
In order to increase the recording sensitivity, it is necessary that the recording layer has a high spectral absorption rate, a low melting point, a low specific heat, and a low thermal conductivity, and it is desirable that the nWs be thin. In order to achieve a high signal-to-noise ratio of the reproduced signal, the bits must be of the same shape and size, and there must be no disturbance around the bits, and if reflected light is used for reproduction, the recorded and unrecorded areas must be In addition, in order to increase the recording density, low thermal conductivity is required.Also, in order to obtain a recording medium with excellent storage stability, oxidation of the recording layer is required. High stability and moisture resistance are required.

レーザ用記録媒体として現在量もすぐれているとされて
いるのは、ガラスまたはプラスチック基板上に記録層と
してテルルまたはテルル−砒素合金等のテルル合金薄膜
を形成したものである。テルル及びテルル合金RHは、
可視−近赤外の波長領域で光の吸収率が高く、低熱伝導
率、低融点であるため記録感度が高く、またビットの形
状、大きさも揃い易く、且つ可視−近赤外の波長領域で
適当な反射率を有しているため、反射光によってSN比
の高い再生信号が得られるなど、ヒートモード型レーザ
記録媒体に極めて適した性質を持っている。しかしテル
ルmM及びテルル−砒素合金薄膜には、酸化安定性が低
いこと及び毒性が高い等の欠点がある。酸化安定性の改
良にはテルルまたはテルル−砒素合金にセレンを添加し
たり、テルル低酸化物を用いる等の方法が試みられてい
るが、現在まで充分なものは得られておらず、また毒性
に関しては効果的な対策は見出されていない。
The currently available recording medium for lasers is one in which a thin film of tellurium or a tellurium alloy such as a tellurium-arsenic alloy is formed as a recording layer on a glass or plastic substrate. Tellurium and tellurium alloy RH are
It has high light absorption rate in the visible to near infrared wavelength range, low thermal conductivity, and low melting point, so it has high recording sensitivity, and the bit shape and size are easy to match, and it is suitable for the visible to near infrared wavelength range. Since it has an appropriate reflectance, it has properties that are extremely suitable for heat-mode laser recording media, such as the ability to obtain a reproduced signal with a high signal-to-noise ratio using reflected light. However, tellurium mM and tellurium-arsenic alloy thin films have drawbacks such as low oxidation stability and high toxicity. Attempts have been made to improve the oxidation stability by adding selenium to tellurium or tellurium-arsenic alloys, or by using low tellurium oxides, but so far no satisfactory results have been obtained, and the toxicity No effective measures have been found for this.

毒性の点では、テルル系記録媒体に比較して有利なもの
に、ガラスまたはプラスデック基板上、もしくは該基板
上に設けたアルミニウム等の反射層の上に色素または色
素をポリマーに分散した層を形成した記録媒体がある。
In terms of toxicity, one advantage over tellurium-based recording media is the use of a dye or a layer in which the dye is dispersed in a polymer on a glass or plus deck substrate, or on a reflective layer such as aluminum provided on the substrate. There is a recording medium that has been formed.

しかし、一般に色素の吸収波長は、赤色光より短波長側
にあり、今後記録用光源の主流となると予想されている
半導体レーザの発振波長域である7 50 nm〜85
0 nmの領域で大きな吸収を示す安定な色素が得られ
ないため、半導体レーザを記録用光源とする色素系記録
媒体で実用的なものは得られていない。
However, the absorption wavelength of dyes is generally on the shorter wavelength side than red light, and is in the oscillation wavelength range of 750 nm to 85 nm, which is the oscillation wavelength range of semiconductor lasers, which are expected to become the mainstream of recording light sources in the future.
Since a stable dye that exhibits large absorption in the 0 nm region cannot be obtained, a practical dye-based recording medium using a semiconductor laser as a recording light source has not been obtained.

本発明者等は、毒性が低く、酸化安定性及び耐水性にす
半導体の微粒子が、化学的安定性にすぐれた金属酸化物
薄膜中に分散した複合層と、この複合層の少なくとも一
方の表面に接触した特定の半導体からなる記録層を用い
ることによって高感度で再生信号のSN比が極めて高く
、且つ安定でしかも毒性の低い光記録媒体が得られるこ
とを見出し、本発明に到達した。
The present inventors have developed a composite layer in which fine semiconductor particles having low toxicity, oxidation stability, and water resistance are dispersed in a metal oxide thin film with excellent chemical stability, and a surface of at least one of the composite layers. The present inventors have discovered that by using a recording layer made of a specific semiconductor in contact with an optical recording medium, it is possible to obtain an optical recording medium that is highly sensitive, has an extremely high signal-to-noise ratio of a read signal, is stable, and has low toxicity, and has arrived at the present invention.

本発明の要旨とするところは、基板上に、金属酸化物薄
膜中に金属もしくは半導体の微粒子が分散した複合層と
、該複合層の少な(とも一方の表面に接触する半導体層
からなる記録層が形成されていることを特徴とする光記
録媒体の機構と構成にある。
The gist of the present invention is to provide, on a substrate, a composite layer in which metal or semiconductor fine particles are dispersed in a metal oxide thin film, and a recording layer consisting of a semiconductor layer in contact with one surface of the composite layer. The structure and structure of an optical recording medium is characterized in that:

第1図に、本発明の光記録媒体の層構成の一例を示す。FIG. 1 shows an example of the layer structure of the optical recording medium of the present invention.

第1図に於ては、基板上に、金属酸化物中に金属もしく
は半導体の微粒子が分散した複合層(以下複合層と呼ぶ
)が設けられており、該複合層の表面に半導体層が形成
されている。この光記録媒体に於ては基板側もしくは基
板と反対側から入射したエネルギー線は、半導体層及び
複合層に吸収され発生した熱により複合層が融解し、こ
の複合層の融解部分が半導体層のこれに接した部分を併
って移動することによって形成されるビットによって生
じる媒体のエネルギー線が照射された部分の光の反射率
、透過率等の光学的性質の変化を利用して記録、再生が
行われる。
In Figure 1, a composite layer (hereinafter referred to as a composite layer) in which metal or semiconductor fine particles are dispersed in a metal oxide is provided on a substrate, and a semiconductor layer is formed on the surface of the composite layer. has been done. In this optical recording medium, the energy rays incident from the substrate side or the side opposite to the substrate are absorbed by the semiconductor layer and the composite layer, and the generated heat melts the composite layer, and the melted portion of the composite layer is transferred to the semiconductor layer. Recording and reproduction are performed by utilizing changes in optical properties such as reflectance and transmittance of the part of the medium that is irradiated with energy rays, which is generated by bits that are formed by moving the part in contact with the bit. will be held.

