JPH0251109B2 - - Google Patents

Info

Publication number
JPH0251109B2
JPH0251109B2 JP8333783A JP8333783A JPH0251109B2 JP H0251109 B2 JPH0251109 B2 JP H0251109B2 JP 8333783 A JP8333783 A JP 8333783A JP 8333783 A JP8333783 A JP 8333783A JP H0251109 B2 JPH0251109 B2 JP H0251109B2
Authority
JP
Japan
Prior art keywords
gas
liquid
refrigerant
liquid separator
expansion mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8333783A
Other languages
Japanese (ja)
Other versions
JPS59208354A (en
Inventor
Hideo Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP8333783A priority Critical patent/JPS59208354A/en
Publication of JPS59208354A publication Critical patent/JPS59208354A/en
Publication of JPH0251109B2 publication Critical patent/JPH0251109B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、飽和圧力の異なる2種の非共沸冷媒
を充填した2冷媒方式の冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-refrigerant type refrigeration system filled with two types of non-azeotropic refrigerants having different saturation pressures.

従来から第1図図示の如き冷媒回路を有する2
冷媒方式の冷凍装置は知られている(例えば実開
昭57−163562号公報及び社団法人日本冷凍協会発
行「冷凍」昭和56年11月号参照)。この冷凍装置
は、圧縮機1、凝縮器2、主膨張機構7および蒸
発器3を順次接続してなり、前記凝縮器2と主膨
張機構7との間に、第1の気液分離器4と、該気
液分離器4のガス域に対してガス管8を介して接
続されるガス側熱交換部6aと前記気液分離器4
の液域に対して第1の副膨張機構5を有する液管
9を介して接続される液側熱交換部6bとからな
り且つ前記ガス側熱交換器6aの出口が前記主膨
張機構7に接続され、前記液側熱交換部6bの出
口が前記蒸発器3の出口側(即ち、圧縮機1の吸
入側)に接続される熱交換器6とを直列に介設し
て冷媒回路Aを構成し、該冷媒回路Aに飽和圧力
の異なる2種の冷媒を充填する如くしている。
Conventionally, a refrigerant circuit 2 having a refrigerant circuit as shown in FIG.
Refrigerant-based refrigeration devices are known (for example, see Utility Model Application Publication No. 163562/1983 and the November 1988 issue of "Refrigeration" published by the Japan Refrigeration Association). This refrigeration system has a compressor 1, a condenser 2, a main expansion mechanism 7, and an evaporator 3 connected in sequence, and a first gas-liquid separator 4 is disposed between the condenser 2 and the main expansion mechanism 7. , a gas-side heat exchange section 6a connected to the gas region of the gas-liquid separator 4 via a gas pipe 8, and the gas-liquid separator 4.
and a liquid side heat exchange section 6b connected to the liquid area via a liquid pipe 9 having a first sub-expansion mechanism 5, and an outlet of the gas side heat exchanger 6a is connected to the main expansion mechanism 7. A refrigerant circuit A is constructed by interposing in series a heat exchanger 6 which is connected to the heat exchanger 6 and whose outlet of the liquid side heat exchange section 6b is connected to the outlet side of the evaporator 3 (that is, the suction side of the compressor 1). The refrigerant circuit A is filled with two types of refrigerants having different saturation pressures.

この冷凍装置運転中における各部、即ち凝縮器
2の入口側a、同出口側b、気液分離器4の液域
c、同ガス域d、ガス管8に接続する熱交換器6
の出口側e、蒸発器3の入口側f、同出口側g、
液管9に接続する熱交換器6の入口側h、同出口
側i及び圧縮機1の吸入側j、の冷媒組成の変化
が第2図の濃度線図に示されている。ここで、符
号Tは温度、xは混合冷媒における高沸点冷媒組
成分率をそれぞれ示しており、第2図において右
端の位置は高沸点冷媒だけの場合を示し、左端の
位置は低沸点冷媒だけの場合を示している。
The various parts during operation of this refrigeration system, namely, the inlet side a of the condenser 2, the outlet side b of the condenser 2, the liquid zone c of the gas-liquid separator 4, the gas zone d of the same, and the heat exchanger 6 connected to the gas pipe 8.
the outlet side e of the evaporator 3, the inlet side f of the evaporator 3, the outlet side g of the evaporator 3,
Changes in the refrigerant composition on the inlet side h of the heat exchanger 6 connected to the liquid pipe 9, the outlet side i of the same, and the suction side j of the compressor 1 are shown in the concentration diagram of FIG. Here, the symbol T indicates the temperature, and x indicates the high boiling point refrigerant composition fraction in the mixed refrigerant. In Fig. 2, the rightmost position indicates only the high boiling point refrigerant, and the leftmost position indicates only the low boiling point refrigerant. The case is shown below.

