JPS5923240A - Apparatus for measuring heat of reaction - Google Patents

Apparatus for measuring heat of reaction

Info

Publication number
JPS5923240A
JPS5923240A JP13279582A JP13279582A JPS5923240A JP S5923240 A JPS5923240 A JP S5923240A JP 13279582 A JP13279582 A JP 13279582A JP 13279582 A JP13279582 A JP 13279582A JP S5923240 A JPS5923240 A JP S5923240A
Authority
JP
Japan
Prior art keywords
water tank
reaction
water
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13279582A
Other languages
Japanese (ja)
Other versions
JPH0249464B2 (en
Inventor
Mamoru Kaiho
守 海保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13279582A priority Critical patent/JPH0249464B2/en
Publication of JPS5923240A publication Critical patent/JPS5923240A/en
Publication of JPH0249464B2 publication Critical patent/JPH0249464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4806Details not adapted to a particular type of sample
    • G01N25/4826Details not adapted to a particular type of sample concerning the heating or cooling arrangements

Abstract

PURPOSE:To increase heat exchange property and to shorten heating time and also, to improve accuracy accompanied by it, by standing four heaters on the outside of a reaction tube and providing a thick cylindrical image furnace surrounding its outside. CONSTITUTION:Four heaters 10 are stood on the outside of a reaction tube 8 and an image furnace 11 consisting of a thick cylindrical aluminum block surrounding the outside of the heater 10, and provides the inner face of the aluminum block as a reflex mirror face 12. By such a constitution, heating time is shortened and measurement accuracy is improved by a decrease of the quantity of heat leakage accompanied by it, because heat exchange property can be increased.

Description

【発明の詳細な説明】 灰と水素との反応熱を測定するだめの装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an apparatus for measuring the heat of reaction between ash and hydrogen.

従来、物質の燃焼熱を測定するだめの熱量言1は種種市
販され、かつ、その測定精度も比較的高いが、固体と気
体との反応熱を精度よく測定する反応熱測定装置は、装
置化の困難なガスの流通系を必要とすることもあって、
未だ開発されていない。
Conventionally, various types of calorific values 1 for measuring the heat of combustion of substances are commercially available, and their measurement accuracy is relatively high. Because it requires a difficult gas distribution system,
Not yet developed.

しかしながら、固体と気体の反応熱を精度よく測定する
ことは、両者の反応の機構を解明する上で、゛罪常に重
要な意味を有し、その開発が強く要望さiている。
However, accurate measurement of the heat of reaction between a solid and a gas has always been of great importance in elucidating the reaction mechanism between the two, and its development is strongly desired.

本発明者は、固体と気体との反応熱測定装置を開発すべ
く鋭意研究を重ねた結果、本発明を完成するに到った。
The present inventor has completed the present invention as a result of extensive research to develop an apparatus for measuring the heat of reaction between a solid and a gas.

すなわち、本発明によれば、円筒状の測定セル内に、上
端を貫いて反応温度測定用の熱電対を立設し、周面上部
に反応ガス流通孔を設けた円筒状の反応管を、その外側
にヒータ、内面を反射鏡面とする赤外線イメージ炉を順
次同心的に設けるとともに、この測定セルを円筒状の水
槽内に取イτj保持し、かつこの水槽内には、測定セル
下端から水槽内周面に沿って水槽」二部に開く生成ガス
の熱交換用らせん管、撹拌棒、水温測定用の温度計等を
各設け、さらに上記水槽を反応ガス熱交換用のらせん管
を有する外部水槽内に設けるとともに、外部に前記ヒー
タに接続する電力側を設けたことを特徴とする反応熱測
定装置が提供される。
That is, according to the present invention, a cylindrical reaction tube is provided, in which a thermocouple for measuring the reaction temperature is erected through the upper end of the cylindrical measurement cell, and reaction gas flow holes are provided in the upper part of the circumference. A heater and an infrared imaging furnace with a reflective mirror surface on the inner surface are sequentially and concentrically installed on the outside of the cell, and the measuring cell is held in a cylindrical water tank. A helical tube for heat exchange of the produced gas, a stirring rod, a thermometer for measuring water temperature, etc., which open into two parts of the water tank along the inner circumferential surface, are installed, and the water tank is connected to an external side with a helical tube for heat exchange of the reactant gas. There is provided a reaction heat measuring device, characterized in that it is installed in a water tank and is provided with an external power side connected to the heater.

