JPH0249464B2 - HANNONETSUSOKUTEISOCHI - Google Patents
HANNONETSUSOKUTEISOCHIInfo
- Publication number
- JPH0249464B2 JPH0249464B2 JP13279582A JP13279582A JPH0249464B2 JP H0249464 B2 JPH0249464 B2 JP H0249464B2 JP 13279582 A JP13279582 A JP 13279582A JP 13279582 A JP13279582 A JP 13279582A JP H0249464 B2 JPH0249464 B2 JP H0249464B2
- Authority
- JP
- Japan
- Prior art keywords
- water tank
- reaction
- thermocouple
- temperature
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 100
- 238000006243 chemical reaction Methods 0.000 claims description 46
- 238000005259 measurement Methods 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 27
- 239000012495 reaction gas Substances 0.000 claims description 21
- 230000007246 mechanism Effects 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 239000000498 cooling water Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000003245 coal Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/20—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
- G01N25/48—Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
- G01N25/4806—Details not adapted to a particular type of sample
- G01N25/4826—Details not adapted to a particular type of sample concerning the heating or cooling arrangements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【発明の詳細な説明】
本発明は、固体と気体との反応熱、例えば、石
炭と水素との反応熱を測定するための装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the heat of reaction between a solid and a gas, such as the heat of reaction between coal and hydrogen.
従来、物質の燃焼熱を測定するための熱量計は
種種市販され、かつ、その測定精度も比較的高い
が、固体と気体との反応熱を精度よく測定する反
応熱測定装置は、装置化の困難なガスの流通系を
必要とすることもあつて、未だ開発されていな
い。しかしながら、固体と気体の反応熱を精度よ
く測定することは、両者の反応の機構を解明する
上で非常に重要な意味を有し、その開発が強く要
望されている。 Conventionally, various types of calorimeters for measuring the heat of combustion of substances are commercially available, and their measurement accuracy is relatively high. It has not yet been developed because it requires a difficult gas distribution system. However, accurate measurement of the heat of reaction between a solid and a gas has a very important meaning in elucidating the reaction mechanism between the two, and its development is strongly desired.
本発明者は、固体と気体との反応熱測定装置を
開発すべく鋭意研究を重ねた結果、本発明を完成
するに到つた。 The present inventor has completed the present invention as a result of intensive research to develop an apparatus for measuring the heat of reaction between a solid and a gas.
すなわち、本発明によれば、円筒状の測定セル
内に、上端を貫いて反応温度測定用の熱電対を立
設し、周面上部に反応ガス流通孔を設けた固体試
料を封入させる円筒状の反応管を、その外側にヒ
ータ、内面を反射鏡面とする赤外線イメージ炉を
順次同心的に設けるとともに、この測定セルを円
筒状の水槽内に取付保持し、かつこの水槽内に
は、測定セル下端から水槽内周面に沿つて水槽上
部に開く生成ガスの熱交換用らせん管、撹拌棒、
水温測定用の熱電対等を各設け、さらに上記水槽
を反応ガス熱交換用のらせん管、撹拌機構、加熱
機構及び温度検知用熱電対を有する外部水槽内に
設けるとともに、外部には、前記内槽に設けた熱
電対、前記外槽に設けた熱電対及び前記外槽に設
けた加熱機構に各接続する自動温度調節器及び前
記測定セル内に設けたヒータに接続する電力計を
設けたことを特徴とする反応熱測定装置が提供さ
れる。 That is, according to the present invention, a cylindrical measurement cell is provided with a thermocouple for measuring reaction temperature erected through the upper end thereof, and a cylindrical measurement cell in which a solid sample is enclosed with reaction gas flow holes provided in the upper part of the circumference. A reaction tube with a heater on the outside and an infrared image furnace with a reflecting mirror on the inside are sequentially and concentrically installed, and this measurement cell is installed and held in a cylindrical water tank, and the measurement cell is installed in this water tank. Spiral tube for heat exchange of generated gas that opens from the bottom end along the inner circumferential surface of the tank to the top of the tank, stirring rod,
Thermocouples, etc. for water temperature measurement are provided, and the water tank is provided in an external water tank that has a spiral tube for reaction gas heat exchange, a stirring mechanism, a heating mechanism, and a thermocouple for temperature detection. a thermocouple provided in the outer tank, an automatic temperature controller connected to the heating mechanism provided in the outer tank, and a wattmeter connected to a heater provided in the measurement cell. A reaction heat measurement device characterized by the present invention is provided.