これによれば、凝縮器2においてx=x′0とす
ると、気液分離器4のガス域、ガス管8及び蒸発
器3ではx=x′1(<x′0)となり、気液分離器4
の液域及び液管9ではx=x′2(>x′0)となつて
いる。即ち、蒸発器3における混合冷媒では低沸
点冷媒の分率が高くなつており、蒸発温度に対し
て蒸発圧力を高く設定する事は可能であるが、凝
縮器2においては低沸点冷媒と高沸点冷媒とが混
合で流れるため低沸点冷媒の影響によつて凝縮温
度に対して凝縮圧力を低く設定することが困難で
ある。つまり、凝縮温度を上げようとすると、凝
縮圧力も高くなり、圧縮機1の運転ができなくな
るという問題がある。
According to this, if x = x' 0 in the condenser 2, then x = x' 1 (<x' 0 ) in the gas region of the gas-liquid separator 4, the gas pipe 8, and the evaporator 3, and the gas-liquid separation Vessel 4
In the liquid area and liquid pipe 9, x=x′ 2 (>x′ 0 ). That is, in the mixed refrigerant in the evaporator 3, the fraction of low boiling point refrigerant is high, and it is possible to set the evaporation pressure high relative to the evaporation temperature, but in the condenser 2, the fraction of low boiling point refrigerant and high boiling point refrigerant is high. Since the refrigerant flows as a mixture, it is difficult to set the condensing pressure low relative to the condensing temperature due to the influence of the low boiling point refrigerant. In other words, if an attempt is made to raise the condensing temperature, the condensing pressure will also increase, causing the problem that the compressor 1 will no longer be able to operate.

又、凝縮温度を上げんとして、混合冷媒の充填
組成を高沸点冷媒組成分率xが高くなるように変
えると、蒸発過程において、低沸点冷媒の分率が
低くなり、吸熱作用の低減を招く。
In addition, if the charging composition of the mixed refrigerant is changed so that the high boiling point refrigerant composition fraction x becomes high in an attempt to raise the condensation temperature, the fraction of low boiling point refrigerant will decrease in the evaporation process, leading to a reduction in endothermic action. .

本発明は、上記問題点に鑑みてなされたもの
で、凝縮圧力を上げることなく、凝縮温度を上昇
させることを目的としている。
The present invention has been made in view of the above problems, and aims to increase the condensing temperature without increasing the condensing pressure.

かかる目的達成のため、本発明は、圧縮機、凝
縮器、主膨張機構および蒸発器を順次接続してな
り、前記凝縮器と主膨張機構との間に、第1の気
液分離器と、該気液分離器のガス域に対してガス
管を介して接続されるガス側熱交換部と前記気液
分離器の液域に対して第1の副膨張機構を有する
液管を介して接続される液側熱交換部とからなり
且つ前記ガス側熱交換部の出口が前記主膨張機構
に接続され、前記液側熱交換部の出口が前記蒸発
器の出口側に接続される熱交換器とを直列に介設
して冷媒回路を構成し、該冷媒回路に飽和圧力の
異なる2種の冷媒を充填する如くした冷凍装置に
おいて、前記液管における第1の副膨張機構と熱
交換器との間に、第2の気液分離器および第2の
副膨張機構を直列に介設するとともに、該第2の
気液分離器のガス域をガス管を介して前記圧縮機
のシリンダ内に接続せしめて、凝縮器を循環する
冷媒の高沸点成分の組成を圧縮機の吸入側に比べ
て増大せしめ得るようにすることを特徴としてい
る。
To achieve this objective, the present invention comprises a compressor, a condenser, a main expansion mechanism, and an evaporator connected in sequence, and a first gas-liquid separator between the condenser and the main expansion mechanism; A gas-side heat exchange part connected to the gas region of the gas-liquid separator via a gas pipe and connected to the liquid region of the gas-liquid separator via a liquid pipe having a first sub-expansion mechanism. a liquid-side heat exchange section, in which an outlet of the gas-side heat exchange section is connected to the main expansion mechanism, and an outlet of the liquid-side heat exchange section is connected to the outlet side of the evaporator. In a refrigeration system in which a refrigerant circuit is constructed by interposing a refrigerant circuit in series, and the refrigerant circuit is filled with two types of refrigerants having different saturation pressures, a first sub-expansion mechanism in the liquid pipe and a heat exchanger; In between, a second gas-liquid separator and a second sub-expansion mechanism are interposed in series, and the gas region of the second gas-liquid separator is inserted into the cylinder of the compressor via a gas pipe. It is characterized in that the composition of the high boiling point components of the refrigerant circulating through the condenser can be increased compared to the suction side of the compressor.