本発明の実施例を図面について説明すると、第1図は外
部水槽を除いた要部を示し、■は測定セルであって、下
端はフィン2を有する小径のフィルター収容部3に形成
されている。この」11定セルjは、水槽4内に適宜の
取例具を介して吊設保持・されており、水槽4の蓋部を
貫いて設けた反応ガス導入管5を介して後述する外部水
槽19内の反応ガス熱交換用らせん管23て一定温度に
調節された反応ガスが送り込寸れ、まだフィルター収容
部3底部から生成ガスが水槽4の内周面に沿うらせん管
6を通って水槽4上部の生成ガス排出管7によシ取り出
されるようになっている。
An embodiment of the present invention will be explained with reference to the drawings. Fig. 1 shows the main parts excluding the external water tank, where ◯ is a measurement cell, and the lower end is formed into a small diameter filter housing part 3 having fins 2. . This 11 constant cell j is suspended and held in a water tank 4 via a suitable fitting, and is connected to an external water tank (described later) via a reaction gas introduction pipe 5 provided through the lid of the water tank 4. The reaction gas adjusted to a constant temperature is fed into the reaction gas heat exchange spiral pipe 23 in the reaction gas heat exchanger 19, and the generated gas is still flowing from the bottom of the filter housing 3 through the spiral pipe 6 along the inner peripheral surface of the water tank 4. The generated gas is taken out through a discharge pipe 7 located at the top of the water tank 4.

測定セルlの内部には、第2図に示すように、その蓋部
に上部を接続し、下端をフィルター収容部3に接続した
1つの立管よりなる反応管8が両投され、内部に設けた
目皿9トに固形試料(例えば石炭)を封入するようにな
っている。この反応管8の外側には外周面に4本のヒー
タ1oが立設され、その外方を取り甘いて厚肉円筒状の
アルミブロックよりなるイメージ炉11がアルミブロッ
ク内面を反射鏡面12として設けられている@13はこ
のアルミブロックに埋入された冷却用水管であって、4
本設けられ、第1図に明らかなように回転羽根14を介
して水槽4内の水を強制循環するようになっている。水
槽4の上面には、蓋部を貫いて反応管8内に通ずる前記
反応ガス導入管5、生成ガス排出管7、ヒータ10に連
なる電極15の他に、下端を目皿9上の試料内に位置し
た反応温度測定用の熱電対16、水槽4の水温測定用の
温度計並ひに水槽4内に垂下取利され上端を適宜の動力
に接続して回転される。撹拌棒18が各々突設され、ま
た加熱時の測定セル1内の気体膨張を逃がすだめの逃し
パイプ19が(=J設されていて、それらの取付部は水
槽4と密封状態に作られている。
As shown in FIG. 2, a reaction tube 8 consisting of a standpipe whose upper end is connected to its lid and whose lower end is connected to the filter accommodating section 3 is inserted into the measuring cell l, as shown in FIG. A solid sample (for example, coal) is sealed in the perforated plate 9 provided. Four heaters 1o are installed on the outer peripheral surface of the reaction tube 8, and an image furnace 11 made of a thick cylindrical aluminum block is installed on the outside of the reaction tube 8 as a reflective mirror surface 12 on the inner surface of the aluminum block. @13 is a cooling water pipe embedded in this aluminum block, and 4
As shown in FIG. 1, the water in the water tank 4 is forced to circulate through the rotating blades 14. On the upper surface of the water tank 4, in addition to the reaction gas introduction pipe 5 which passes through the lid and leads into the reaction tube 8, the generated gas discharge pipe 7, and the electrode 15 connected to the heater 10, the lower end is placed inside the sample on the perforated plate 9. A thermocouple 16 for measuring the reaction temperature, a thermometer for measuring the water temperature in the water tank 4, and a thermometer for measuring the water temperature in the water tank 4 are suspended in the water tank 4, and are rotated by connecting the upper end to an appropriate power source. Stirring rods 18 are each protruded, and relief pipes 19 (=J) are provided to release gas expansion in the measurement cell 1 during heating, and their attachment portions are made in a sealed state with the water tank 4. There is.

