JPH0251391B2 - - Google Patents
Info
- Publication number
- JPH0251391B2 JPH0251391B2 JP58175461A JP17546183A JPH0251391B2 JP H0251391 B2 JPH0251391 B2 JP H0251391B2 JP 58175461 A JP58175461 A JP 58175461A JP 17546183 A JP17546183 A JP 17546183A JP H0251391 B2 JPH0251391 B2 JP H0251391B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- substrate
- recording
- dye
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 23
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 239000000975 dye Substances 0.000 description 25
- 239000010408 film Substances 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 229910001215 Te alloy Inorganic materials 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229930192627 Naphthoquinone Natural products 0.000 description 5
- 150000002791 naphthoquinones Chemical class 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- KIAJWKWOKTWTIZ-UHFFFAOYSA-N 1,4-dioxonaphthalene-2,3-dicarbonitrile Chemical compound C1=CC=C2C(=O)C(C#N)=C(C#N)C(=O)C2=C1 KIAJWKWOKTWTIZ-UHFFFAOYSA-N 0.000 description 2
- HSGNBCPSSQICIP-UHFFFAOYSA-N 5-amino-8-(4-butylanilino)-1,4-dioxonaphthalene-2,3-dicarbonitrile Chemical compound C1=CC(CCCC)=CC=C1NC1=CC=C(N)C2=C1C(=O)C(C#N)=C(C#N)C2=O HSGNBCPSSQICIP-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- -1 (4'-butylanilino)-1,4-naphthoquinone Chemical compound 0.000 description 1
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 1
- KNKUNLIDSVADCK-UHFFFAOYSA-N 5-amino-8-anilino-1,4-dioxonaphthalene-2,3-dicarbonitrile Chemical compound C1=2C(=O)C(C#N)=C(C#N)C(=O)C=2C(N)=CC=C1NC1=CC=CC=C1 KNKUNLIDSVADCK-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/253—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Description
本発明はレーザ光によつて情報を記録再生する
ことのできる光学記録方式に関し、さらに詳しく
は半導体レーザの発振波長の光エネルギーにより
物質状態の変化を利用して記録を行う光学記録方
式に関する。
従来、前記記録方式に用いる光学記録媒体とし
てはTe合金、Te酸化物、バルブ形成媒体及び有
機色素等が用いられていた。
Te合金は、Teと半導体、例えばAs、Se等の
固溶合金として用いられている。この媒体は、比
較的書き込み感度が高く、又記録再生の光学系を
小型にし得る半導体レーザにも適合するが、化学
的に不安定であり、空気中放置で容易に劣化する
ことと、構成材料(Te、As、Se等)が毒性を示
すという問題がある。
Te酸化物は、Te合金より安定であるが、その
光学特性、例えば吸収率、反射率が酸化状態に敏
感に依存する。そのため、この媒体は媒体形成時
に酸化状態を厳しく制御しなければならないとい
う欠点を有する。
バルブ形成媒体は、反射層、透過層、吸収層か
ら成る層構造であり、繰り返し反射干渉により光
の吸収率を高め高感度化を図つている。したがつ
て、この媒体は現在最も高感度な媒体の一つであ
るが、多層構造のため成膜回数が多いことと、繰
り返し反射干渉が各層の厚さに大きく依存するた
め、成膜時の膜厚制御を厳しく行なわなければな
らないという欠点がある。
一方、有機色素媒体は種々の形態で開発されて
いる。それらを大別すると色素単体型と色素を高
分子樹脂中に溶剤で溶解させた相溶型に分けられ
る。相溶型の媒体はたとえば特開昭55−161690号
に開示されているように、高分子樹脂であるポリ
ビニールアセテートに色素としてポリエステルイ
エローを溶剤で相溶し、回転塗布法で基板上に形
成される。この媒体は、比較的短波長領域(400
〜500nm)に吸収を示すが、半導体レーザの波
長域(〜800nm)ではほとんど吸収が無く、半
導体レーザを使用する記録装置の媒体としては使
用することができない。又、一般に相溶型の媒体
は、媒体形成法が溶媒塗布に限られ、基板に樹脂
を使用する場合は、樹脂を溶解しない溶剤を選択
しなければならないという制約がある。一方、色
素単体型の媒体としては、たとえばスクアリリウ
ム色素を蒸着法で形成する媒体が特開昭56−
46221号に開示されている。この色素は半導体レ
ーザの発振波長である近赤外波長領域に比較的大
きな吸収があるが、記録感度はTe合金よりも悪
い。
本発明の目的は、前述の従来技術の欠点を改良
し、半導体レーザの波長領域において高感度で化
学的に安定な光記録方式を提供することである。
すなわち本発明は、基板の片側に、
一般式
(式中RはOH、NH2、NHX又はNX2を表わし、
R′はOH、NH3、NHX、NX2又は