本発明の反応熱測定装置は、その基本構造にお
いては、外部水槽の中に水槽(内部水槽)が配設
され、そしてその内部水槽の中に測定セルが配設
された構造を有する。その実施例を図面について
説明すると、第1図は断熱容器内に配設した内部
水槽の内部構造説明図及び第3図は反応熱測定装
置の全体説明図を示し、1は測定セルであつて、
下端はフイン2を有する小径のフイルター収容部
3に形成されている。この測定セル1は、水槽4
内に適宜の取付具を介して吊設保持されており、
水槽4の蓋部を貫いて設けた反応ガス導入管5を
介して第3図に詳記した外部水槽40内の反応ガ
ス熱交換用らせん管23で一定温度に調節された
反応ガスが送り込まれ、またフイルター収容部3
底部から生成ガスが水槽4の内周面に沿うらせん
管6を通つて水槽4上部の生成ガス排出管7によ
り取り出されるようになつている。 The reaction heat measuring device of the present invention has a basic structure in which a water tank (internal water tank) is disposed within an external water tank, and a measurement cell is disposed within the internal water tank. To explain the embodiment with reference to the drawings, Fig. 1 shows an explanatory diagram of the internal structure of an internal water tank disposed in a heat-insulating container, and Fig. 3 shows an overall explanatory diagram of a reaction heat measuring device. ,
The lower end is formed into a small diameter filter accommodating portion 3 having fins 2 . This measurement cell 1 has a water tank 4.
It is suspended and held inside via appropriate fittings,
A reaction gas whose temperature has been adjusted to a constant temperature is fed into the reaction gas heat exchange spiral pipe 23 in the external water tank 40 as detailed in FIG. , and the filter housing section 3
The produced gas is taken out from the bottom through a produced gas discharge pipe 7 at the upper part of the water tank 4 through a spiral pipe 6 that runs along the inner peripheral surface of the water tank 4.
第1図において、水槽4を包囲するように記載
された容器は、断熱容器であり、水槽4とその断
熱容器(第3図においては符号30で示されてい
る)との間は、空気や断熱材が充填される。第1
図においては、空気の充填例を示す。 In FIG. 1, the container shown to surround the aquarium 4 is an insulated container, and there is no air or Filled with insulation. 1st
In the figure, an example of air filling is shown.
測定セル1の内部には、第2図に示すように、
その蓋部に上部を接続し、下端をフイルター収容
部3に接続した1つの立管よりなる反応管8が画
設され、内部に設けた目皿9上に固形試料(例え
ば石炭)を封入するようになつている。この反応
管8の外側には外周面に4本のヒータ10が立設
され、その外方を取りまいて厚肉円筒状のアルミ
ブロツクよりなるイメージ炉11がアルミブロツ
ク内面を反射鏡面12として設けられている。1
3はこのアルミブロツクに埋入された冷却用水管
であつて、4本設けられ、第1図に明らかなよう
に回転羽根14を介して水槽4内の水を強制循環
するようになつている。水槽4の上面には、蓋部
を貫いて反応管8内に通ずる前記反応ガス導入管
5、生成ガス排出管7、ヒータ10に連なる電極
15の他に、下端を目皿9上の試料内に位置した
反応温度測定用の熱電対16、水槽4の水温測定
用の熱電対17並びに水槽4内に垂下取付され上
端を適宜の動力に接続して回転される撹拌棒18
が各々突設され、また加熱時の測定セル1内の気
体膨張を逃がすための逃しパイプ19が付設され
ていて、それらの取付部は水槽4と密封状態に作
られている。 Inside the measurement cell 1, as shown in FIG.