上記部分は、第1図に示すように、さらに後述する断熱
容器30内に保持され、前記したように、さらに外部水
槽に収容して一体に組立てられる。
As shown in FIG. 1, the above-mentioned parts are further held in a heat insulating container 30, which will be described later, and as described above, are further housed in an external water tank and assembled together.

即ち、第3図において、19は外部水槽であって加熱機
構20、温度検知機構21、攪拌機構22、反応ガス熱
交換用らせん管23を備え、さらに液面リレー24を介
して前記水槽4内に所要の水位寸で外部水槽内の水を供
給するだめの外部水槽19と連通する電磁弁25伺き連
通管26を有している。反応ガス熱交換用らせん管23
は、外部より供給される反応ガス(例えば水素)を外部
水槽19内の水と同じ温度捷で熱交換したのち、前記反
応ガス導入管5に接続する。な秒、、27は自動温度調
節器、28は温度記録計であり、29は水量設定用の電
気接点である。30は断熱容器であり、断熱材31を内
面に張装して水槽4から外部へ熱の流出を遮断する。3
2は反応温度調節器、33は電力計である。
That is, in FIG. 3, reference numeral 19 denotes an external water tank, which is equipped with a heating mechanism 20, a temperature detection mechanism 21, a stirring mechanism 22, and a helical tube 23 for heat exchange of the reaction gas. It has a solenoid valve 25 and a communication pipe 26 communicating with an external water tank 19 which supplies water in the external water tank at a required water level. Spiral tube 23 for reaction gas heat exchange
is connected to the reaction gas introduction pipe 5 after exchanging heat with the reaction gas (for example, hydrogen) supplied from the outside at the same temperature as the water in the external water tank 19 . 27 is an automatic temperature controller, 28 is a temperature recorder, and 29 is an electric contact for setting the water amount. Reference numeral 30 denotes a heat insulating container, the inner surface of which is lined with a heat insulating material 31 to block heat from flowing out from the water tank 4 to the outside. 3
2 is a reaction temperature controller, and 33 is a power meter.

本発明は上記のように構成され、測定セルlを開いて反
応管8内の目皿9上に一定量の粉末状の固体、例えば石
炭を封入し、測定セル1を水槽4内に設入させるととも
に、その全体を断熱容器30に収容して第2図のように
外部水槽19内に収容する。
The present invention is constructed as described above, and the measuring cell 1 is opened, a certain amount of powdered solid, for example, coal is sealed on the perforated plate 9 in the reaction tube 8, and the measuring cell 1 is placed in the water tank 4. At the same time, the entire body is housed in a heat insulating container 30 and housed in an external water tank 19 as shown in FIG.