本発明の光記録媒体に於ける複合層に用いられる金属も
しくは半導体の例としては、Sn、 In、 Pb、^
lXZn5 Cu54L^us sb、、[11,、S
es Te1Ge及びこれらを主成分とする合金が挙げ
られるが、低毒性の観点から好ましい金属もしくは半導
体の例としては、Sn、 In、 Sb、pb、^1、
Zn−、C11%八8、へu1Ge及びこれらを主成分
とする合金が挙げられる。上記金属もしくは半導体の特
徴は半導体レーザの発振波長域での反射率が高い、融点
が低い、毒性が低い、及び空気中での安定性が高い等で
あるので、これら金属もしくは半導体を主成分とする合
金を用いる場合は、上記特徴が失われないように注意す
る必要がある。
Examples of metals or semiconductors used in the composite layer in the optical recording medium of the present invention include Sn, In, Pb,
lXZn5 Cu54L^us sb,,[11,,S
Examples of preferred metals or semiconductors from the viewpoint of low toxicity include Sn, In, Sb, pb, ^1,
Examples include Zn-, C11%88, Heu1Ge, and alloys containing these as main components. The characteristics of the metals or semiconductors mentioned above include high reflectance in the oscillation wavelength range of semiconductor lasers, low melting points, low toxicity, and high stability in air. When using an alloy that has the following properties, care must be taken to ensure that the above characteristics are not lost.

本発明の光記録媒体に於ける複合層に用いられる金属酸
化物は、化学的安定性にすぐれ、熱伝導率の低いもので
あることが必要で、好ましい例としては、Sn、、In
、^1. Zr及びZnの酸化物が挙げられるが、特に
SnまたはInの酸化物を用いると、空気中での安定性
がすぐれ、高感度且つ再生信号のSN比が高い記録媒体
が得られる。SnまたはInの酸化物の例としては化学
式で5nOx、In、oj及び5nOz−x、 rna
OJ−x等の低酸化物や、Sn+−yMyoa 、In
z−zNzoj等の5nOa、I n 2ojに異種金
属がドーピングされたものが挙げられる。ここでxSz
は0.5以下、yは0.25以下の正の数、MはSb、
、In。
The metal oxide used in the composite layer in the optical recording medium of the present invention must have excellent chemical stability and low thermal conductivity. Preferred examples include Sn, In, and In.
, ^1. Examples include oxides of Zr and Zn, and in particular, use of oxides of Sn or In provides a recording medium with excellent stability in air, high sensitivity, and a high signal-to-noise ratio of reproduced signals. Examples of oxides of Sn or In include the chemical formulas 5nOx, In, oj and 5nOz-x, rna
Low oxides such as OJ-x, Sn+-yMyoa, In
Examples include 5nOa such as z-zNzoj, and In 2oj doped with a different metal. Here xSz
is 0.5 or less, y is a positive number of 0.25 or less, M is Sb,
, In.

NはSns Ges Pbs Zn等の金属を示す。N represents a metal such as Sns, Ges, Pbs, Zn, etc.

上記複合層に於ける金属もしくは半導体の充填率は0.
3以上、0.95以下であることが必要である。充填率
が0.3以下であると、複合層の吸収係数が低下し、且
つ複合層が溶融流動化する温度も高くなり、得られる光
記録媒体の記録感度が低下する。充填率が0.95以上
となると、複合層に分散している金属もしくは半導体粒
子間の接触が始まり、金属もしくは半導体粒子の粒子径
が大きくなり、そのため記録ビットの大きさ、形状が不
揃いになり、再生信号のSN比が低下し、また複合層の
熱伝導率も大きくなるため記録感度が低下する。
The filling rate of metal or semiconductor in the above composite layer is 0.
It needs to be 3 or more and 0.95 or less. If the filling factor is less than 0.3, the absorption coefficient of the composite layer decreases, and the temperature at which the composite layer melts and fluidizes increases, resulting in a decrease in the recording sensitivity of the resulting optical recording medium. When the filling factor becomes 0.95 or more, contact between the metal or semiconductor particles dispersed in the composite layer begins, and the particle size of the metal or semiconductor particles increases, resulting in irregularities in the size and shape of the recording bits. , the S/N ratio of the reproduced signal decreases, and the thermal conductivity of the composite layer also increases, resulting in a decrease in recording sensitivity.

本発明の光記録媒体に於ける複合層の一層の厚さは10
Å以上、500Å以下が望ましい。複合層の一層の厚さ
が10Å以下であると、複合層のエネルギー線照射部の
溶融流動化による半導体層のビット形成が進行し難くな
り、記録媒体の記録感度が低下する。また複合層の一層
の厚さが500Å以上であると、複合層エネルギー線照
射部の溶融流動化に必要なエネルギーが大きくなるため
記録媒体の記録感度が低下する。特に複合層の一層の厚
さが30Å以上、300Å以下の場合、高感度で再生信
号のSN比の高い記録媒体が得られる。
The thickness of one layer of the composite layer in the optical recording medium of the present invention is 10
It is desirable that the thickness is Å or more and 500 Å or less. If the thickness of one layer of the composite layer is less than 10 Å, it becomes difficult to form bits in the semiconductor layer by melting and fluidizing the energy ray irradiated portion of the composite layer, and the recording sensitivity of the recording medium decreases. Furthermore, if the thickness of one layer of the composite layer is 500 Å or more, the energy required to melt and fluidize the energy ray irradiated portion of the composite layer increases, resulting in a decrease in the recording sensitivity of the recording medium. In particular, when the thickness of one layer of the composite layer is 30 Å or more and 300 Å or less, a recording medium with high sensitivity and a high signal-to-noise ratio of reproduced signals can be obtained.

本発明の光記録媒体に用いられる半導体層の例としては
、Ge、、St、 Se等の元素半導体及び、^ISb
、 GaAs、、GaSb、 InP 。
Examples of the semiconductor layer used in the optical recording medium of the present invention include elemental semiconductors such as Ge, St, Se, and ISb.
, GaAs, , GaSb, InP.

1nAss InSb等の化合物半導体が挙げられる。Examples include compound semiconductors such as 1nAss InSb.

