JPH0249041B2 - - Google Patents

Info

Publication number
JPH0249041B2
JPH0249041B2 JP55140952A JP14095280A JPH0249041B2 JP H0249041 B2 JPH0249041 B2 JP H0249041B2 JP 55140952 A JP55140952 A JP 55140952A JP 14095280 A JP14095280 A JP 14095280A JP H0249041 B2 JPH0249041 B2 JP H0249041B2
Authority
JP
Japan
Prior art keywords
thin conductor
line
conductor line
present
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55140952A
Other languages
Japanese (ja)
Other versions
JPS5765001A (en
Inventor
Shigenobu Aihara
Takanori Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP55140952A priority Critical patent/JPS5765001A/en
Publication of JPS5765001A publication Critical patent/JPS5765001A/en
Publication of JPH0249041B2 publication Critical patent/JPH0249041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2007Filtering devices for biasing networks or DC returns

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】 本発明は、超高周波数帯で使用されるマイクロ
ストリツプ線路を用いた半導体素子の整合回路に
おける半導体素子への直流バイアス回路の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a DC bias circuit for a semiconductor element in a semiconductor element matching circuit using a microstrip line used in an ultra-high frequency band.

超高周波数帯における半導体素子への整合回路
においては、高周波回路に対して出来るだけ影響
の少ない直流バイアス回路を接続して、半導体素
子をバイアスすることが望ましい。
In a matching circuit for a semiconductor element in an ultra-high frequency band, it is desirable to bias the semiconductor element by connecting a DC bias circuit that has as little influence on the high frequency circuit as possible.

このために、これまでも直流バイアス回路を特
殊な低域通過濾波回路にして構成するなどの方法
が取られてきた。しかしながら、各種の工夫にお
いても大電流容量でかつ、高特性インピーダンス
の電流供給線路を提供することに基本的な困難が
あつた。例えば、マイクロストリツプ線路を構成
するのと同様に、DCバイアス線路を絶縁体基板
上に構成することが容易であるが、この方法によ
る細導体線路の特性インピーダンスは、線路下面
の絶縁体の誘電率のために下げられ、100Ω程度
以上に高めることは物理的に困難である。一方、
細導体線路を絶縁体基板から離して構成すると、
特性インピーダンスを数KΩ程度に高めることは
容易であるが、細導体線から発生するジユール熱
の放熱が困難であるために大電流容量を得がたか
つた。
To this end, methods have been used to date, such as configuring the DC bias circuit as a special low-pass filter circuit. However, despite various efforts, there has been a fundamental difficulty in providing a current supply line with a large current capacity and high characteristic impedance. For example, similar to constructing a microstrip line, it is easy to construct a DC bias line on an insulating substrate, but the characteristic impedance of a thin conductor line created by this method is It is lowered due to its dielectric constant, and it is physically difficult to increase it above about 100Ω. on the other hand,
When the thin conductor line is separated from the insulator substrate,
Although it is easy to increase the characteristic impedance to about several kilohms, it is difficult to dissipate the Joule heat generated from the thin conductor wire, making it difficult to obtain a large current capacity.

本発明者は、以上の問題を解決せんとして研究
実験し、細導体線路に発生するジユール熱による
細導体線路の溶断電流値の第1図に示す如き実験
による測定データから、ジユール熱の放熱現象を
明らかにした。
The present inventor conducted research and experiments to solve the above problem, and from experimental measurement data as shown in Figure 1 of the fusing current value of a thin conductor line due to Joule heat generated in the thin conductor line, the heat dissipation phenomenon of Joule heat was found. revealed.

本発明は従来の技術に内在する前記欠点を解消
する為に上記放熱現象に着目してなされたもので
あり、従つて本発明の目的は、上記放熱現象を細
導体線路の構成法に応用することによつて、高特
性インピーダンス条件を損なうことなく、効果的
な放熱条件を設定し、大電流容量で高特性インピ
ーダンスを持つたバイアス線路で構成される新規
な直流バイアス回路を提供することにある。
The present invention has been made by focusing on the above-mentioned heat radiation phenomenon in order to eliminate the above-mentioned drawbacks inherent in the conventional technology.Therefore, an object of the present invention is to apply the above-mentioned heat radiation phenomenon to a method of configuring a thin conductor line. In particular, the object of the present invention is to provide a new DC bias circuit that is configured with a bias line that has a large current capacity and high characteristic impedance, setting effective heat dissipation conditions without impairing the high characteristic impedance condition. .