次に、外部水槽19内に水を温度検知機構21と自動温
度調節器270作用により、所要の温度、例えは20℃
に保持した後、電磁弁25を開き、渚差などを利用して
外部水槽水の一部を連通管26により水槽4内に導入す
る。その際、連通管26は外部水槽水中を通過している
ため水の調整温度には変動がない。水槽4内の木組設定
の電気接点29を所定位置に設定しておくことにより、
水槽4の水位はこの点まで上昇し、水位がこの電気接点
の位置に達すると、液面リレー24が作動して電磁弁2
5は閉になる。従って、この操作により、外部水槽内の
一定温度に調整され水を常に一定量水槽4内に自動的に
秤量することができる。
Next, water is poured into the external water tank 19 at a required temperature, for example, 20° C., by the action of the temperature detection mechanism 21 and the automatic temperature controller 270.
After the water is maintained at 100° C., the solenoid valve 25 is opened, and a portion of the external aquarium water is introduced into the aquarium 4 through the communication pipe 26 using a beach difference or the like. At this time, since the communication pipe 26 passes through the water in the external aquarium, there is no change in the adjusted temperature of the water. By setting the electric contacts 29 of the wooden structure inside the aquarium 4 at predetermined positions,
The water level in the water tank 4 rises to this point, and when the water level reaches the position of this electrical contact, the liquid level relay 24 is activated and the solenoid valve 2
5 will be closed. Therefore, by this operation, the temperature in the external water tank can be adjusted to a constant value, and a certain amount of water can always be automatically weighed into the water tank 4.

前記のようにして測定亭備が終った後、電極15から電
気を通じてヒーター10を発熱させ、イメージ炉11及
び反応管8を介して反応管8内の固体試料を加熱する。
After completing the measurement setup as described above, electricity is passed from the electrode 15 to the heater 10 to heat the solid sample in the reaction tube 8 through the image furnace 11 and the reaction tube 8.

この場合、ヒータに通電した電力量は電力計33により
記録される。固体試料の温度は熱電対16により測定さ
れ、温度記録側によシ記録される。
In this case, the amount of power supplied to the heater is recorded by the wattmeter 33. The temperature of the solid sample is measured by a thermocouple 16 and recorded on the temperature recording side.

試料温度が所定の反応温度に達した時に、反応ガスを外
部水槽19内の熱交換用らせん管23を通じて加熱させ
反応ガス導入管5から導入する。
When the sample temperature reaches a predetermined reaction temperature, the reaction gas is heated through the heat exchange spiral tube 23 in the external water tank 19 and introduced from the reaction gas introduction tube 5.

この加熱された反応ガスは、反応管8内部に入り、固体
試料と接触反応する。
This heated reaction gas enters the inside of the reaction tube 8 and comes into contact with the solid sample to react.

前記の接触反応により得られる生成ガスは、反応管下部
からフィルター収容部3を通り、その内”蔀のフィルタ
ー(例えば石英綿、脱脂綿などの充填層)と接触し、生
成ガス中に含捷れる液状成分がここで除去される。液状
成分の除去された生成ガスは、らせん管6を通って水槽
4の温度寸で冷却された後、生成ガス排出管7かも排出
される。
The product gas obtained by the above-mentioned contact reaction passes through the filter housing part 3 from the lower part of the reaction tube, comes into contact with a "filter" filter (for example, a packed bed of quartz cotton, absorbent cotton, etc.), and is included in the product gas. The liquid component is removed here.The product gas from which the liquid component has been removed passes through the spiral pipe 6 and is cooled to the temperature of the water tank 4, and then is also discharged through the product gas discharge pipe 7.