The present invention relates to an optical recording system in which information can be recorded and reproduced using a laser beam, and more particularly to an optical recording system in which recording is performed by utilizing changes in the state of matter using optical energy at the oscillation wavelength of a semiconductor laser. Conventionally, Te alloys, Te oxides, bulb-forming media, organic dyes, and the like have been used as optical recording media for the above-mentioned recording methods. Te alloy is used as a solid solution alloy of Te and semiconductors such as As and Se. This medium has relatively high writing sensitivity and is compatible with semiconductor lasers, which can make the optical system for recording and reproduction compact, but it is chemically unstable and easily deteriorates when left in the air. There is a problem that (Te, As, Se, etc.) exhibit toxicity. Although Te oxide is more stable than Te alloy, its optical properties, such as absorption and reflectance, depend sensitively on the oxidation state. Therefore, this medium has the disadvantage that the oxidation state must be tightly controlled during the formation of the medium. The bulb-forming medium has a layered structure consisting of a reflective layer, a transmitting layer, and an absorbing layer, and increases light absorption through repeated reflection and interference to achieve high sensitivity. Therefore, this medium is currently one of the most sensitive media, but due to its multilayer structure, it requires a large number of film formations, and the repeated reflection interference greatly depends on the thickness of each layer, making it difficult to form a film. The drawback is that the film thickness must be strictly controlled. On the other hand, organic dye media have been developed in various forms. They can be roughly divided into single dye types and compatible types in which the dye is dissolved in a polymer resin using a solvent. For example, as disclosed in Japanese Patent Application Laid-Open No. 161690/1983, a compatible medium is a method in which polyvinyl acetate, which is a polymer resin, is mixed with polyester yellow as a pigment using a solvent, and then formed on a substrate using a spin coating method. be done. This medium has a relatively short wavelength range (400
It exhibits absorption in the wavelength range of ~500 nm), but has almost no absorption in the wavelength range of semiconductor lasers (~800 nm), so it cannot be used as a medium for recording devices that use semiconductor lasers. Furthermore, in general, the method for forming a compatible medium is limited to solvent coating, and when a resin is used for the substrate, there is a restriction that a solvent that does not dissolve the resin must be selected. On the other hand, as a single dye medium, for example, a medium in which squarylium dye is formed by vapor deposition method is published in Japanese Patent Application Laid-Open No.