A reaction tube 8 consisting of a single standpipe whose upper end is connected to the lid and whose lower end is connected to the filter accommodating section 3 is provided, and a solid sample (for example, coal) is sealed on a perforated plate 9 provided inside. It's becoming like that. Four heaters 10 are installed on the outer peripheral surface of the reaction tube 8, and an image furnace 11 made of a thick cylindrical aluminum block is provided around the outside of the reaction tube 8, with the inner surface of the aluminum block serving as a reflective mirror surface 12. It is being 1
Reference numeral 3 denotes cooling water pipes embedded in this aluminum block, and there are four of them, and as is clear from FIG. 1, water in the water tank 4 is forced to circulate through rotating blades 14. . On the upper surface of the water tank 4, in addition to the reaction gas introduction pipe 5 which passes through the lid and leads into the reaction tube 8, the generated gas discharge pipe 7, and the electrode 15 connected to the heater 10, the lower end is placed inside the sample on the perforated plate 9. A thermocouple 16 for measuring the reaction temperature located in the water tank 4, a thermocouple 17 for measuring the water temperature in the water tank 4, and a stirring rod 18 that is installed hanging down inside the water tank 4 and is rotated by connecting its upper end to an appropriate power source.
are provided in a protruding manner, and are also provided with relief pipes 19 for releasing gas expansion within the measurement cell 1 during heating, and their mounting portions are made in a sealed state with the water tank 4.
測定セル1を収容する水槽4は、これを断熱容
器30に収容し、外部水槽40の内部に収容させ
て一体に組立てられる。即ち、第3図において、
40は外部水槽であつて加熱機構20、温度検知
機構21、撹拌機構22、反応ガス熱交換用らせ
ん管23を備え、さらに液面リレー24を介して
前記水槽4内に所要の水位まで外部水槽内の水を
供給するための外部水槽40と連通する電磁弁2
5付き連通管26を有している。反応ガス熱交換
用らせん管23は、外部より供給される反応ガス
(例えば水素)を外部水槽40内の水と同じ温度
まで熱交換したのち、前記反応ガス導入管5に接
続する。なお、27は自動温度調節器、28は温
度記録計であり、29は水量設定用の電気接点で
ある。30は断熱容器であり、断熱材31を内面
に張装して水槽4から外部へ熱の流出を遮断す
る。32は反応温度調節器、33は電力計であ
る。 The water tank 4 accommodating the measurement cell 1 is assembled integrally by accommodating the measurement cell 1 in a heat insulating container 30 and accommodating it inside an external water tank 40 . That is, in FIG.
Reference numeral 40 denotes an external water tank, which is equipped with a heating mechanism 20, a temperature detection mechanism 21, a stirring mechanism 22, and a spiral tube 23 for reaction gas heat exchange, and is further provided with a liquid level relay 24 to reach a required water level in the water tank 4. A solenoid valve 2 communicating with an external water tank 40 for supplying water inside the tank.
It has a communicating pipe 26 with 5. The reaction gas heat exchange spiral tube 23 heat-exchanges the reaction gas (for example, hydrogen) supplied from the outside to the same temperature as the water in the external water tank 40, and then connects to the reaction gas introduction pipe 5. Note that 27 is an automatic temperature controller, 28 is a temperature recorder, and 29 is an electric contact for setting the water amount. Reference numeral 30 denotes a heat insulating container, the inner surface of which is lined with a heat insulating material 31 to block heat from flowing out from the water tank 4 to the outside. 32 is a reaction temperature controller, and 33 is a power meter.
本発明は上記のように構成され、測定セル1を
開いて反応管8内の目皿9上に一定量の粉末状の
固体、例えば石炭を封入し、測定セル1を水槽4
内に設入させるとともに、その全体を断熱容器3
0に収容して第3図のように外部水槽40内に収
容する。 The present invention is constructed as described above, and the measurement cell 1 is opened and a certain amount of powdered solid, such as coal, is sealed on the perforated plate 9 in the reaction tube 8, and the measurement cell 1 is placed in a water tank 4.
At the same time, the whole is placed in an insulated container 3.
0 and housed in an external water tank 40 as shown in FIG.