前記装置において、反応温度(試料の温度)は、熱電対
16とヒータ電極15に接続する反応温度調節器32に
より所定の温度に調節され、その温度は、時間に対して
記録される。寸だ、水槽4の温度が反応経過と共に上昇
すると、自動温度調節器27と、それに接続する水槽4
の水温測定用の熱電対17及び外部水槽水に対する温度
検知機構21の熱電対と加熱機構20との協働作用によ
叙外部水槽19の水温は水槽4の水温に追随して上掬す
る。この温度制御によって、外部水槽19の水温は常に
水槽4の水温とほぼ等しい温度に保持され、水槽4から
の熱の逃散が防止され、まだ反応ガスも熱交換用らせん
管23により水槽19内に水温にほぼ等しくなってから
水槽4内に供給されるのて、水槽4の効果的な断熱が達
成される。
In the apparatus, the reaction temperature (temperature of the sample) is adjusted to a predetermined temperature by a reaction temperature regulator 32 connected to the thermocouple 16 and the heater electrode 15, and the temperature is recorded over time. As the temperature of the water tank 4 rises as the reaction progresses, the automatic temperature controller 27 and the water tank 4 connected to it
The water temperature of the external water tank 19 follows the water temperature of the water tank 4 and is scooped by the cooperation of the thermocouple 17 for measuring water temperature, the thermocouple of the temperature detection mechanism 21 for water in the external water tank, and the heating mechanism 20. Through this temperature control, the water temperature in the external water tank 19 is always maintained at approximately the same temperature as the water temperature in the water tank 4, preventing heat from escaping from the water tank 4, and the reaction gas is still transferred into the water tank 19 through the heat exchange spiral pipe 23. Effective insulation of the water tank 4 is achieved by supplying the water into the water tank 4 after the water temperature is approximately equal to that of the water.

前記のようにして反応を所定時間行った後、反応を停止
させる。即ち、反応ガスの導入、生成ガスの導出及びヒ
ータlOの加熱をそれぞれ停止さぜる。次いで、水槽4
の水温のJ二昇が見られなくなった時の、その水温を測
定し、測定を終了する。
After the reaction is carried out for a predetermined period of time as described above, the reaction is stopped. That is, the introduction of the reaction gas, the discharge of the generated gas, and the heating of the heater IO are stopped. Next, aquarium 4
Measure the water temperature when no rise in water temperature is observed, and end the measurement.

前記のようにして測定を行った場合、水槽4内の水に加
えられた全熱量Qは次の式で表わされる。
When the measurement is performed as described above, the total amount of heat Q added to the water in the water tank 4 is expressed by the following formula.

全熱i Q (Ill = (W1+W2 ) X△T
        (1)Wl  ・・・・水槽4の水量
(g) W2  ・・・・装置水当量 (g) △T ・−・測定前後の水槽4内の水温の差才だ、水槽
4内に導入された全熱量Q <(Ill)は、固体試料
と反応ガスとの反応による反応熱と、ヒータ10により
導入されたンユール熱と、反応ガスと生成ガスとの顕熱
との差に相当する熱とを基準にすると、次の式で表わす
ことができる。
Total heat i Q (Ill = (W1+W2) X△T
(1) Wl...Amount of water in tank 4 (g) W2...Equipment water equivalent (g) △T...This is the difference in water temperature in tank 4 before and after measurement. The total amount of heat Q can be expressed by the following formula.

Q cat  = ql +q2+q3       
     (n)ql   反応熱 q2・・  ジュール熱 q3 ・・・・反応ガスと生成ガスの顕熱の差従って、
前記(11及び(ロ)の式から、反応熱qlは次の式で
表わされる。
Q cat = ql +q2+q3
(n) ql Heat of reaction q2... Joule heat q3... Difference in sensible heat between reaction gas and produced gas. Therefore,
From the above equations (11 and (b)), the reaction heat ql is expressed by the following equation.