特に半導体にGeを用いた場合は、均質且つT50nm
〜850 nmの波長域で光の吸収係数の大きい層が得
られるため、高感度且つ再生信号のSN比が高い記録媒
体が得られる。またGe1lは薄膜の場合でも酸化安定
性及び耐湿性がすぐれており、毒性も低い点で本発明の
光記録媒体に用いられる半導体層として好適である。更
に本発明の光記録媒体には、GeにGa、、Inまたは
sb等をドーピングした薄膜からなる半導体層を用いる
こともできる。
Especially when Ge is used for semiconductors, it is homogeneous and T50nm.
Since a layer having a large light absorption coefficient in the wavelength range of ~850 nm can be obtained, a recording medium with high sensitivity and a high signal-to-noise ratio of reproduced signals can be obtained. Furthermore, Ge1l has excellent oxidation stability and moisture resistance even in the form of a thin film, and is also low in toxicity, making it suitable as the semiconductor layer used in the optical recording medium of the present invention. Further, in the optical recording medium of the present invention, a semiconductor layer made of a thin film of Ge doped with Ga, In, sb, or the like can also be used.

本発明の光記録媒体に於ける半導体層の一層の厚さは1
0A以上、200Å以下が望ましい。半導体層の一層の
厚さが10Å以下であると、得られる記録媒体の750
r+m〜850 nmの波長域での光の反射率、吸収率
が低くなり、記録部と未記録部とのコントラストが大き
くできず、再生信号のSN比が低くなる。半導体層の一
層の厚さが200Å以上であると、複合層のエネルギー
線照射部が溶融流動化しても、半導体層のピント形成が
進行し難くなるため、記録媒体の記録感度が低下する。
The thickness of one layer of the semiconductor layer in the optical recording medium of the present invention is 1
It is desirable that the current is 0 A or more and 200 Å or less. When the thickness of one layer of the semiconductor layer is 10 Å or less, the resulting recording medium has a thickness of 750 Å.
The reflectance and absorption rate of light in the wavelength range from r+m to 850 nm decrease, the contrast between the recorded portion and the unrecorded portion cannot be increased, and the SN ratio of the reproduced signal decreases. If the thickness of one layer of the semiconductor layer is 200 Å or more, even if the energy ray irradiated portion of the composite layer is melted and fluidized, it becomes difficult for the semiconductor layer to form a focus, resulting in a decrease in the recording sensitivity of the recording medium.

特に半導体層の一層の厚さが20Å以上、100Å以下
の場合SN比の高い記録媒体本発明の光記録媒体の一つ
の実施態様は、基板上に複合層を形成させ、更にこの複
合層の表面に半導体層を形成させたものである。基板と
しては、アルミニウム等の金属板、ガラス板、あるいは
ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニ
ル、ポリカーボネート、ポリエチレンテレフタレート、
ポリブチレンテレフタレート、ポリアミド及びエポキシ
樹脂、ジアリルフタレート重合体、ジエチレングリコー
ルビスアリルカーボネート重合体、ポリフェニレンサル
ファイド、ポリフェニレンオキサイド、ポリイミド等の
熱可塑性、又は熱硬化性樹脂のシート又はフィルムが用
いられる。特に本発明の光記録媒体を記録光、再生光を
基板を通して照射する形式の光ディスクとして使用する
場合に於ては、基板にはメチルメタクリレート系重合体
、スチレン系重合体、ポリ塩化ビニル、ポリカーボネー
ト、ジエチレングリコールビスアリルカーボネート重合
体、エポキシ樹脂等の透明プラスチックのシートを用い
る必要がある。また、基板にガラス板、又はアルミニウ
ム等の金属板を使用する場合は、これら基板上にポリマ
一層を設けた後に複合層及び半導体層からなる記録層を
形成させると高感度の光記録媒体が得られる。上記ポリ
マーの例としては、ポリスチレン、ポリメチルメタクリ
レート、ポリイソブヂルメタクリレート等が挙げられる
In particular, when the thickness of one layer of the semiconductor layer is 20 Å or more and 100 Å or less, the recording medium has a high S/N ratio.One embodiment of the optical recording medium of the present invention is to form a composite layer on a substrate, and furthermore, to form a composite layer on the surface of the composite layer. A semiconductor layer is formed on the substrate. The substrate may be a metal plate such as aluminum, a glass plate, or polymethyl methacrylate, polystyrene, polyvinyl chloride, polycarbonate, polyethylene terephthalate,
Sheets or films of thermoplastic or thermosetting resins such as polybutylene terephthalate, polyamide and epoxy resins, diallyl phthalate polymers, diethylene glycol bisallyl carbonate polymers, polyphenylene sulfide, polyphenylene oxide, and polyimide are used. In particular, when the optical recording medium of the present invention is used as an optical disc in which recording light and reproduction light are irradiated through a substrate, the substrate may be made of methyl methacrylate polymer, styrene polymer, polyvinyl chloride, polycarbonate, It is necessary to use a sheet of transparent plastic such as diethylene glycol bisallyl carbonate polymer or epoxy resin. Furthermore, when using a glass plate or a metal plate such as aluminum as a substrate, a highly sensitive optical recording medium can be obtained by forming a single layer of polymer on these substrates and then forming a recording layer consisting of a composite layer and a semiconductor layer. It will be done. Examples of the above polymers include polystyrene, polymethyl methacrylate, polyisobutyl methacrylate, and the like.

本発明の光記録媒体の層構成の例を第2図〜第5図に示
す。以下本発明の記録媒体の製造方法を層構成の例図を
用いて説明する。
Examples of the layer structure of the optical recording medium of the present invention are shown in FIGS. 2 to 5. The method for manufacturing a recording medium of the present invention will be explained below using an example diagram of a layer structure.