Disclosed in No. 46221. This dye has relatively large absorption in the near-infrared wavelength region, which is the oscillation wavelength of semiconductor lasers, but its recording sensitivity is worse than Te alloy. An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a highly sensitive and chemically stable optical recording system in the wavelength region of semiconductor lasers. That is, in the present invention, on one side of the substrate, the general formula (In the formula, R represents OH, NH 2 , NHX or NX 2 ,
R′ is OH, NH 3 , NHX, NX 2 or
【式】を表わす。(ここでXはア
ルキル基、X′は水素原子、アルキル基、アリル
基、アミノ基又は置換アミノ基を表わす。))で表
わされるナフトキノン色素を主成分とする記録層
を設け、レーザ光線による情報の記録再生を基板
側から行なうことを特徴とする。上記の一般式で
表わされるナフトキノン色素は2,3−ジシアノ
−1,4−ナフトキノンと総称され、5、8位の
助式団R、R′の種類によつて吸収ピーク波長が
可視領域から赤外領域に移行する。上記の助式団
R、R′として例示したものはどれも赤外領域に
吸収ピーク波長があるが、上記一般式中のRとし
てNH2、R′とてRepresents [formula]. (Here, X represents an alkyl group, and X' represents a hydrogen atom, an alkyl group, an allyl group, an amino group, or a substituted amino group.) The recording/reproduction is performed from the substrate side. The naphthoquinone dyes represented by the above general formula are collectively called 2,3-dicyano-1,4-naphthoquinone, and the absorption peak wavelength varies from the visible region to the red depending on the types of sub-groups R and R' at the 5th and 8th positions. Move to the outer realm. All of the auxiliary groups R and R' listed above have absorption peak wavelengths in the infrared region, but as R in the general formula above, NH 2 and R'
【式】を付加した
化合物が半導体レーザの発振波長と最も良く適合
し、さらにX′をアルキル基としたものが他の諸
条件に対して最も好ましいものである。
たとえば
で表わされる5−アミノ−2,3−ジシアノ−8
−(4′−ブチルアニリノ)−1,4−ナフトキノン
をアセトン溶剤中で測定した場合、この色素のス
ペクトルの吸収極大波長λmaxは759nmであり、
半導体レーザの発振波長と良く適合することが判
る。前記ナフトキノン色素化合物は、比較的高
温、高湿の環境条件でも安定であり、Te合金の
ような空気中酸化による劣化は示さない。このこ
とは、保護膜無しで長期間の使用に耐えることを
意味する。又この化合物は、一般の有機色素と同
様に低い熱伝導率を有しており、その値は金属の
1/10〜1/100である。したがつて、レーザ光記録
時の媒体中での熱の拡散が少なくなり、光照射部
の媒体温度を効率良く高めることができる。
記録媒体は、上記ナフトキノン色素を蒸着又は
溶剤塗布法により基板の片面に付着して形成され
る。前述のナフトキノン色素のうちRがNH2で
R′がA compound to which [Formula] is added is most compatible with the oscillation wavelength of a semiconductor laser, and a compound in which X' is an alkyl group is most preferable considering other conditions. for example 5-amino-2,3-dicyano-8 represented by
When measuring -(4'-butylanilino)-1,4-naphthoquinone in an acetone solvent, the absorption maximum wavelength λmax of the spectrum of this dye is 759 nm,