q +  = Q −(qz+q3) = (w、 +W2) x△T  (q2+q3 )即
ち、反応熱q1は、水槽4の水の量W、装置水当量W2
、水槽4の水の温度上E△T1 ジコーーノト熱q2及
び反応ガスと生成ガスの顕熱の差q3をそれぞれ測定す
ることによって求めることができる。この場合、水槽4
内の水の量W1、及び装置水当量W2は装置因子として
あらかじめ決定されるので定数として扱われ、まだ反応
ガスと生成ガスの顕熱の差q3は、それぞれのガスはい
ずれも水槽4内の水温とほぼ等しい温度で導入及び導出
されるので、実質上無視することが可能である。従って
、不発朝の装置によれば、反応熱q1は、水槽4内の水
温上昇△Tと、ジュール熱q2とを測定することによっ
て得ることができる。なお、ジュール熱q2は、前記電
流言」33の記録に基づき、次式に求められる。
q + = Q - (qz+q3) = (w, +W2) x△T (q2+q3) In other words, the reaction heat q1 is the amount of water in the water tank 4 W, the equipment water equivalent W2
, the temperature of the water in the water tank 4 E△T1 can be determined by measuring the dicot heat q2 and the difference q3 between the sensible heats of the reaction gas and the produced gas, respectively. In this case, tank 4
The amount of water W1 in the water tank 4 and the equipment water equivalent W2 are predetermined as equipment factors, so they are treated as constants. Since it is introduced and extracted at a temperature approximately equal to the water temperature, it can be virtually ignored. Therefore, according to the misfire morning device, the reaction heat q1 can be obtained by measuring the water temperature rise ΔT in the water tank 4 and the Joule heat q2. Incidentally, the Joule heat q2 is determined by the following formula based on the record of the above-mentioned "Electrical Calendar" 33.

q2  =J”  FRdt            
                 (口I)■・・・
・・・・アンヘア R・ ヒータの抵抗0 L ・ 通電時間(秒) 本発明は以上説明したように、一定量の水の温度」二昇
の測定と、外部に設けた電流計によるジュール熱の測定
とにより反応熱を知るものであり、特に圧入ずべき反応
ガスを直接、反応管8内に導入するとともに、反応管8
をとり捷〈ヒータ10・を、厚肉円筒状のアルミブロッ
クの内面を反射鏡面12とする赤外線イメージ炉11を
介して加熱するようにしだから、熱放射による熱移動が
大であって試料の急速加熱が可能であるとともに、1上
記イメージ炉11の反射鏡を冷却するだめに水槽4内の
水を強制循環させるようにしただめ熱交換性が増大でき
、従って、加熱時間の短縮とそれに伴う熱リーク量の減
少による測定精度の向」二を・図ることができ、さらに
装置全体の構造を簡略化することができる利点がある。
q2 = J” FRdt
(mouth I) ■...
・・・・Anhair R・Heater resistance 0 L・Electrification time (seconds) As explained above, the present invention measures the temperature of a certain amount of water and measures the Joule heat using an external ammeter. The heat of reaction is known through measurement, and in particular, the reaction gas that should be pressurized is directly introduced into the reaction tube 8, and the
Since the heater 10 is heated via an infrared imaging furnace 11 that uses the inner surface of a thick-walled cylindrical aluminum block as a reflecting mirror surface 12, heat transfer due to thermal radiation is large and the sample is heated rapidly. In addition to being able to heat the image furnace 11, the water in the water tank 4 is forced to circulate in order to cool the reflecting mirror of the image furnace 11, thereby increasing the heat exchangeability. This has the advantage that measurement accuracy can be improved by reducing the amount of leakage, and the structure of the entire device can be simplified.

そして、この場合、加熱時の測定セル1内の気体膨張を
逃がすための逃しパイプ19は、加熱気体が水槽4内の
水と熱交換してから水槽4内上部に貯溜され、加熱終了
後は冷却した測定セル1内に吸い適寸れセル内を常圧に
保つようにしたから熱リークを極度に減少させることが
でき効率的である。
In this case, the escape pipe 19 for releasing the gas expansion inside the measurement cell 1 during heating is used to store the heated gas in the upper part of the water tank 4 after exchanging heat with the water in the water tank 4, and after the heating is completed. Since the sample is sucked into the cooled measurement cell 1 and the inside of the cell is maintained at normal pressure, heat leakage can be extremely reduced, which is efficient.