以下、第3図を参照して本発明の実施例にかか
る冷凍装置を説明する。
Hereinafter, a refrigeration system according to an embodiment of the present invention will be explained with reference to FIG.

本実施例の冷凍装置における冷媒回路Aは、主
要な構成要素を第1図図示の従来例のものと同一
としているので、共通の符号を付してその詳細な
説明を省略する。
The main components of the refrigerant circuit A in the refrigeration system of this embodiment are the same as those of the conventional example shown in FIG.

第3図において、符号1は圧縮機、2は凝縮
器、3は蒸発器、4は気液分離器、5は第1の副
膨張機構、6は熱交換器、7は主膨張機構、8は
ガス管、9は液管である。
In FIG. 3, numeral 1 is a compressor, 2 is a condenser, 3 is an evaporator, 4 is a gas-liquid separator, 5 is a first sub-expansion mechanism, 6 is a heat exchanger, 7 is a main expansion mechanism, and 8 9 is a gas pipe, and 9 is a liquid pipe.

本実施例においては、本発明の特徴として、前
記液管9における第1の副膨張機構5と熱交換器
6との間には、第2の気液分離器10および第2
の副膨張機構12を直列に介設するとともに、該
第2の気液分離器10のガス域をガス管11を介
して前記圧縮機1のシリンダ内に接続せしめてい
る。
In this embodiment, as a feature of the present invention, a second gas-liquid separator 10 and a second
A sub-expansion mechanism 12 is provided in series, and the gas region of the second gas-liquid separator 10 is connected to the cylinder of the compressor 1 via a gas pipe 11.

前記気液分離器10では、その上流側に位置す
る気液分離器4で気液分離されて液域に溜る高沸
点冷媒を多く含む冷媒液を中間圧まで減圧して気
液分離する。
In the gas-liquid separator 10, the refrigerant liquid containing a large amount of high-boiling refrigerant that is separated in the gas-liquid separator 4 located upstream thereof and accumulates in the liquid region is depressurized to an intermediate pressure to perform gas-liquid separation.

前記ガス管11は、気液分離器10で気液分離
された中間圧の高沸点冷媒を多く含む冷媒ガスを
圧縮機1のシリンダ内へガスインジエクシヨンす
るための導管として作用する。
The gas pipe 11 functions as a conduit for injecting refrigerant gas containing a large amount of intermediate-pressure high-boiling refrigerant separated into gas and liquid by the gas-liquid separator 10 into the cylinder of the compressor 1.

この冷媒回路Aには、高沸点のR12及び低沸点
のR13B1の2種のフロン冷媒からなる非共沸混
合冷媒が充填されている。尚、前記混合冷媒とし
ては前記具体例の他、種々のものがあり、前記の
ものに限定されるものではない。
This refrigerant circuit A is filled with a non-azeotropic mixed refrigerant consisting of two types of fluorocarbon refrigerants, R12 with a high boiling point and R13B1 with a low boiling point. In addition to the above-mentioned specific example, there are various types of mixed refrigerant, and the mixed refrigerant is not limited to the above-mentioned ones.