It can be seen that the wavelength matches well with the oscillation wavelength of the semiconductor laser. The naphthoquinone dye compound is stable even under relatively high temperature and high humidity environmental conditions, and does not show deterioration due to air oxidation unlike Te alloys. This means that it can withstand long-term use without a protective film. In addition, this compound has a low thermal conductivity similar to general organic dyes, and its value is 1/10 to 1/100 of that of metals. Therefore, the diffusion of heat in the medium during laser beam recording is reduced, and the temperature of the medium at the light irradiation part can be efficiently raised. The recording medium is formed by depositing the above naphthoquinone dye on one side of a substrate by vapor deposition or solvent coating. Among the naphthoquinone dyes mentioned above, R is NH 2
R′ is
【式】(X′はアルキル基)の
場合は約210℃〜250℃前後で蒸着が可能となる。
基板材料としては種々のものが使用できるが、一
般にはガラス、合成樹脂が望ましい。合成樹脂と
してはポリメチルメタクリル(PMMA)、ポリサ
ルホン、ポリカーボネート等がある。基板形状は
円板形状、テープ形状、シート形状が適用でき
る。
基板上に形成されたナフトキノン色素膜に半導
体レーザ光をレンズで収光して照射すると、照射
部の色素膜が除去されて孔が形成される。この孔
形成の機構は明確ではないが、蒸発(昇華)をと
もなう融解凝集に因ると考えられる。形成される
孔の大きさは、レーザ光の収光径、レーザパワ
ー、照射時間に依存するが、大体0.2〜33μmであ
ることが望ましい。このような孔形成に必要なレ
ーザエネルギーは小さなものであり、したがつ
て、短時間で孔形成が可能である。具体的には、
波長830nmのAlGaAs半導体レーザ光をビーム径
1.4μmに収光した場合、色素膜面上でのパワーは
2〜10mW、照射時間は50〜300nsecの範囲で孔
を形成することができる。当然のことながら、上
記パワー、あるいは照射時間の上限値以上の条件
でも孔を形成することができるが、上記条件は望
ましい使用条件である。情報の記録は、2進情報
の孔の有無に対応させることによりなされる。通
常円板状媒体を等速回転させて、記録情報に合わ
せて孔を形成し情報を記録する。なお、以上の場
合において色素膜の膜厚は0.01〜0.5μmで、好適
には0.02〜0.2μmである。
このように記録された情報(孔)の読み出し
は、媒体からの反射光又は透過光の光量変化を検
出することによりなされる。一般に反射光を検出
する方法が採用される。これは、反射光検出の方
が光学系が簡単になるためである。即ち、一つの
光学系で投光と集光が可能であるためである。読
み出しはレーザ光を連続させて照射する。その時
の光量は媒体に何らの形状変化が起らない弱いエ
ネルギーに設定され、通常記録時の光量の1/5〜
1/10である。
記録、再生時の光の入射方向として、媒体面側
と基板面側の2通りがある。基板面側入射では、
媒体面上に付着した塵埃に影響されることなく記
録、再生が可能であり、より望ましい形態であ
る。なお、媒体が形成されている面の反対側の基
板面上に付着した塵埃及びその面のキズ等の欠陥
は、基板厚さが1mm以上であれば、その面でのビ
ーム径が充分大きいので記録、再生に悪影響を与
えない。
情報は孔列として記録される。孔列は一般に同
心円状又はスパイラル状の多数のトラツクを形成
する。再生する場合、光ビームは特定トラツクの
孔列上を精度良く追跡する必要がある。これを実
現する一つの手段として回転機構の精度を空気軸
受などを使用して高めるという方法がある。しか
し、この場合は、回転系が複雑となり、又高価と
なるのが実用的ではない、より望ましいのは、基
板上に光の案内溝を設ける方法である。ビーム径
程度の溝に光が入射すると、光が回折される。ビ
ーム中心が溝からずれるにつれて回折光強度の空
間分布が異なり、これを検出して、ビームの溝の
中心に入射されるようにサーボ系を形成すること
ができる。通常溝の幅は、0.6〜1.2μm、その深
さは使用する記録再生波長の1/8〜1/4の範囲に設
定される。したがつて記録層は溝付基板面上に形
成される。
2,3−ジシアノ−1,4ナフトキノン色素の
薄膜は通常の抵抗加熱蒸着法により容易に形成す
ることができる。室温に保持された基板上に薄膜
を形成すると、その結晶性は無定形、即ち非晶質
となる。非晶質膜からの反射光には、多結晶膜で
見られる粒界ノイズが含まれないので非晶質膜を
使用した時の再生のS/Nは良好である。
以下図面を参照して本発明の実施例を説明す
る。
第1図は、実際に蒸着で基板上に作成した5−
アミノ−2,3−ジシアノ−8(4′−ブチルアニ
リノ)−1,4−ナフトキノン色素の薄膜の吸収
スペクトルを示したものである。これより、
AlGaAs半導体レーザの発振波長である〜800nm
付近に吸収極大があり、本色素が半導体レーザを
使用する光学記録媒体として好適であることが確
認された。
次に1.2mm厚の円板状のPMMA基板に、5−ア
ミノ−2,3−ジシアノ−8−(4′−ブチルアニ
リノ)−1,4−ナフトキノン色素を抵抗加熱法
で蒸着し、膜厚550Åの膜を得た。抵抗加熱ボー
ト材はMoであり、蒸着前及び蒸着時の真空度は
それぞれ6×10-6Torr、9×10-6Torrであつた。
基板は室温自然放置とし、蒸着による基板温度上