本発明は、種々の固体と気体との反応系、例えば石炭の
水素化反応、石炭の乾留、バイオマス、産業用廃棄物の
熱分解、種々の金属鉱石のパイ焼などにおける反応熱の
測定に対して有利に適用される。
The present invention is applicable to the measurement of reaction heat in various reaction systems between solids and gases, such as hydrogenation reaction of coal, carbonization of coal, biomass, thermal decomposition of industrial waste, pie baking of various metal ores, etc. be advantageously applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の要部を示す縦断面図、第
3図は全体説明図である。 図中符号、1は測定セル、2はフィン、3はフ8ルター
収容部、4は水槽、5は反応ガス導入管1.6はらせん
管、7は生成ガス排出管、8は反応管、9は目皿、IO
はヒータ、11はイメージ炉、12は反射鏡面、13は
冷却用水管、1.4は回転羽根、16は熱電対、17は
温度計、I8は撹拌棒、19は外部水槽、23は反応ガ
ス熱交換用らせん管、26は連通管、27は自動温度調
節器、29は電気接点、30は断熱容器、32は反応温
度調節へ33は電力計である。 特許出願人 工業技術院長  石 坂 誠 − 第1図 勇  2  図
1 and 2 are vertical cross-sectional views showing essential parts of the present invention, and FIG. 3 is an overall explanatory view. Symbols in the figure: 1 is a measurement cell, 2 is a fin, 3 is a filter housing part, 4 is a water tank, 5 is a reaction gas introduction pipe, 6 is a spiral pipe, 7 is a produced gas discharge pipe, 8 is a reaction tube, 9 is the eye plate, IO
is a heater, 11 is an image furnace, 12 is a reflecting mirror surface, 13 is a cooling water pipe, 1.4 is a rotating blade, 16 is a thermocouple, 17 is a thermometer, I8 is a stirring rod, 19 is an external water tank, 23 is a reaction gas A spiral tube for heat exchange, 26 a communication tube, 27 an automatic temperature controller, 29 an electric contact, 30 a heat insulating container, 32 a reaction temperature control tube, and 33 a power meter. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Figure 1 Isamu 2

Claims (1)

【特許請求の範囲】[Claims] (1)  円筒状の測定セル内に、上端を貫いて反応温
度測定用の熱電対を立設し、周面]二部に反応ガス流通
孔を設けた円筒状の反応管を、その外側にヒータ、内面
を反射鏡面とする厚肉円筒状のイメージ炉を順次同心的
に設けるとともに、この測定セルを円筒状の水槽内に数
句保持し、かつこの水槽内には、測定セル下端から水槽
内周面に沿って水槽上部に開く生成ガスの熱交換用らせ
ん管、撹拌棒、水温測定用の温度計、上記イメージ炉周
壁内に通ずる冷却用水管、並びに測定セルの膨張気体を
排出する逃しパイプを各設け、さらに」二記水槽を外部
水槽内に設けるとともに、外部に前記ヒータに接続する
電力計を設けたことを特徴とする反応熱測定装置。
(1) Inside the cylindrical measurement cell, a thermocouple for measuring the reaction temperature was erected through the upper end, and a cylindrical reaction tube with reaction gas flow holes on the second part of the circumferential surface was placed on the outside of the cell. A heater and a thick-walled cylindrical image furnace with a reflective mirror surface on the inner surface are sequentially and concentrically installed, and this measurement cell is held in a cylindrical water tank. A spiral pipe for heat exchange of the produced gas that opens along the inner circumferential surface to the top of the water tank, a stirring rod, a thermometer for measuring water temperature, a cooling water pipe that runs inside the peripheral wall of the image reactor, and a relief for discharging expanded gas from the measurement cell. 1. A reaction heat measuring device, characterized in that each pipe is provided, a water tank is provided in an external water tank, and a wattmeter connected to the heater is provided externally.
JP13279582A 1982-07-29 1982-07-29 HANNONETSUSOKUTEISOCHI Expired - Lifetime JPH0249464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13279582A JPH0249464B2 (en) 1982-07-29 1982-07-29 HANNONETSUSOKUTEISOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13279582A JPH0249464B2 (en) 1982-07-29 1982-07-29 HANNONETSUSOKUTEISOCHI