第2図に示す構成の記録媒体は、基板3の上るこ半導体
層2を形成させた後に、この半導体層2の上に複合層1
を形成させ、次いでこの操作をくり返した後最外層に半
導イ本層を形成することにより、半導体層をn層、複合
層をn−1層積層させることによって得られる(ここで
niよ正の整数を示す。)。半導体層及び複合層を形成
させるため番=1よ、真空蒸着法、イオン化蒸着法、イ
オンブレーティング法、スパッタ法、クラスターイオン
ビーム法等を利用する。(笈合層を形成させる場合は、
金属もしくは半導体金属酸化物とを別々のルツボに入れ
、I X 10’ mHg以下の真空度に於て同時に蒸
発させ蒸着を行う。また上記真空蒸着工程で蒸発粒子を
イオン化し、半導体層表面に衝突させるイオン化蒸着法
、またイオン化と同時に基板側番こ直流電圧を印加して
イオン化粒子を加速させるイオンブレーティング法を用
いることもできる。また金属もしくは半導体のターゲ・
ノドと金属酸化物のターゲ・ノドを用し)て同時ス/N
+ツタを1テうことによって複合層を形成させることも
できる。む1ずれの場合も複合層の形成時には、各蒸発
源、ターゲットの比較的近傍に水晶膜厚センサ等のセン
サヘッドを設置し、金属もしくは半導体及び金属酸化物
の蒸着速度、スパッタリング速度を別々に検知、制御す
ることにより、所定の金属もしくは半導体の充填率及び
厚さの複合層が得られる。
In the recording medium having the configuration shown in FIG.
After repeating this operation, a semiconductor main layer is formed as the outermost layer, thereby stacking n semiconductor layers and n-1 composite layers. ). In order to form the semiconductor layer and the composite layer, for number=1, a vacuum deposition method, an ionization deposition method, an ion blating method, a sputtering method, a cluster ion beam method, etc. are used. (When forming a cover layer,
A metal or a semiconductor metal oxide is placed in a separate crucible, and vapor deposition is performed by simultaneously evaporating the metal or semiconductor metal oxide in a vacuum of less than I x 10' mHg. Further, it is also possible to use an ionization deposition method in which evaporated particles are ionized in the vacuum deposition process and collide with the semiconductor layer surface, or an ion blating method in which ionized particles are accelerated by applying a DC voltage on the substrate side at the same time as ionization. . Also, metal or semiconductor targets.
Simultaneous S/N using a metal oxide target throat)
A composite layer can also be formed by adding one ivy. In either case, when forming a composite layer, a sensor head such as a crystal film thickness sensor is installed relatively close to each evaporation source and target, and the evaporation rate and sputtering rate of the metal or semiconductor and metal oxide can be adjusted separately. By sensing and controlling, a composite layer with a predetermined metal or semiconductor filling rate and thickness can be obtained.

第3図に示す構成の記録媒体は、基板3の上に複合層1
を形成させた後、この複合層1の上に半導体層2を形成
させ、次いでこの操作をくり返すことにより複合層をn
層、半導体層をn層積層させることによって得られる。
A recording medium having the configuration shown in FIG. 3 has a composite layer 1 on a substrate 3.
After forming the semiconductor layer 2 on the composite layer 1, this operation is repeated to form the composite layer n.
It is obtained by laminating n layers of semiconductor layers.

m4図に示す構成の記録媒体は、第2図に示ず構成の記
録媒体を製造する場合と同様の操作を行い、基板3の上
に半導体層2をn層、複合層1をn層積層させることに
よって得られる。第5図に示す構成の記録媒体は、第3
図に示す構成の記録媒体を製造する場合と同様の操作を
行い、基板3の上に複合層lをn層、半導体層2をn−
1層積層させることによって得られる。
A recording medium having the configuration shown in Figure m4 is produced by laminating n layers of semiconductor layers 2 and n layers of composite layer 1 on a substrate 3 by performing the same operation as in the case of manufacturing a recording medium having a configuration not shown in Figure 2. obtained by letting The recording medium having the configuration shown in FIG.
The same operation as in the case of manufacturing the recording medium having the configuration shown in the figure is performed, and n layers of the composite layer l are formed on the substrate 3, and n layers of the semiconductor layer 2 are formed on the substrate 3.
It is obtained by laminating one layer.

第2図〜第5図に示す構成の本発明の光記録媒体に於て
は、記録層の厚さく複合層及び半導体層を積層した全体
の厚さ)が50Å以上、2000Å以下であることが望
ましい。記録層の厚さが2000Å以上になると、記録
層のエネルギー線照射部の体積が大きくなるため、エネ
ルギー線を照射した場合に吸収されるエネルギーの密度
が低下するため、記録媒体の記録感度が低下し、さらに
形成されるビソト周辺の形状が乱れ易くなり、再生信号
のSN比に悪影響を与える。記録層の厚さが50Å以下
であると、記録媒体の記録部と未記録部の反射率及び透
過率の差が小さくなり、コントラストが低くなるため、
再生信号のSN比を高くすることができない。本発明の
光記録媒体を反射型光ディスクに使用する場合、記録層
のより好ましい厚さの範囲は70Å以上、500Å以下
である。
In the optical recording medium of the present invention having the configuration shown in FIGS. 2 to 5, the thickness of the recording layer (the total thickness of the composite layer and the semiconductor layer) is preferably 50 Å or more and 2000 Å or less. desirable. When the thickness of the recording layer becomes 2000 Å or more, the volume of the energy ray irradiated part of the recording layer becomes large, and the density of energy absorbed when irradiated with energy rays decreases, resulting in a decrease in the recording sensitivity of the recording medium. Furthermore, the shape of the formed periphery of the VISO becomes more likely to be disturbed, which adversely affects the S/N ratio of the reproduced signal. If the thickness of the recording layer is 50 Å or less, the difference in reflectance and transmittance between the recorded part and the unrecorded part of the recording medium will be small, and the contrast will be low.
It is not possible to increase the SN ratio of the reproduced signal. When the optical recording medium of the present invention is used in a reflective optical disc, a more preferable thickness range of the recording layer is 70 Å or more and 500 Å or less.

第2図〜第5図に示ず構成の本発明の光記録媒体に於て
は、複合層の一周の厚さが10人〜500人、半導体層
の厚さが10人〜200人、複合層と半導体層が積層さ
れた記録層の厚さが50人〜2000人の範囲内であれ
ば、nの値は1以−ヒの任意の整数で良い。特に半導体
層にGeを使用し、第2図に示す構成でnが2以上の場
合、空気中での安定性及び耐湿性の特にすぐれた光記録
媒体が得られる。
In the optical recording medium of the present invention having a structure not shown in FIGS. As long as the thickness of the recording layer in which the semiconductor layer and the semiconductor layer are laminated is within the range of 50 to 2000 layers, the value of n may be any integer of 1 or more. In particular, when Ge is used in the semiconductor layer and n is 2 or more in the configuration shown in FIG. 2, an optical recording medium with particularly excellent stability in air and moisture resistance can be obtained.

本発明の光記録媒体に於ける記録層は、通常の環境下で
は極めて安定であり、特に保護層を設ける必要は無いが
、機械的衝撃等に対する保護や、塵埃等の付着により、
記録、再生に支障が生じるのを防ぐことを目的として、
保護層を記録層の上に設けることが可能である。保護層
としては、Stow、Al−107、TiO2等の無機
材料及び有機高分子材料が用いられる。
The recording layer in the optical recording medium of the present invention is extremely stable under normal environments, and there is no need to provide a protective layer, but protection against mechanical shock and adhesion of dust etc.
In order to prevent problems with recording and playback,
It is possible to provide a protective layer on top of the recording layer. As the protective layer, inorganic materials and organic polymer materials such as Stow, Al-107, and TiO2 are used.