本発明の直流バイアス回路は、マイクロストリ
ツプ線路で構成される半導体整合回路の直流バイ
アス回路であつて、100Ω以上の高特性インピー
ダンス(乃至は高リアスタンス)線路を実現する
ための細導体線路に対して、この細導体線路の高
特性インピーダンスを保つたまま、熱伝導特性を
改善するために、この細導体線路の両端以外の少
なくとも1個の中間点に前記マイクロストリツプ
線路が形成されている絶縁体基板上に中継パター
ンを設けて前記細導体線路を6mm以下の間隔でも
つて中継したことを特徴とする。
The DC bias circuit of the present invention is a DC bias circuit of a semiconductor matching circuit composed of microstrip lines, and is a thin conductor line for realizing a high characteristic impedance (or high reactance) line of 100Ω or more. On the other hand, in order to improve the heat conduction characteristics while maintaining the high characteristic impedance of this thin conductor line, the microstrip line is formed at at least one intermediate point other than both ends of this thin conductor line. The present invention is characterized in that a relay pattern is provided on an insulating substrate, and the thin conductor lines are relayed at intervals of 6 mm or less.

次に本発明をその良好な一実施例について図面
を参照しながら詳細に説明する。
Next, a preferred embodiment of the present invention will be explained in detail with reference to the drawings.

第1図はφ20μmの金線をその両端をT0−8パ
ツケージのピンにボンテイングしたときの金線の
溶断電流値と金線のボンテイングスパン長との関
係を求めたデータである。このデータから、金線
が十分長い場合には、両端への熱伝導効果が期待
出来ないために、金線は低電流で容易に溶断す
る。一方、金線が短かくなると、両端への熱伝導
による放熱が顕著になるために、大電流に対して
も容易に溶断しなくなる。このデータから、例え
ば、長さ6mmの直流バイアス線をφ20μmの金線
で構成した場合には、この金線の許容電流は
0.5Aである。しかしながら、中央で1個所ピン
へのボンテングを行なつて、ここを中継点とした
3mmづつの長さの線路として構成すれば、許容電
流は0.68Aまで増加する。更に、中央で2個所の
中継点を設け、2mmづつの線路の縦続として構成
すれば、許容電流は0.95Aにまで増加することに
なる。
FIG. 1 shows data obtained from the relationship between the fusing current value of the gold wire and the bonding span length of the gold wire when both ends of the gold wire of φ20 μm are bonded to the pins of the T0-8 package. This data shows that if the gold wire is long enough, the gold wire will easily melt at low currents because no heat conduction effect can be expected from both ends. On the other hand, when the gold wire becomes shorter, heat radiation due to heat conduction to both ends becomes more pronounced, so that it does not easily melt even with a large current. From this data, for example, if a DC bias line with a length of 6 mm is made of a gold wire with a diameter of 20 μm, the allowable current of this gold wire is
It is 0.5A. However, if one pin is bonded in the center and the line is constructed as a relay point of 3 mm each, the allowable current increases to 0.68A. Furthermore, if two relay points are provided in the center and the lines are cascaded, each 2 mm in length, the allowable current will increase to 0.95 A.

第2図はこの原理に基づく本発明に係る直流バ
イアス回路の一実施例を示す概略構成図である。
図中、参照番号1は半導体素子、2は半導体素子
1とマイクロストリツプ線路3とを接続する比較
的低インピーダンスの線路、3は高周波導体回路
を構成するマイクロストリツプ線路、4はマイク
ロストリツプ回路を構成するための絶縁体基板、
5,6は本発明のバイアス線路を構成するために
絶縁体基板4上に設けられた細導体線路7の中継
用パターン、7は本発明に必要な中継点を中継パ
ターン5,6上に持つた細導体線路、8は細導体
線路7とともに低域通過フイルタを形成するキヤ
パシタ、9は外部直流バイアス回路へ接続される
比較的低インピーダンスの線路を夫々示してい
る。10は接地された金属板を示し、この金属板
10上に半導体素子1、絶縁体基板4及びキヤパ
シタ8が形成されており、絶縁体基板4上にマイ
クロストリツプ線路3及び中継用パターン5,6
が形成されている。
FIG. 2 is a schematic diagram showing an embodiment of a DC bias circuit according to the present invention based on this principle.
In the figure, reference number 1 is a semiconductor element, 2 is a relatively low impedance line connecting the semiconductor element 1 and a microstrip line 3, 3 is a microstrip line constituting a high frequency conductor circuit, and 4 is a microstrip line. An insulator substrate for configuring a strip circuit,
5 and 6 are relay patterns for thin conductor lines 7 provided on the insulating substrate 4 to constitute the bias line of the present invention, and 7 has relay points necessary for the present invention on the relay patterns 5 and 6. 8 is a capacitor forming a low-pass filter together with the thin conductor line 7, and 9 is a relatively low impedance line connected to an external DC bias circuit. Reference numeral 10 indicates a grounded metal plate. On this metal plate 10, a semiconductor element 1, an insulator substrate 4, and a capacitor 8 are formed. On the insulator substrate 4, a microstrip line 3 and a relay pattern 5 are formed. ,6
is formed.