Publications (2)

Publication Number Publication Date
JPS5923240A true JPS5923240A (en) 1984-02-06
JPH0249464B2 JPH0249464B2 (en) 1990-10-30

Family

ID=15089732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13279582A Expired - Lifetime JPH0249464B2 (en) 1982-07-29 1982-07-29 HANNONETSUSOKUTEISOCHI

Country Status (1)

Country Link
JP (1) JPH0249464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247642A (en) * 1988-03-28 1989-10-03 Matsushita Electric Works Ltd Eaves gutter
EP0660110A1 (en) * 1993-12-21 1995-06-28 TA Instruments, Inc. Infrared heated differential thermal analyzer
US5547282A (en) * 1993-05-03 1996-08-20 Ika-Analysentechnik Gmbh Calorimetric measuring apparatus
CN105444910A (en) * 2015-12-30 2016-03-30 中国神华能源股份有限公司 Reaction heat effect measurement device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184649A1 (en) * 2000-09-04 2002-03-06 Eidgenössische Technische Hochschule Zürich Calorimeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247642A (en) * 1988-03-28 1989-10-03 Matsushita Electric Works Ltd Eaves gutter
US5547282A (en) * 1993-05-03 1996-08-20 Ika-Analysentechnik Gmbh Calorimetric measuring apparatus
EP0660110A1 (en) * 1993-12-21 1995-06-28 TA Instruments, Inc. Infrared heated differential thermal analyzer
CN105444910A (en) * 2015-12-30 2016-03-30 中国神华能源股份有限公司 Reaction heat effect measurement device and method

Also Published As

Publication number Publication date
JPH0249464B2 (en) 1990-10-30

Similar Documents

Publication Publication Date Title
JP2007232720A (en) Method of inspecting fuel cladding tube, and device therefor
Englmair et al. Experimental investigation of a tank-in-tank heat storage unit utilizing stable supercooling of sodium acetate trihydrate
CN104198524A (en) System and method for measuring equivalent heat conductivity coefficient
JPS5923240A (en) Apparatus for measuring heat of reaction
CN102507639B (en) Device and method for measuring solid-liquid phase engineering coefficients of heat conductivity of material
CN104390774A (en) Method and device for testing high-temperature opening pressure of anti-explosion valve of secondary battery
JPS62151746A (en) Precise calorimeter
CN109810726A (en) A kind of aqueous mixed working fluid generating device of high temperature and pressure and technique
CN205995429U (en) Carry out the reactor of adiabatic calorimetry measurement under High Temperature High Pressure
US5171518A (en) Method of determining differences or changes in the rate of heat transfer through tube walls
CN104655671B (en) Adiabatic accelerating calorimeter and detection method
CN207731672U (en) Fission product retention factor measuring device in a kind of high-temperature sodium
CN101893537B (en) Novel method and device for detecting evaporation loss of lubricating oil
CN205334972U (en) Water -cooling containment analogue means
JPH0215014B2 (en)
CA1074634A (en) Liquid heating apparatus
CN109580904A (en) A kind of low-temperature oxidation of coal Determination of Kinetic Parameters system and its experimental procedure that can be automatically controled
CN219482732U (en) High-temperature water bath equipment of aerosol fire extinguisher
Stepanov et al. Experimental Measurement of Excess Thermal Energy Released from a Cell Loaded with a Mixture of Nickel Powder and Lithium Aluminum Hydride
CN215265597U (en) Dirt deposition test device
SU1179188A1 (en) Device for measuring thermal effects
JPH0623701B2 (en) Calorimeter
JPH11142579A (en) Deterioration evaluation device of steam generator heat transfer tube
JPH0134338B2 (en)
Biney The development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/steam interaction. Final report 9-21-90--3-31-95