第4図の濃度線図には、本実施例の冷凍装置に
おける各部、即ち、凝縮器2の入口側a、同出口
側b、第1の気液分離器4の液域c、同ガス域
d、第2の気液分離器10の入口側k、同液域
l、同ガス域m、ガス管8に接続する熱交換器6
の出口側e、蒸発器3の入口側f、同出口側g、
液管13に接続する熱交換器6の入口側h、同出
口側i及び圧縮機1の吸入側jの冷媒組成の変化
が示されている。
The concentration diagram in FIG. 4 shows various parts of the refrigeration system of this embodiment, namely, the inlet side a of the condenser 2, the outlet side b of the condenser 2, the liquid region c of the first gas-liquid separator 4, and the gas region of the first gas-liquid separator 4. d, the inlet side k of the second gas-liquid separator 10, the same liquid area l, the same gas area m, the heat exchanger 6 connected to the gas pipe 8
the outlet side e of the evaporator 3, the inlet side f of the evaporator 3, the outlet side g of the evaporator 3,
Changes in the refrigerant composition on the inlet side h of the heat exchanger 6 connected to the liquid pipe 13, the outlet side i of the same, and the suction side j of the compressor 1 are shown.

この冷凍装置の冷媒サイクルを第4図を参照し
て詳述する。
The refrigerant cycle of this refrigeration system will be described in detail with reference to FIG.

圧縮機1から吐出された混合冷媒ガス(高沸点
冷媒組成分率x=x0)は、凝縮器2にて冷却され
てR12の大部分が液化された後、気液分離器4に
てR13B1を多く含む冷媒ガス(x=x1<x0)と
R12を多く含む冷媒液(x=x2>x0)とに分離さ
れる。該冷媒液(x=x2)は第1の副膨張機構5
で中間圧に減圧された後、第2の気液分離器10
にてR12を多く含む冷媒ガス(x=x3>x0)とほ
とんどR12からなる冷媒液(x=x4>x0)とに分
離される。該冷媒液(x=x4)は、熱交換器6に
至つて第1の気液分離器4のガス域における冷媒
ガス(x=x1)と熱交換してガス化される。一方
第1の気液分離器4からの冷媒ガス(x=x1)は
液化された後、主膨張機構7で減圧され、蒸発器
3にて蒸発される。蒸発器3を出た冷媒ガス(x
=x1)は熱交換器6でガス化された冷媒ガス(x
=x4)と合流して、吸入ガス(x=x5)となつて
圧縮機1に吸入される。更に、本実施例において
は、第2の気液分離器10のガス域における冷媒
ガス(x=x3)がガス管11を介して圧縮機1の
シリンダ内にインジエクシヨンされる。つまり、
圧縮機1の吐出ガス(x=x0)は、吸入ガス(x
=x5)に高沸点のR12を多く含む冷媒ガス(x=
x3)を加えたものとなるのである。
The mixed refrigerant gas (high boiling point refrigerant composition fraction x = x 0 ) discharged from the compressor 1 is cooled in the condenser 2 and most of R12 is liquefied, and then in the gas-liquid separator 4 it is converted into R13B1. refrigerant gas (x = x 1 < x 0 ) containing a large amount of
It is separated into a refrigerant liquid containing a large amount of R12 (x=x 2 >x 0 ). The refrigerant liquid (x=x 2 ) is supplied to the first sub-expansion mechanism 5
After the pressure is reduced to intermediate pressure, the second gas-liquid separator 10
The refrigerant gas is separated into a refrigerant gas containing a large amount of R12 (x=x 3 >x 0 ) and a refrigerant liquid consisting mostly of R12 (x=x 4 >x 0 ). The refrigerant liquid (x=x 4 ) reaches the heat exchanger 6 and is gasified by exchanging heat with the refrigerant gas (x=x 1 ) in the gas region of the first gas-liquid separator 4. On the other hand, the refrigerant gas (x=x 1 ) from the first gas-liquid separator 4 is liquefied, then depressurized in the main expansion mechanism 7 and evaporated in the evaporator 3. Refrigerant gas (x
= x 1 ) is the refrigerant gas (x
= x 4 ) and becomes suction gas (x = x 5 ), which is sucked into the compressor 1. Furthermore, in this embodiment, refrigerant gas (x=x 3 ) in the gas region of the second gas-liquid separator 10 is injected into the cylinder of the compressor 1 via the gas pipe 11. In other words,
The discharge gas (x=x 0 ) of the compressor 1 is the suction gas (x
= x 5 ) and refrigerant gas (x =
x 3 ).