第2図〜第5図に示す本発明の光記録媒体に於ては、幕
板3を透明なものとした場合は、記録光及び再生光を図
の上方から入射させても、下方から入射させても良い。
In the optical recording medium of the present invention shown in FIGS. 2 to 5, when the curtain plate 3 is made transparent, even if the recording light and the reproduction light are incident from above in the drawings, they are not incident from below. You can let me.

本発明の光記録媒体は、低毒性で高感度であり、空気中
での安定性及び耐湿性がすぐれていると同時に再生信号
のSN比が極めて高い点に特徴がある。本発明の光記録
媒体が上記の如(すぐれた特徴を示す理由は現時点では
必ずしも明確で無いが、以下の様に推定することができ
る。本発明の光記録媒体の記録層は、それぞれ光学定数
の異なる複合層と半導体層との積層膜から成り立ってい
るため、記録層がそれぞれ複合層もしくは半導体層単独
で成り立っている場合に比較して、記録層の厚さが極め
て小さい場合でもエネルギー線の吸収率及び反射率が高
くなる。このため記録層のエネルギー線が照射される部
分に於けるエネルギー密度が大きくなり、記録感度が高
くなると同時に、記録部と未記録部とのコントラストが
大きくなり、再生時のSN比が高くなる。さらに記録層
を構成している複合層は金−属酸化物とこの酸化物中に
分散した粒径が光の波長以下の極めて微細な金属もしく
は半導体の粒子から成り立っているため、バルクの金属
もしくは半導体に比較して低い温度で隣接する半導体層
を伴って容易に流動化する。この記録層の流動化した部
分は、金属もしくは半導体単独の溶融体に比較して大き
な表面エネルギーを有しており、流動化した記録層とこ
れに接触する基板との表面との表面エネルギーの差が大
きくなり、流動化した記録層の移動がスムーズに起り、
ビット形成が容易になる。この流動化した記録層の移動
は、流動化した部分とその周囲の面相との表面エネルギ
ーの差によ−って起ると考えられているが(特開昭55
−132536号参照)、本発明の光記録媒体に於ては
、半導体層は無定形もしくは微結晶構造をとり易く、複
合層では、金属もしくは半導体の粒子が極めて小さいた
め、ビットの大きさ形状に大きな影響を与えると考えら
れ、しかも一般の金属Il!I膜で多く見られる大きな
結晶による結晶粒界の影響が無くなる。この結果、低い
照射エネルギーで形状、大きさの揃った周辺部の乱れの
小さいビットが形成されるものと考えられる。
The optical recording medium of the present invention is characterized by low toxicity, high sensitivity, excellent stability in air and moisture resistance, and an extremely high S/N ratio of the reproduced signal. The reason why the optical recording medium of the present invention exhibits the above-mentioned (excellent characteristics) is not necessarily clear at present, but it can be estimated as follows. Since the recording layer is composed of a laminated film of a composite layer and a semiconductor layer with different values, energy rays can be absorbed even when the thickness of the recording layer is extremely small compared to when the recording layer is composed of a composite layer or a semiconductor layer alone. Absorption rate and reflectance increase.For this reason, the energy density in the area of the recording layer that is irradiated with energy rays increases, and at the same time, the recording sensitivity increases, and at the same time, the contrast between the recorded area and the unrecorded area increases. The signal-to-noise ratio during reproduction is increased.Furthermore, the composite layer constituting the recording layer is made of a metal oxide and extremely fine metal or semiconductor particles dispersed in this oxide, the particle size of which is less than the wavelength of light. As a result, it easily fluidizes with the adjacent semiconductor layer at a lower temperature than the bulk metal or semiconductor.The fluidized portion of this recording layer is The fluidized recording layer has a large surface energy, and the difference in surface energy between the fluidized recording layer and the surface of the substrate that comes into contact with it becomes large, and the fluidized recording layer moves smoothly.
Bit formation becomes easier. This movement of the fluidized recording layer is thought to occur due to the difference in surface energy between the fluidized portion and the surrounding phase (Japanese Patent Laid-Open No. 55
In the optical recording medium of the present invention, the semiconductor layer tends to have an amorphous or microcrystalline structure, and since the metal or semiconductor particles in the composite layer are extremely small, the size and shape of the bits do not change. It is thought that it will have a big impact, and moreover, it is common metal Il! The influence of grain boundaries caused by large crystals often seen in I films is eliminated. As a result, it is thought that bits with uniform shape and size and little disturbance in the peripheral area are formed with low irradiation energy.

さらに本発明の光記録媒体における記録層を構成する半
導体層は熱伝導率が低く、複合層中では、金属もしくは
半導体の微粒子は、酸化物中に互いに孤立して存在して
いるため、複合層の熱伝導率も低くなり、記録媒体の感
度は高くなる。また、複合層中の金属の充填率、半導体
層、複合層の厚さを適切に選択することにより、最適な
分光吸収率、分光反射率の記録媒体が得られる。
Furthermore, the semiconductor layer constituting the recording layer in the optical recording medium of the present invention has a low thermal conductivity, and the metal or semiconductor fine particles exist isolated from each other in the oxide in the composite layer. The thermal conductivity of the recording medium also decreases, and the sensitivity of the recording medium increases. Furthermore, by appropriately selecting the metal filling rate in the composite layer, the semiconductor layer, and the thickness of the composite layer, a recording medium with optimal spectral absorption and reflectance can be obtained.

本発明の光記録媒体の記録層に使用さる金属もしくは半
導体及び金属酸化物等は、いずれも空気中及び水中で極
めて安定で、且つ毒性が低いため、本発明の光記録媒体
は低毒性で保存安定性もすぐれている。
The metals, semiconductors, metal oxides, etc. used in the recording layer of the optical recording medium of the present invention are all extremely stable in air and water, and have low toxicity, so the optical recording medium of the present invention can be stored with low toxicity. It also has excellent stability.

本発明の光記録媒体は、記録再生用光ディスクとして唄
(17アイル、文書ファイル、データファイル及びコン
ピュータの外部メモリとして用いられるばかりでなく、
レーザ光で直接書き込み、読み取りが可能なテープ、カ
ード、マイクロフィッシュ等として用いることができる
The optical recording medium of the present invention can be used not only as an optical disk for recording and reproduction, but also as an external memory for a computer, a document file, a data file, and a computer.
It can be used as tapes, cards, microfiche, etc. that can be directly written and read with laser light.

以下、本発明の詳細を実施例によって示すが、本発明は
これ等の例に限定されるものではない。
Hereinafter, the details of the present invention will be illustrated by examples, but the present invention is not limited to these examples.