次に、外部水槽40内に水を温度検知機構21
と自動温度調節器27の作用により、所要の温
度、例えば20℃に保持した後、電磁弁25を開
き、落差などを利用して外部水槽水の一部を連通
管26により水槽4内に導入する。その際、連通
管26は外部水槽水中を通過しているため水の調
整温度には変動がない。水槽4内の水量設定の電
気接点29を所定位置に設定しておくことによ
り、水槽4の水位はこの点まで上昇し、水位がこ
の電気接点の位置に達すると、液面リレー24が
作動して電磁弁25は閉になる。従つて、この操
作により、外部水槽内の一定温度に調整され水を
常に一定量水槽4内に自動的に秤量することがで
きる。 Next, water is poured into the external water tank 40 by the temperature detection mechanism 21.
After maintaining the required temperature, for example, 20 degrees Celsius, by the action of the automatic temperature controller 27, the solenoid valve 25 is opened, and a portion of the external tank water is introduced into the tank 4 through the communication pipe 26 using a drop or the like. do. At this time, since the communication pipe 26 passes through the water in the external aquarium, there is no change in the adjusted temperature of the water. By setting the electrical contact 29 for setting the water volume in the water tank 4 to a predetermined position, the water level in the water tank 4 will rise to this point, and when the water level reaches the position of this electrical contact, the liquid level relay 24 will be activated. Then, the solenoid valve 25 is closed. Therefore, by this operation, the temperature in the external water tank can be adjusted to a constant value, and a certain amount of water can always be automatically weighed into the water tank 4.
前記のようにして測定準備が終つた後、電極1
5から電気を通じてヒータ10を発熱させ、イメ
ージ炉11及び反応管8を介して反応管8内の固
体試料を加熱する。この場合、ヒータに通電した
電力量は電力計33により記録される。固体試料
の温度は熱電対16により測定され、温度記録計
により記録される。 After completing the measurement preparation as described above, the electrode 1
The heater 10 generates heat through electricity from 5, and the solid sample in the reaction tube 8 is heated through the image furnace 11 and the reaction tube 8. In this case, the amount of power supplied to the heater is recorded by the wattmeter 33. The temperature of the solid sample is measured by a thermocouple 16 and recorded by a temperature recorder.
試料温度が所定の反応温度に達した時に、反応
ガスを外部水槽40内の熱交換用らせん管23を
通じて加熱させ反応ガス導入管5から導入する。
この加熱された反応ガスは、反応管8内部に入
り、固体試料と接触反応する。 When the sample temperature reaches a predetermined reaction temperature, the reaction gas is heated through the heat exchange spiral tube 23 in the external water tank 40 and introduced from the reaction gas introduction tube 5.
This heated reaction gas enters the inside of the reaction tube 8 and comes into contact with the solid sample to react.
前記の接触反応により得られる生成ガスは、反
応管下部からフイルター収容部3を通り、その内
部のフイルター(例えば石英綿、脱脂綿などの充
填層)と接触し、生成ガス中に含まれる液状成分
がここで除去される。液状成分の除去された生成
ガスは、らせん管6を通つて水槽4の温度まで冷
却された後、生成ガス排出管7から排出される。
前記装置において、反応温度(試料の温度)は、
熱電対16とヒータ電極15に接続する反応温度
調節器32により所定の温度に調節され、その温
度は、時間に対して記録される。また、水槽4の
温度が反応経過と共に上昇すると、自動温度調節
器27と、それに接続する水槽4の水温測定用の
熱電対17及び外部水槽に対する温度検知機構2
1の熱電対と加熱機構20との協働作用により、
外部水槽40の水温は水槽4の水温に追随して上
昇する。この温度制御によつて、外部水槽40の
水温は常に水槽4の水温とほぼ等しい温度に保持
され、水槽4からの熱の逃散が防止され、また反
応ガスも熱交換用らせん管23により水槽40内
の水温にほぼ等しくなつてから水槽4内に供給さ
れるので、水槽4の効果的な断熱が達成される。 The product gas obtained by the above-mentioned contact reaction passes through the filter storage part 3 from the lower part of the reaction tube, contacts the filter (for example, a packed layer of quartz wool, absorbent cotton, etc.) inside the filter, and the liquid components contained in the product gas are removed. removed here. The generated gas from which the liquid components have been removed passes through the spiral pipe 6 and is cooled to the temperature of the water tank 4, and then is discharged from the generated gas exhaust pipe 7.