従つて、凝縮圧力を上げることなく、凝縮温度
を上げることができるところから、凝縮器2を利
用側熱源とするとき、高温が得られるのである。
Therefore, since the condensing temperature can be increased without increasing the condensing pressure, a high temperature can be obtained when the condenser 2 is used as the user-side heat source.

又、この場合、蒸発器2側は低沸点のR13B1
を多く含む冷媒(x=x1)による運転となり、吸
熱作用の低下はない。
Also, in this case, the evaporator 2 side is R13B1 with a low boiling point.
The operation is performed using a refrigerant containing a large amount of (x=x 1 ), and there is no decrease in heat absorption.

更に、熱交換器6において不要な冷媒ガス(x
=x3)を圧縮機1側にインジエクシヨンするよう
にしているため、熱交換効率が上昇し、熱交換器
6の小型化も図れる。
Furthermore, unnecessary refrigerant gas (x
= x 3 ) is injected into the compressor 1 side, the heat exchange efficiency increases and the heat exchanger 6 can be made smaller.

続いて、本発明の冷凍装置の効果を以下に列記
する。
Next, the effects of the refrigeration system of the present invention will be listed below.

(1) 圧縮機1へ第2の気液分離器10のガス域か
ら高沸点冷媒を多く含む冷媒ガスをインジヨク
シヨンするようにしたので、吸入ガスに比べて
吐出ガスの方が高沸点冷媒を多く含むこととな
り、凝縮器2において、凝縮圧力を上げること
なく、凝縮温度を上げることが可能となる。従
つて、凝縮器2を利用側熱源とすると、高温が
得られる。
(1) Since the refrigerant gas containing a large amount of high boiling point refrigerant is injected into the compressor 1 from the gas region of the second gas-liquid separator 10, the discharge gas contains more high boiling point refrigerant than the suction gas. This makes it possible to increase the condensing temperature in the condenser 2 without increasing the condensing pressure. Therefore, if the condenser 2 is used as a user-side heat source, a high temperature can be obtained.