尚、以下の実施例で示す充填率とは、複合層中で金属も
しくは半導体微粒子の占める体積の割合である。
Note that the filling rate shown in the following examples is the volume ratio occupied by metal or semiconductor fine particles in the composite layer.

実施例1 厚さ1.2mn、外径300鶴、内径351A嘗のポリ
メタクリル酸メチルからなるディスク状基板を真空蒸着
装置のヂャンバーに取り付け、三つのルツボにそれぞれ
、Ge(フルウチ化学製、30φX 10 m t 、
純度99.999%)、sn(フルウチ化学製、30φ
X10mt、純度!’J 9.99%)、5nOz (
フルウチ化学製、18φX 5 xm t 、純度99
.99%)を入れ、この基板を2 Orpmの速度で回
転させながら、真空度I X 10−6w Hgの条件
に於て、電子ビーム蒸着法を用い、まづGeを30人の
厚さに蒸着し、次いでSn及び5nOzにそれぞれ別の
電子銃より電子線を照射し、Sn及びSnO2の蒸発速
度を調節しながら蒸着を行い、Snの充填率0.8で膜
厚60人のSn及びSnO2の複合層をGe層の上に形
成し、続いて同様の操作を行うことにより、このSnと
SnOコの複合層上に厚さ20人のGe層、厚さ60人
のSnとSnO2の複合層及び厚さ30人のGeJiを
順次積層し、第2図に於てn=3に相当する構成で厚さ
200人の記録層を有するディスク状光記録媒体を製作
した。
Example 1 A disk-shaped substrate made of polymethyl methacrylate with a thickness of 1.2 mm, an outer diameter of 300 mm, and an inner diameter of 351 mm was attached to the chamber of a vacuum evaporation apparatus, and each of three crucibles was filled with Ge (manufactured by Furuuchi Chemical Co., Ltd., 30φ m t,
purity 99.999%), sn (manufactured by Furuuchi Chemical, 30φ
X10mt, purity! 'J 9.99%), 5nOz (
Made by Furuuchi Chemical, 18φX 5 x m t, purity 99
.. 99%), and while rotating this substrate at a speed of 2 Orpm, Ge was first evaporated to a thickness of 30 mm using electron beam evaporation under vacuum conditions of I x 10-6 W Hg. Next, Sn and 5nOz were irradiated with electron beams from separate electron guns, and vapor deposition was performed while controlling the evaporation rate of Sn and SnO2 to obtain a film thickness of 60 nm with a Sn filling rate of 0.8. By forming a composite layer on the Ge layer and subsequently performing the same operation, a 20-thick Ge layer and a 60-thick Sn and SnO2 composite layer are formed on this Sn and SnO composite layer. A disk-shaped optical recording medium having a recording layer with a thickness of 200 layers and a configuration corresponding to n=3 in FIG. 2 was manufactured by sequentially laminating GeJi layers with a thickness of 30 layers.

得られたディスク状光記録媒体を毎分1800回転の回
転速度で回転させながら、くりかえし周波数5M1lz
で100nsecのパルス11に変調した半導体レーザ
(日立製作断裂+1LP−1600、発振波長830 
nm)の発振光をコリメーターレンズ、集光レンズ及び
基板を通して記録層にビーム径1μmまで集光して照射
することにより記録を行ったところ、短径がほぼ1μm
のビットを形成させるのに必要なディスクの記録面上に
於けるレーザ光強度は6IIIWであった。また記録信
号を1mWのレーザ光で再生を行い、基準信号5 Ml
lz、バンドrlJ 100 K11zの条件でスペク
トラムアナライザで測定したCN比は56dBであった
While rotating the obtained disc-shaped optical recording medium at a rotational speed of 1800 revolutions per minute, it was repeatedly rotated at a frequency of 5M1lz.
Semiconductor laser modulated to 100 nsec pulse 11 (Hitachi rupture+1LP-1600, oscillation wavelength 830 nm)
When recording was carried out by irradiating the recording layer with oscillated light (nm) to a beam diameter of 1 μm through a collimator lens, condensing lens, and substrate, the short axis was approximately 1 μm.
The laser beam intensity on the recording surface of the disk required to form the bits was 6IIIW. In addition, the recorded signal is reproduced with a 1 mW laser beam, and a reference signal of 5 Ml
The CN ratio measured with a spectrum analyzer under the conditions of 1z, band rlJ 100 K11z was 56 dB.

」二記の如くして記録を行った記録済のディスク状記録
媒体を60℃、95%RHの恒温恒湿層内に入れ、12
0日間の耐湿熱性試験を行ったところ、CN比に変化は
認められなかった。
The recorded disc-shaped recording medium, on which the recording was performed as described in Section 2 above, was placed in a constant temperature and humidity layer at 60°C and 95% RH, and was heated for 12 hours.
When a 0-day moist heat resistance test was conducted, no change was observed in the CN ratio.

実施例1に用いたのと同様のポリメタクリル酸メチルの
ディスク状基板を3枚用意し、実施例1と同様に基板回
転速度2 Orpm 、真空度I X 10−6n+ 
l1gに於て、電子ビーム蒸着法を用い、これら基板上
にSn及びSnO2を各々、蒸発速度を調節しながら共
蒸着し、Snの充填率が0.8で、各々膜厚が100人
、180人及び300人のSnO,L中に5nliik
粒子が分散した複合層のみを有する3種類の試料を得た
Three disk-shaped substrates made of polymethyl methacrylate similar to those used in Example 1 were prepared, and as in Example 1, the substrate rotation speed was 2 Orpm and the degree of vacuum was I x 10-6n+.
In 11g, Sn and SnO2 were co-evaporated onto these substrates using an electron beam evaporation method while controlling the evaporation rate, and the Sn filling rate was 0.8 and the film thickness was 100 nm and 180 nm, respectively. 5nliik in humans and 300 SnO,L
Three types of samples were obtained, each having only a composite layer in which particles were dispersed.

得られた3種類の試料について実施例1と同様の方法で
記録再生を行った結果を第1表に示す。
Table 1 shows the results of recording and reproducing the three types of samples obtained in the same manner as in Example 1.