In the device, the reaction temperature (temperature of the sample) is
A predetermined temperature is regulated by a reaction temperature regulator 32 connected to the thermocouple 16 and the heater electrode 15, and the temperature is recorded over time. Moreover, when the temperature of the water tank 4 rises with the progress of the reaction, the automatic temperature controller 27, the thermocouple 17 for measuring the water temperature of the water tank 4 connected thereto, and the temperature detection mechanism 2 for the external water tank
Due to the cooperative action of the thermocouple 1 and the heating mechanism 20,
The water temperature of the external water tank 40 increases following the water temperature of the water tank 4. By this temperature control, the water temperature in the external water tank 40 is always maintained at approximately the same temperature as the water temperature in the water tank 4, and heat escape from the water tank 4 is prevented. Since the water is supplied into the aquarium 4 after the water temperature becomes approximately equal to the water temperature inside the aquarium, effective insulation of the aquarium 4 is achieved.
前記のようにして反応を所定時間行つた後、反
応を停止させる。即ち、反応ガスの導入、生成ガ
スの導出及びヒータ10の加熱をそれぞれ停止さ
せる。次いで、水槽4の水温の上昇が見られなく
なつた時の、その水温を測定し、測定を終了す
る。 After the reaction has been carried out for a predetermined period of time as described above, the reaction is stopped. That is, the introduction of the reaction gas, the discharge of the generated gas, and the heating of the heater 10 are stopped. Next, the water temperature in the water tank 4 is measured when no increase in water temperature is observed, and the measurement is completed.
前記のようにして測定を行つた場合、水槽4内
の水に加えられた全熱量Qは次の式で表わされ
る。 When the measurement is performed as described above, the total amount of heat Q added to the water in the water tank 4 is expressed by the following equation.
全熱量Qcal=(W1+W2)×△T ()
W1……水槽4の水量(g)
W2……装置水当量(g)
△T……測定前後の水槽4内の水温の差
また、水槽4内に導入された全熱量Q(cal)
は、固体試料と反応ガスとの反応による反応熱
と、ヒータ10により導入されたジユール熱と、
反応ガスと生成ガスとの顕熱との差に相当する熱
とを基準にすると、次の式で表わすことができ
る。 Total heat Qcal = (W 1 + W 2 ) × △T () W 1 ...Amount of water in tank 4 (g) W 2 ... Equipment water equivalent (g) △T ... Difference in water temperature in tank 4 before and after measurement Also, the total amount of heat Q (cal) introduced into the water tank 4
is the reaction heat due to the reaction between the solid sample and the reaction gas, the Joule heat introduced by the heater 10,
Based on the heat corresponding to the difference in sensible heat between the reaction gas and the produced gas, it can be expressed by the following equation.
Qcal=q1+q2+q3 ()
q1……反応熱
q2……ジユール熱
q3……反応ガスと生成ガスの顕熱の差
従つて、前記()及び()の式から、反応
熱q1は次の式で表わされる。 Qcal=q 1 + q 2 + q 3 () q 1 ...Heat of reaction q 2 ...Duel heat q 3 ...Difference between the sensible heats of the reaction gas and the produced gas Therefore, from the equations () and () above, the reaction Heat q 1 is expressed by the following formula.