(2) 凝縮器2を利用側熱源とする場合、高圧を上
げなくともよいので、成績係数が向上する。
(2) When the condenser 2 is used as the heat source on the user side, there is no need to increase the high pressure, so the coefficient of performance improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の冷凍装置の冷媒回路図、第2
図は第1図の冷凍装置における冷媒組成の変化を
示す濃度線図、第3図は本発明の実施例にかかる
冷凍装置の冷媒回路図、第4図は第3図の冷凍装
置における第2図相当図である。 1……圧縮機、2……凝縮器、3……蒸発器、
4,10……気液分離器、5,12……副膨張機
構、6……熱交換器、6a……ガス側熱交換部、
6b……液側熱交換部、7……主膨張機構、8,
11……ガス管、9……液管、A……冷媒回路。
Figure 1 is a refrigerant circuit diagram of a conventional refrigeration system;
The figure is a concentration diagram showing changes in refrigerant composition in the refrigeration system shown in Fig. 1, Fig. 3 is a refrigerant circuit diagram of a refrigeration system according to an embodiment of the present invention, and Fig. 4 is a concentration diagram showing changes in refrigerant composition in the refrigeration system shown in Fig. 3. It is a figure equivalent figure. 1... Compressor, 2... Condenser, 3... Evaporator,
4, 10... Gas-liquid separator, 5, 12... Sub-expansion mechanism, 6... Heat exchanger, 6a... Gas side heat exchange section,
6b...liquid side heat exchange section, 7...main expansion mechanism, 8,
11...Gas pipe, 9...Liquid pipe, A...Refrigerant circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機1、凝縮器2、主膨張機構7および蒸
発器3を順次接続してなり、前記凝縮器2と主膨
張機構7との間に、第1の気液分離器4と、該気
液分離器4のガス域に対してガス管8を介して接
続されるガス側熱交換部6aと前記気液分離器4
の液域に対して第1の副膨張機構5を有する液管
9を介して接続される液側熱交換部6bとからな
り且つ前記ガス側熱交換部6aの出口が前記主膨
張機構7に接続され、前記液側熱交換部6bの出
口が前記蒸発器3の出口側に接続される熱交換器
6とを直列に介設して冷媒回路Aを構成し、該冷
媒回路Aに飽和圧力の異なる2種の冷媒を充填す
る如くした冷凍装置において、前記液管9におけ
る第1の副膨張機構5と熱交換器6との間には、
第2の気液分離器10および第2の副膨張機構1
2を直列に介設するとともに、該第2の気液分離
器10のガス域をガス管11を介して前記圧縮機
1のシリンダ内に接続せしめたことを特徴とする
冷凍装置。
1 A compressor 1, a condenser 2, a main expansion mechanism 7, and an evaporator 3 are connected in sequence, and a first gas-liquid separator 4 and a gas-liquid separator 4 are connected between the condenser 2 and the main expansion mechanism 7. A gas-side heat exchange section 6a connected to the gas region of the liquid separator 4 via a gas pipe 8 and the gas-liquid separator 4
and a liquid side heat exchange section 6b connected to the liquid area via a liquid pipe 9 having a first sub-expansion mechanism 5, and an outlet of the gas side heat exchange section 6a is connected to the main expansion mechanism 7. A refrigerant circuit A is constructed by interposing in series a heat exchanger 6 in which the outlet of the liquid side heat exchange section 6b is connected to the outlet side of the evaporator 3, and the refrigerant circuit A has a saturation pressure. In a refrigeration system that is filled with two different types of refrigerants, there is a space between the first sub-expansion mechanism 5 and the heat exchanger 6 in the liquid pipe 9.
Second gas-liquid separator 10 and second sub-expansion mechanism 1
2 are interposed in series, and the gas region of the second gas-liquid separator 10 is connected to the cylinder of the compressor 1 via a gas pipe 11.
JP8333783A 1983-05-11 1983-05-11 Refrigerator Granted JPS59208354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333783A JPS59208354A (en) 1983-05-11 1983-05-11 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333783A JPS59208354A (en) 1983-05-11 1983-05-11 Refrigerator

Publications (2)

Publication Number Publication Date
JPS59208354A JPS59208354A (en) 1984-11-26
JPH0251109B2 true JPH0251109B2 (en) 1990-11-06

Family

ID=13799617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333783A Granted JPS59208354A (en) 1983-05-11 1983-05-11 Refrigerator

Country Status (1)

Country Link
JP (1) JPS59208354A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893923B (en) * 2022-04-16 2023-05-26 郑州大学 Automatic overlapping system based on active regulation and control of concentration of working medium components and control method

Also Published As

Publication number Publication date
JPS59208354A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
JPH10332212A (en) Refrigeration cycle of air conditioner
JP2712644B2 (en) Two-stage compression refrigeration cycle device
JPH0251109B2 (en)
KR100609168B1 (en) Cascade refrigerating cycle
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
JPH07208822A (en) Heat pump type refrigerating cycle
JPS6353456B2 (en)
JPH1068560A (en) Refrigeration cycle device
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JPS5818061A (en) Refrigerator
JPH08285392A (en) Freezer device
JPS6246781B2 (en)
JPH0861799A (en) Air conditioner
JPS6218933Y2 (en)
JP2574545B2 (en) Refrigeration cycle device
JP2532754B2 (en) Refrigeration cycle equipment
JPS616551A (en) Energy-conservation plural refrigerator
JP2962020B2 (en) Absorption type heat pump device
JPS5981458A (en) Refrigeration cycle
JPS6176855A (en) Cascade couping heat pump device
JPH06103128B2 (en) Heat pump device
JPH01212863A (en) Hot-water supplying device
JPH0212344B2 (en)
JPS5981456A (en) Refrigeration cycle
JPH09196481A (en) Method for altering composition of mixture refrigerant and structure of circuit