第     1     表 1)短径が1μmのビットを形成させるのに必要な、デ
ィスク面上に於けるレーザ光強度 比較例2 実施例1に用いたのと同様のポリメタクリル酸メチルの
ディスク状基板を2枚用意し、実施例1と同様に基板回
転速度20 rpm 、真空度I X 10−’ mt
lgの条件で電子ビーム蒸着法を用い、これら基板上に
Geを蒸着し、Geの膜厚が80人及び300人の記録
層がGeのみの2種類の試料を得た。
Table 1 1) Comparative example 2 of laser light intensity on the disk surface necessary to form a bit with a short diameter of 1 μm A disk-shaped substrate of polymethyl methacrylate similar to that used in Example 1 was used. Two substrates were prepared, and the substrate rotation speed was 20 rpm and the vacuum degree was I x 10-'mt in the same manner as in Example 1.
Ge was deposited on these substrates using an electron beam evaporation method under the conditions of 1g to obtain two types of samples, one with a Ge film thickness of 80 and one with a Ge thickness of 300.

得られた2種類の試料について実施例1と同様の条件で
記録することを試みたが、いずれの試料もレーザ光強度
12m11ではビットは形成されず、記録することはで
きなかった。
An attempt was made to record the obtained two types of samples under the same conditions as in Example 1, but no bits were formed in any of the samples at a laser light intensity of 12 m11, and recording was not possible.

実施例Iと比較例1及び2より明らかな如く、比較例1
に示す記録層がSnとSnO2の複合yJ膜のみからな
る試料は、実施例1に示す本発明の光記録媒体に比較し
て感度、CN比共に低く、また記録層がGeFW膜のみ
からなる比較例2に示す試料は、本発明の光記録媒体に
比較して著しく感度が低い。
As is clear from Example I and Comparative Examples 1 and 2, Comparative Example 1
The sample in which the recording layer is made only of a composite yJ film of Sn and SnO2 has lower sensitivity and CN ratio than the optical recording medium of the present invention shown in Example 1, and the comparison in which the recording layer is made only of a GeFW film is lower. The sample shown in Example 2 has significantly lower sensitivity than the optical recording medium of the invention.

実施例2 実施例1と同様の方法を用いて、ポリメタクリル酸メチ
ルのディスク状基板上に、第2表に示す金属及び金属酸
化物からなり、第2表に示す膜厚を有する複合層と、第
2表に示ずl!IlF¥のGeからなる半導体層とを、
第2表に示す層構成に積層した記録層を形成することに
よって、第2表の試料番号2−1〜2−13で示す13
種類の光記録媒体を製作した。
Example 2 Using the same method as in Example 1, a composite layer consisting of the metals and metal oxides shown in Table 2 and having the film thickness shown in Table 2 was formed on a disc-shaped substrate of polymethyl methacrylate. , not shown in Table 2! A semiconductor layer made of Ge of IIF\,
By forming recording layers laminated in the layer configuration shown in Table 2, 13
We have produced various types of optical recording media.

得られた上記13種類のディスク状光記録媒体について
、実施例1と同様の方法を用いて測定した記録感度とC
N比を第2表に示す。耐湿性はnが2以上の場合特にす
ぐれた結果を示した。
The recording sensitivity and C of the obtained 13 types of disc-shaped optical recording media were measured using the same method as in Example 1.
The N ratio is shown in Table 2. Moisture resistance showed particularly excellent results when n was 2 or more.

実施例3 王台の電子銃を装備した真空蒸着装置のチャンバー内に
厚さ1.2 m11.外径300龍、内径35寵のジエ
チレングリコールビスアリルカーボネート重合体(商品
名CR−39)からなるディスク状基板を取り付け、チ
ャンバー内の四つのルツボにそれぞれ、Ge、、、Sn
s Au及びSnO2を入れ、上記基板を2 Orpm
の回転速度で回転させながら、真空度i x io−’
■−]釉の条件に於て、まづGoを50人の厚さに蒸着
し、次いで8口、篩及びSnOコにそれぞれ別の電子銃
より電子線を照射し、Sns Au及びSnO2それぞ
れの蒸発速度を調節しながら、三成分を同時に蒸着する
ことによって、、 SnOコ中にSnが90重景%、篩
が10重量%からなるSn−^U合合金粒子が分散し、
合金微粒子の充填率が0.7で、厚さ150人の複合層
を形成し、続い“にの複合層上に再び50人の厚さにG
eを蒸着することによって、第2図に於てn=’lに相
当する構成で厚さ250人の記録層を有するディスク状
光記録媒体を製作した。
Example 3 A film with a thickness of 1.2 m11. A disk-shaped substrate made of diethylene glycol bisallyl carbonate polymer (product name CR-39) with an outer diameter of 300 mm and an inner diameter of 35 mm was attached, and Ge, ..., Sn were placed in each of the four crucibles in the chamber.
s Au and SnO2 are added, and the above substrate is heated to 2 Orpm.
While rotating at a rotational speed of
■-] Under the conditions of glazing, Go was first vapor-deposited to a thickness of 50 mm, and then 8 holes, sieves, and SnO were each irradiated with electron beams from separate electron guns to form Sns Au and SnO2. By simultaneously depositing the three components while adjusting the evaporation rate, Sn-U alloy particles consisting of 90% Sn and 10% sieves are dispersed in SnO,
The filling rate of alloy fine particles was 0.7 to form a composite layer with a thickness of 150 mm, and then G was deposited on the composite layer again to a thickness of 50 mm.
A disk-shaped optical recording medium having a recording layer having a thickness of 250 mm and having a configuration corresponding to n='l in FIG.

得られた光記録媒体について実施例1と同様の方法で測
定した記録再生特性を第3表の試料番号3−1に示す。
The recording and reproducing characteristics of the obtained optical recording medium measured in the same manner as in Example 1 are shown in Sample No. 3-1 in Table 3.

また第3表に示す試料番号3−2〜3−6の光記録媒体
は試料番号3−1と同様の方法で製作し、複合層中の合
金の種類及び合金組成が第3表に示すものである以外は
、基板、半導体層の種類、厚さ、複合層中の合金微粒子
の充填率、複合層の厚さ、記録層の構成及び記録層の厚
さはいずれも試料番号3−1の場合と同一のものである
。試料番号3−2〜3−6の光記録媒体について実施例
1と同様の条件で測定した記録再生特性を第3表に示す
In addition, the optical recording media of sample numbers 3-2 to 3-6 shown in Table 3 were manufactured in the same manner as sample number 3-1, and the types and alloy compositions of the alloys in the composite layer were as shown in Table 3. Other than that, the substrate, the type and thickness of the semiconductor layer, the filling rate of alloy fine particles in the composite layer, the thickness of the composite layer, the configuration of the recording layer, and the thickness of the recording layer are all the same as those of sample number 3-1. It is the same as the case. Table 3 shows the recording and reproducing characteristics measured under the same conditions as in Example 1 for the optical recording media of sample numbers 3-2 to 3-6.