q1=Q−(q2+q3)
=(W1+W2)×△T−(q2+q3)
即ち、反応熱q1は、水槽4の水の量W1、装置
水当量W2、水槽4の水の温度上昇△T、ジユー
ル熱q2及び反応ガスと生成ガスの顕熱の差q3をそ
れぞれ測定することによつて求めることができ
る。この場合、水槽4内の水の量W1、及び装置
水当量W2は装置因子としてあらかじめ決定され
るので定数として扱われ、また反応ガスと生成ガ
スの顕熱の差q3は、それぞれのガスはいずれも水
槽4内の水温とほぼ等しい温度で導入及び導出さ
れるので、実質上無視することが可能である。従
つて、本発明の装置によれば、反応熱q1は、水槽
4内の水温上昇△Tと、ジユール熱q2とを測定す
ることによつて得ることができる。なお、ジユー
ル熱q2は、前記電流計33の記録に基づき、次式
に求められる。q 1 = Q - (q 2 + q 3 ) = (W 1 + W 2 ) x △T - (q 2 + q 3 ) In other words, the heat of reaction q 1 is the amount of water in the water tank 4 W 1 , the water equivalent of the device W 2 , the temperature rise ΔT of the water in the water tank 4, the Joule heat q 2 and the difference q 3 between the sensible heats of the reaction gas and the produced gas. In this case, the amount of water W 1 in the water tank 4 and the equipment water equivalent W 2 are determined in advance as equipment factors, so they are treated as constants, and the difference q 3 in sensible heat between the reaction gas and the produced gas is Since both gases are introduced and led out at approximately the same temperature as the water temperature in the water tank 4, they can be substantially ignored. Therefore, according to the apparatus of the present invention, the reaction heat q 1 can be obtained by measuring the water temperature rise ΔT in the water tank 4 and the Joule heat q 2 . Incidentally, the Joule heat q 2 is determined by the following formula based on the record of the ammeter 33.
q2=∫t 0I2Rdt ()
I……アンペア
R……ヒータの抵抗(Ω)
t……通電時間(秒)
本発明は以上説明したように、一定量の水の温
度上昇の測定と、外部に設けた電流計によるジユ
ール熱の測定とにより反応熱を知るものであり、
特に圧入すべき反応ガスを直接、反応管8内に導
入するとともに、反応管8をとりまくヒータ10
…を、厚肉円筒状のアルミブロツクの内面を反射
鏡面12とする赤外線イメージ炉11を介して加
熱するようにしたから、熱放射による熱移動が大
であつて試料の急速加熱が可能であるとともに、
上記イメージ炉11の反射鏡を冷却するために水
槽4内の水を強制循環させるようにしたため熱交
換性が増大でき、従つて、加熱時間の短縮とそれ
に伴う熱リーク量の減少による測定精度の向上を
図ることができ、さらに装置全体の構造を簡略化
することができる利点がある。そして、この場
合、加熱時に測定セル1内の気体膨張を逃がすた
めの逃しパイプ19は、加熱気体が水槽4内の水
と熱交換してから水槽4外部へ排出され、加熱終
了後は冷却した測定セル1内に吸い込まれセル内
を常圧に保つようにしたから熱リークを極度に減
少させることができ効率的である。 q 2 =∫ t 0 I 2 Rdt () I...Ampere R...Heater resistance (Ω) t...Electrification time (seconds) As explained above, the present invention measures the temperature rise of a certain amount of water. The reaction heat can be determined by measuring the Joule heat using an external ammeter.
In particular, the reaction gas to be pressurized is directly introduced into the reaction tube 8, and the heater 10 surrounding the reaction tube 8 is
... is heated through an infrared image furnace 11 that uses the inner surface of a thick cylindrical aluminum block as a reflective mirror surface 12, so heat transfer by thermal radiation is large and rapid heating of the sample is possible. With,
Since the water in the water tank 4 is forced to circulate in order to cool the reflecting mirror of the image reactor 11, heat exchangeability can be increased, and measurement accuracy can be improved by shortening the heating time and reducing the amount of heat leakage. This has the advantage that improvements can be made and the structure of the entire device can be simplified. In this case, the escape pipe 19 for releasing the gas expansion inside the measurement cell 1 during heating is used to expel the heated gas to the outside of the water tank 4 after exchanging heat with the water in the water tank 4, and after the heating is completed, it is cooled. Since the heat is sucked into the measurement cell 1 and the inside of the cell is maintained at normal pressure, heat leakage can be extremely reduced, which is efficient.