昇はほとんど認められなかつた。ポート温度を
徐々に上げて行くと220℃で色素が融解し、この
温度に固定して蒸着した。蒸着速度は5Å/sec
である。
第2図は、このようにして形成された媒体1を
示している。PMMA基板10上に色素膜20が
形成されている。この媒体1に基板10を介して
矢印50の方向から波長830nmの半導体レーザ
光を光学系(図示せず)で収光して照射した。こ
の場合レーザ光は媒体面上のパワーで2〜12m
W、照射時間50〜300nsecの条件で行なつた。こ
の記録波長での記録感度は16mJ/cm2であつた。
この記録により、色素膜20中に約0.9μmの径の
孔40が形成された。
前記実施例と同様に、R′がIn the case of [Formula] (X' is an alkyl group), vapor deposition is possible at about 210°C to 250°C.
Although various materials can be used as the substrate material, glass and synthetic resin are generally preferred. Examples of synthetic resins include polymethyl methacrylate (PMMA), polysulfone, and polycarbonate. The substrate shape can be a disk shape, a tape shape, or a sheet shape. When a naphthoquinone dye film formed on a substrate is irradiated with semiconductor laser light focused by a lens, the dye film in the irradiated area is removed and holes are formed. Although the mechanism of this pore formation is not clear, it is thought to be due to melting and aggregation accompanied by evaporation (sublimation). The size of the hole formed depends on the focused diameter of the laser beam, laser power, and irradiation time, but it is preferably about 0.2 to 33 μm. The laser energy required to form such a hole is small, and therefore the hole can be formed in a short time. in particular,
Beam diameter of AlGaAs semiconductor laser light with wavelength 830nm
When the light is focused to 1.4 μm, holes can be formed with a power on the dye film surface of 2 to 10 mW and an irradiation time of 50 to 300 nsec. Naturally, holes can be formed under conditions that exceed the upper limits of the above power or irradiation time, but the above conditions are desirable usage conditions. Information is recorded by correlating the presence or absence of holes in binary information. Usually, a disk-shaped medium is rotated at a constant speed, holes are formed in accordance with the recorded information, and information is recorded. In the above case, the thickness of the pigment film is 0.01 to 0.5 μm, preferably 0.02 to 0.2 μm. The information (holes) recorded in this manner is read out by detecting changes in the amount of light reflected or transmitted from the medium. Generally, a method of detecting reflected light is adopted. This is because the optical system for reflected light detection is simpler. That is, this is because one optical system can project and collect light. For reading, laser light is continuously irradiated. The light intensity at that time is set to a weak energy that does not cause any shape change to the medium, and is 1/5 to 1/5 of the light intensity during normal recording.