安定性、耐湿性について実施例1と同様に測定したが良
好であった。
The stability and moisture resistance were measured in the same manner as in Example 1 and were found to be good.

第3表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図及び第5図は本発明の
光記録媒体の断面図である。 各図に於て、1は複合層、2は半導体層、3は基板を示
す。 代理人  弁理士 高  橋  勝  利〒〒1 ヨヨヨ壬午 fi 三ヨヨヨt ヨヨヨモ午 〒〒叫 ===弓牢 二二二二二二コフ拐− ど2 1 ″−3 2 ′−1 □1 (2 ′3 2 \1 1 2 1 一/2 3 I 2 2
1, 2, 3, 4, and 5 are cross-sectional views of the optical recording medium of the present invention. In each figure, 1 is a composite layer, 2 is a semiconductor layer, and 3 is a substrate. Agent Patent Attorney Katsutoshi Takahashi 2 '3 2 \1 1 2 1 1/2 3 I 2 2

Claims (1)

【特許請求の範囲】 1、基板上に、金属酸化物薄膜中に金属もしくは半導体
の微粒子が分散した複合層と、該複合層の少なくとも一
方の表面に接触する半導体層からなる記録層が形成され
ていることを特徴とする光記録媒体。 2、金属もしくは半導体の微粒子が、Sn、 In、 
Sb、 Pb。 41% Zn、 CLl、、Ag、 A11% Geま
たはこれら金属もしくは半導体を主成分とする合金の微
粒子である特許請求の範囲第1項に記載の光記録媒体。 3、金属酸化物がSn、 In、AI、 Zr及びZn
の酸化物より選ばれた少なくとも一種である特許請求の
範囲第1項に記載の光記録媒体。 4、半導体層がGeWAである特許請求の範囲第1項に
記載の光記録媒体。
[Claims] 1. A recording layer consisting of a composite layer in which metal or semiconductor fine particles are dispersed in a metal oxide thin film and a semiconductor layer in contact with at least one surface of the composite layer is formed on a substrate. An optical recording medium characterized by: 2. The metal or semiconductor fine particles are Sn, In,
Sb, Pb. The optical recording medium according to claim 1, which is fine particles of 41% Zn, CL1, Ag, A11% Ge, or an alloy whose main component is any of these metals or semiconductors. 3. Metal oxides include Sn, In, AI, Zr and Zn
The optical recording medium according to claim 1, which is at least one kind selected from oxides of. 4. The optical recording medium according to claim 1, wherein the semiconductor layer is GeWA.
JP58099577A 1983-06-06 1983-06-06 Optical recording medium Granted JPS59225992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099577A JPS59225992A (en) 1983-06-06 1983-06-06 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099577A JPS59225992A (en) 1983-06-06 1983-06-06 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS59225992A true JPS59225992A (en) 1984-12-19
JPH0575595B2 JPH0575595B2 (en) 1993-10-20

Family

ID=14250955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099577A Granted JPS59225992A (en) 1983-06-06 1983-06-06 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS59225992A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186287A (en) * 1984-10-05 1986-05-01 Hitachi Ltd Information-recording member
EP0271630A2 (en) * 1986-12-19 1988-06-22 Kabushiki Kaisha Toshiba Information storage medium and method of erasing information
JPS63227389A (en) * 1987-03-18 1988-09-21 Toray Ind Inc Optical recording medium
US6996055B2 (en) 2002-04-30 2006-02-07 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7141289B2 (en) 2003-08-25 2006-11-28 Tdk Corporation Optical information recording medium
US7157128B2 (en) 2003-07-23 2007-01-02 Tdk Corporation Optical information recording medium
US7231649B2 (en) 2002-05-31 2007-06-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7321481B2 (en) 2002-07-04 2008-01-22 Tdk Corporation Optical recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741997A (en) * 1980-08-27 1982-03-09 Asahi Chem Ind Co Ltd Information recording member
JPS57135197A (en) * 1981-02-16 1982-08-20 Asahi Chem Ind Co Ltd Information recording medium
JPS57189894A (en) * 1981-05-20 1982-11-22 Fuji Photo Film Co Ltd Thermal recording material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741997A (en) * 1980-08-27 1982-03-09 Asahi Chem Ind Co Ltd Information recording member
JPS57135197A (en) * 1981-02-16 1982-08-20 Asahi Chem Ind Co Ltd Information recording medium
JPS57189894A (en) * 1981-05-20 1982-11-22 Fuji Photo Film Co Ltd Thermal recording material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186287A (en) * 1984-10-05 1986-05-01 Hitachi Ltd Information-recording member
EP0271630A2 (en) * 1986-12-19 1988-06-22 Kabushiki Kaisha Toshiba Information storage medium and method of erasing information
JPS63227389A (en) * 1987-03-18 1988-09-21 Toray Ind Inc Optical recording medium
US6996055B2 (en) 2002-04-30 2006-02-07 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7231649B2 (en) 2002-05-31 2007-06-12 Tdk Corporation Optical recording medium and method for optically recording data in the same
US7321481B2 (en) 2002-07-04 2008-01-22 Tdk Corporation Optical recording medium
US7157128B2 (en) 2003-07-23 2007-01-02 Tdk Corporation Optical information recording medium
US7141289B2 (en) 2003-08-25 2006-11-28 Tdk Corporation Optical information recording medium

Also Published As

Publication number Publication date
JPH0575595B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
US4769311A (en) Information recording member
EP0410704B1 (en) Optical recording apparatus
JPS6052940A (en) Optical recording medium
JP3516996B2 (en) Information recording medium and method of manufacturing the same
JP2001344824A (en) Method for producing optical recording medium and optical recording medium
US4668573A (en) Thin film for recording data
JPS59225992A (en) Optical recording medium
JPS6023997B2 (en) Recording parts
EP0335469B1 (en) Information-recording thin film and method for recording and reproducing information
JP5148629B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing apparatus
JP2679995B2 (en) Thin film for information recording
JPH02235789A (en) Optical data recording member and recording regeneration part thereof
JPS60151850A (en) Optical recording medium
JP2664207B2 (en) Thin film for information recording
JP2002092959A (en) Optical recording medium
JPS6339387A (en) Optical recording medium
JPS5959492A (en) Optical recording medium
JP2833556B2 (en) Information recording member
JPH0829616B2 (en) Information recording member
JPS58118293A (en) Optical recording medium
JPS61272190A (en) Optical recording medium
JPH0558048A (en) Data recording and regenerating method
JPS60226037A (en) Information recording medium
JPH0251391B2 (en)
JPH0411927B2 (en)