本発明は、種々の固体と気体との反応系、例え
ば石炭の水素化反応、石炭の乾留、バイオマス、
産業用廃棄物の熱分解、種々の金属鉱石のバイ焼
などにおける反応熱の測定に対して有利に適用さ
れる。 The present invention is applicable to reaction systems between various solids and gases, such as coal hydrogenation reaction, coal carbonization, biomass,
It is advantageously applied to measuring the heat of reaction in the thermal decomposition of industrial waste, the bi-burning of various metal ores, etc.
第1図は断熱容器内に配設した水槽の内部構造
説明図、第2図はその水槽内に配設された測定セ
ルの説明断面図、第3図は全体説明図である。
図中符号、1は測定セル、2はフイン、3はフ
イルター収容部、4は水槽、5は反応ガス導入
管、6はらせん管、7は生成ガス排出管、8は反
応管、9は目皿、10はヒータ、11はイメージ
炉、12は反射鏡面、13は冷却用水管、14は
回転羽根、16は熱電対、17は熱電対、18は
撹拌棒、19は逃しパイプ、23は反応ガス熱交
換用らせん管、26は連通管、27は自動温度調
節器、29は電気接点、30は断熱容器、32は
反応温度調節器、33は電力計である。
FIG. 1 is an explanatory diagram of the internal structure of a water tank disposed within a heat-insulating container, FIG. 2 is an explanatory sectional view of a measurement cell disposed within the aquarium, and FIG. 3 is an overall explanatory diagram. Codes in the figure: 1 is a measurement cell, 2 is a fin, 3 is a filter housing part, 4 is a water tank, 5 is a reaction gas introduction pipe, 6 is a spiral pipe, 7 is a produced gas discharge pipe, 8 is a reaction pipe, 9 is an eye 10 is a heater, 11 is an image furnace, 12 is a reflective mirror surface, 13 is a cooling water pipe, 14 is a rotating blade, 16 is a thermocouple, 17 is a thermocouple, 18 is a stirring rod, 19 is a relief pipe, 23 is a reaction A spiral tube for gas heat exchange, 26 a communication tube, 27 an automatic temperature controller, 29 an electric contact, 30 a heat insulating container, 32 a reaction temperature controller, and 33 a power meter.
Claims (1)
度測定用の熱電対を立設し、周面上部に反応ガス
流通孔を設けた固体試料を封入させる円筒状の反
応管を、その外側にヒータ、内面を反射鏡面とす
る厚肉円筒状のイメージ炉を順次同心的に設ける
とともに、この測定セルを円筒状の水槽内に取付
保持し、かつこの水槽内には、測定セル下端から
水槽内周面に沿つて水槽上部に開く生成ガスの熱
交換用らせん管、撹拌棒、水温測定用の熱電対、
上記イメージ炉周壁内に通ずる冷却用水管、並び
に測定セルの膨張気体を排出する逃しパイプを各
設け、さらに上記水槽を外部水槽内に設けるとと
もに、この外部水槽には、前記反応管に接続する
反応ガス熱交換用らせん管、撹拌機構、加熱機構
及び温度検知用熱電対を各設け、さらに外部に
は、前記内槽に設けた熱電対、前記外槽に設けた
熱電対及び前記外槽に設けた加熱機構に各接続す
る自動温度調節器及び前記測定セル内に設けたヒ
ータに接続する電力計を各設けたことを特徴とす
る反応熱測定装置。1 Inside a cylindrical measurement cell, a thermocouple for measuring the reaction temperature is erected through the upper end, and a cylindrical reaction tube to enclose a solid sample with reaction gas flow holes provided at the upper part of the circumferential surface is inserted into the outside of the cylindrical reaction tube. A heater and a thick-walled cylindrical image furnace with a reflective mirror surface on the inner surface are sequentially and concentrically installed, and this measuring cell is installed and held in a cylindrical water tank. Spiral tube for heat exchange of generated gas that opens along the inner circumferential surface at the top of the water tank, stirring rod, thermocouple for measuring water temperature,
A cooling water pipe leading into the peripheral wall of the image reactor and a relief pipe for discharging the expanded gas of the measurement cell are provided, and the water tank is provided in an external water tank. A helical tube for gas heat exchange, a stirring mechanism, a heating mechanism, and a thermocouple for temperature detection are provided, and further externally, a thermocouple provided in the inner tank, a thermocouple provided in the outer tank, and a thermocouple provided in the outer tank. What is claimed is: 1. A reaction heat measuring device comprising: an automatic temperature controller connected to a heating mechanism; and a wattmeter connected to a heater provided in the measurement cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13279582A JPH0249464B2 (en) | 1982-07-29 | 1982-07-29 | HANNONETSUSOKUTEISOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13279582A JPH0249464B2 (en) | 1982-07-29 | 1982-07-29 | HANNONETSUSOKUTEISOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5923240A JPS5923240A (en) | 1984-02-06 |