It is 1/10. There are two directions of incidence of light during recording and reproduction: toward the medium surface and toward the substrate surface. When incident on the substrate side,
This is a more desirable form because it allows recording and reproduction without being affected by dust attached to the surface of the medium. Note that if the substrate thickness is 1 mm or more, the beam diameter on that surface is sufficiently large to prevent dust adhering to the surface of the substrate opposite to the surface on which the medium is formed, as well as defects such as scratches on that surface. Does not adversely affect recording or playback. Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. When reproducing, the light beam needs to accurately track the hole rows of a specific track. One way to achieve this is to increase the precision of the rotating mechanism by using air bearings or the like. However, in this case, the rotation system becomes complicated and expensive, which is impractical. A more desirable method is to provide a light guide groove on the substrate. When light enters a groove about the diameter of a beam, it is diffracted. As the beam center shifts from the groove, the spatial distribution of the diffracted light intensity changes, and by detecting this, a servo system can be formed so that the beam is incident on the center of the groove. Usually, the width of the groove is set in the range of 0.6 to 1.2 μm, and the depth is set in the range of 1/8 to 1/4 of the recording/reproducing wavelength used. The recording layer is therefore formed on the grooved substrate surface. A thin film of 2,3-dicyano-1,4-naphthoquinone dye can be easily formed by a conventional resistance heating vapor deposition method. When a thin film is formed on a substrate kept at room temperature, its crystallinity becomes amorphous, that is, it becomes amorphous. Since the reflected light from the amorphous film does not include grain boundary noise seen in polycrystalline films, the reproduction S/N is good when using the amorphous film. Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows the 5-
This figure shows the absorption spectrum of a thin film of amino-2,3-dicyano-8(4'-butylanilino)-1,4-naphthoquinone dye. Than this,
The oscillation wavelength of AlGaAs semiconductor laser is ~800nm
There was an absorption maximum in the vicinity, and it was confirmed that this dye is suitable as an optical recording medium using a semiconductor laser. Next, 5-amino-2,3-dicyano-8-(4'-butylanilino)-1,4-naphthoquinone dye was vapor-deposited onto a 1.2 mm thick disc-shaped PMMA substrate using a resistance heating method to a film thickness of 550 Å. A film was obtained. The resistance heating boat material was Mo, and the degree of vacuum before and during vapor deposition was 6 x 10 -6 Torr and 9 x 10 -6 Torr, respectively.
The substrate was left to stand at room temperature, and almost no rise in substrate temperature due to vapor deposition was observed. As the port temperature was gradually raised, the dye melted at 220°C, and was then fixed at this temperature for vapor deposition. Deposition rate is 5Å/sec
It is. FIG. 2 shows the medium 1 thus formed. A dye film 20 is formed on a PMMA substrate 10. This medium 1 was irradiated with a semiconductor laser beam having a wavelength of 830 nm through the substrate 10 from the direction of the arrow 50 after being focused by an optical system (not shown). In this case, the laser beam has a power of 2 to 12 m on the medium surface.
The test was carried out under the conditions of W and irradiation time of 50 to 300 nsec. The recording sensitivity at this recording wavelength was 16 mJ/cm 2 .
As a result of this recording, holes 40 with a diameter of about 0.9 μm were formed in the pigment film 20. Similar to the previous example, R′ is
【式】
である5−アミノ−2,3−ジシアノ−8−アニ
リノ−1,4−ナフトキノン及びR′が
[Formula] is 5-amino-2,3-dicyano-8-anilino-1,4-naphthoquinone and R' is
【式】である5−アミノ−2,
3−ジシアノ−8−(4′−メチルアニリノ)−1,
4−ナフトキノン色素を抵抗加熱法で蒸着してそ
れぞれの薄膜を得た。前者はポート温度が240℃
で昇華が始まり、後者は250℃で融解して蒸着可
能となる。それぞれの膜(膜厚250Å)に半導体
レーザで書き込みを行ない書き込み感度を求める
と、前記実施例と同様な結果を得た。
上記実施例から明らかなように、本発明により
得られる光記録方式は、Te合金媒体より高感度
であり、化学的に安定で長期保存に耐え、再生の
S/Nが良好であるという優れた利点を有してい
ることが判る。[Formula] is 5-amino-2, 3-dicyano-8-(4'-methylanilino)-1,
Each thin film was obtained by vapor depositing 4-naphthoquinone dye using a resistance heating method. The former has a port temperature of 240℃
Sublimation begins at 250°C, and the latter melts at 250°C and becomes ready for vapor deposition. When each film (thickness: 250 Å) was written with a semiconductor laser and the writing sensitivity was determined, the same results as in the previous example were obtained. As is clear from the above examples, the optical recording system obtained by the present invention has excellent characteristics such as higher sensitivity than Te alloy media, chemical stability, durability for long-term storage, and good reproduction S/N. It turns out that it has advantages.