JPH0249464B2 true JPH0249464B2 (en) | 1990-10-30 |
Family
ID=15089732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13279582A Expired - Lifetime JPH0249464B2 (en) | 1982-07-29 | 1982-07-29 | HANNONETSUSOKUTEISOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0249464B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004507770A (en) * | 2000-09-04 | 2004-03-11 | アイトゲネッシーシェ テヒニッシェ ホッホシューレ チューリッヒ | Calorimeter |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2634843B2 (en) * | 1988-03-28 | 1997-07-30 | 松下電工株式会社 | Eaves gutter |
DE4314454C1 (en) * | 1993-05-03 | 1994-10-13 | Ika Analysentech Gmbh | Bomb calorimeter |
US5509733A (en) * | 1993-12-21 | 1996-04-23 | Ta Instruments, Inc. | Infrared heated differential thermal analyzer |
CN105444910B (en) * | 2015-12-30 | 2018-01-16 | 中国神华能源股份有限公司 | The measurement apparatus and measuring method of a kind of reaction heat effect |
-
1982
- 1982-07-29 JP JP13279582A patent/JPH0249464B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004507770A (en) * | 2000-09-04 | 2004-03-11 | アイトゲネッシーシェ テヒニッシェ ホッホシューレ チューリッヒ | Calorimeter |
JP4807922B2 (en) * | 2000-09-04 | 2011-11-02 | メトラー−トレド アーゲー | Calorimeter |
Also Published As
Publication number | Publication date |
---|---|
JPS5923240A (en) | 1984-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4246466A (en) | Electric heat storage apparatus | |
CN104198524A (en) | System and method for measuring equivalent heat conductivity coefficient | |
JPH0249464B2 (en) | HANNONETSUSOKUTEISOCHI | |
CA1055826A (en) | Apparatus and method for measuring the energy of a chemical reaction | |
US4583401A (en) | Method and apparatus for measuring the level of liquids or agitated charges in vessels | |
JPS62151746A (en) | Precise calorimeter | |
US3841155A (en) | Reaction vessel for isothermal calorimetry | |
US5171518A (en) | Method of determining differences or changes in the rate of heat transfer through tube walls | |
JPH0215014B2 (en) | ||
CN108387128B (en) | Chemical energy storage heat release device and gas water heater | |
CA1106268A (en) | Non-adiabatic reaction calorimetric method and apparatus | |
US4925315A (en) | Calorimetric apparatus | |
McKisson et al. | Heats of Formation of Sodium-Tin Alloys Determined With A New High Temperature Calorimeter | |
US3148534A (en) | Apparatus for testing organic liquid film forming characteristics | |
CN1030348C (en) | Thermocouple verification furnace | |
CA1074634A (en) | Liquid heating apparatus | |
Sakiyama et al. | Enthalpies of Combustion of Organic Compounds. I. 8-Quinolinol | |
JPH076930B2 (en) | Calorimeter | |
JPH02120203A (en) | Medium heating-type reformer | |
CN109298017A (en) | The system and method for thermalmeasurement and/or specific heat capacity under a kind of continuous flow | |
WO2007109972A1 (en) | A peripheral isothermal calorimeter with a circular tube | |
Kotoyori et al. | An adiabatic self-ignition testing apparatus | |
SU1068740A1 (en) | Differential scanning microcalorimeter | |
SU1062583A1 (en) | Device for differential thermal analysis | |
Stepanov et al. | Experimental Measurement of Excess Thermal Energy Released from a Cell Loaded with a Mixture of Nickel Powder and Lithium Aluminum Hydride |