第1図は5−アミノ−2,3−ジシアノ−8−
(4′−ブチルアニリノ)−1,4−ナフトキノン色
素蒸着膜の吸収スペクトルを表わすグラフ、第2
図は、本発明における一実施例の光学記録媒体の
断面図であり、図中10は基板、20は色素膜、
50は光の入射方向、40は孔を示す。
Figure 1 shows 5-amino-2,3-dicyano-8-
Graph showing the absorption spectrum of (4'-butylanilino)-1,4-naphthoquinone dye deposited film, 2nd
The figure is a cross-sectional view of an optical recording medium according to an embodiment of the present invention, in which 10 is a substrate, 20 is a dye film,
Reference numeral 50 indicates the direction of incidence of light, and reference numeral 40 indicates a hole.
Claims (1)
R′はOH、NH2、NHX、NX2又は
【式】を表わす。(ここでXはア ルキル基、X′は水素原子、アルキル基、アリル
基、アミノ基又は置換アミノ基を表わす。))で表
わされるナフトキノン色素を主成分とする記録層
を設け、レーザ光線による情報の記録・再生を基
板側から行なうことを特徴とする光記録方式。[Claims] 1. On one side of the substrate, a general formula (In the formula, R represents OH, NH 3 , NHX or NX 2 ,
R′ represents OH, NH 2 , NHX, NX 2 or [Formula]. (Here, X represents an alkyl group, and X' represents a hydrogen atom, an alkyl group, an allyl group, an amino group, or a substituted amino group.) An optical recording method characterized by recording and reproducing information from the substrate side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58175461A JPS5976297A (en) | 1983-09-22 | 1983-09-22 | Optical recording system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58175461A JPS5976297A (en) | 1983-09-22 | 1983-09-22 | Optical recording system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57109332A Division JPS58224793A (en) | 1982-06-25 | 1982-06-25 | Optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5976297A JPS5976297A (en) | 1984-05-01 |
JPH0251391B2 true JPH0251391B2 (en) | 1990-11-07 |
Family
ID=15996468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58175461A Granted JPS5976297A (en) | 1983-09-22 | 1983-09-22 | Optical recording system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976297A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH082691B2 (en) * | 1987-07-16 | 1996-01-17 | 住友化学工業株式会社 | Optical information recording medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58224793A (en) * | 1982-06-25 | 1983-12-27 | Nec Corp | Optical recording medium |
-
1983
- 1983-09-22 JP JP58175461A patent/JPS5976297A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58224793A (en) * | 1982-06-25 | 1983-12-27 | Nec Corp | Optical recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPS5976297A (en) | 1984-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0415112B2 (en) | ||
JPH0415115B2 (en) | ||
JPS6052940A (en) | Optical recording medium | |
JPS6063744A (en) | Optical information recording medium | |
JPH0613238B2 (en) | Optical information recording medium | |
US4504548A (en) | Optical information recording medium for semiconductor laser | |
JPS6290291A (en) | Optical recording medium | |
JPH0251391B2 (en) | ||
JPH0472711B2 (en) | ||
JP2630381B2 (en) | Optical information recording medium | |
JPS6230090A (en) | Optical information recording medium | |
JPS6357288A (en) | Optical recording medium | |
JPH0250874B2 (en) | ||
JPH0251392B2 (en) | ||
JPH0519205B2 (en) | ||
JPS6141597A (en) | Optical information recording medium | |
JPH0251393B2 (en) | ||
JPS6089842A (en) | Optical recording medium | |
JPS60151850A (en) | Optical recording medium | |
JPH0648045A (en) | Optical recording medium | |
JPS639577A (en) | Optical information recording medium | |
JPS639578A (en) | Optical recording medium | |
JPH0442199B2 (en) | ||
JPS62125552A (en) | Optical recording medium | |
JPS60124289A (en) | Optical information recording medium |