ここで、実際の高周波回路に接続される本発明
のパラメータすなわち、細導体線路の太さ、各中
継パターン間に接続される細導体線路の長さの最
大値は次のように定めればよい。まず、本発明が
接続されるべき高周波回路の仕様により、細導体
線路のもつべき特性インピーダンスが定まり、こ
れにより細導体線路の直径が定まる。また高周波
回路の仕様から細導体線路を流れる電流の最大値
が定められるが、ここで第1図に示したような実
験結果を参照することにより、中継点間の細導体
線路の長さの最大値を定めることができる。細導
体線路7を構成することで、中継パターン5,6
の上では先の実験で述べたような熱伝導による放
熱が可能となつて、その結果細導体線路7は大電
流容量を持つ。またこの中継パターンの寸法(パ
ターン外形をほぼ正方形とする場合はその一辺の
長さ、円形とする場合はその直径)は、細導体線
路の太さ(あるいは直径)の数倍程度で、機械的
強度は充分であり、この中継パターンの寸法は本
発明と接続されるべき高周波回路の動作周波数に
対応する波長よりも充分に小さくできる。したが
つて、細導体線路7の高特性インピーダンス特性
をほとんど損なうことはなく、本発明の意図する
大電流容量を有する高性能直流バイアス回路が実
現出来る。
Here, the parameters of the present invention connected to an actual high-frequency circuit, that is, the thickness of the thin conductor line and the maximum length of the thin conductor line connected between each relay pattern may be determined as follows. . First, the specification of the high frequency circuit to which the present invention is to be connected determines the characteristic impedance that the thin conductor line should have, and thereby the diameter of the thin conductor line. Also, the maximum value of the current flowing through the thin conductor line is determined from the specifications of the high frequency circuit, but by referring to the experimental results shown in Figure 1, the maximum value of the length of the thin conductor line between the relay points can be determined. A value can be determined. By configuring the thin conductor line 7, the relay patterns 5, 6
In this case, it becomes possible to dissipate heat by thermal conduction as described in the previous experiment, and as a result, the thin conductor line 7 has a large current capacity. In addition, the dimensions of this relay pattern (the length of one side if the pattern outline is approximately square, the diameter if it is circular) are several times the thickness (or diameter) of the thin conductor line, and the mechanical The strength is sufficient, and the dimensions of this relay pattern can be made sufficiently smaller than the wavelength corresponding to the operating frequency of the high frequency circuit to be connected to the present invention. Therefore, the high-performance DC bias circuit having a large current capacity as intended by the present invention can be realized without substantially impairing the high characteristic impedance characteristic of the thin conductor line 7.

また、細導体線路7は中間点に中継点を有する
から、機械的強度の改善も期待出来る。これは本
発明に付随する効果である。
Furthermore, since the thin conductor line 7 has a relay point at the intermediate point, improvement in mechanical strength can be expected. This is an effect associated with the present invention.

以上本発明はその良好な一実施例について説明
したが、それは単なる例示的なものであり、ここ
で説明した実施例によつてのみ本願発明が限定さ
れるものではなく、その範囲から逸脱することな
く種々の変形が可能である。例えば、本実施例は
中継点が2個の場合であるが、必要に応じて1個
でも或いは3個以上でもよいことは勿論である。
Although one preferred embodiment of the present invention has been described above, it is merely an illustrative example, and the present invention is not limited only by the embodiment described here, and it is possible to deviate from its scope. Various modifications are possible. For example, in this embodiment, there are two relay points, but it goes without saying that the number of relay points may be one or three or more as necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は20μm〓の金線をTO−8パツケージの
ピン間にボンデイングしたときの金線長と溶断電
流の測定値を示す図であり、横軸に金線長を縦軸
に溶断電流をそれぞれ対数目盛で示す。第2図は
本発明の一実施例を示す概略構成図である。 1……半導体素子、2……半導体素子とマイク
ロストリツプ線路とを結ぶ線路、3……マイクロ
ストリツプ線路、4……絶縁体基板、5,6……
細導体線路7の中継用パターン、7……本発明に
なる中継点を持つ細導体線路、8……キヤパシ
タ、9……外部直流回路への接線線路、10……
金属板。
Figure 1 shows the measured values of the gold wire length and fusing current when a 20 μm gold wire is bonded between the pins of the TO-8 package, with the gold wire length on the horizontal axis and the fusing current on the vertical axis. Each is shown on a logarithmic scale. FIG. 2 is a schematic configuration diagram showing an embodiment of the present invention. 1... Semiconductor element, 2... Line connecting the semiconductor element and microstrip line, 3... Microstrip line, 4... Insulator substrate, 5, 6...
Relay pattern for thin conductor line 7, 7... thin conductor line having a relay point according to the present invention, 8... capacitor, 9... tangential line to external DC circuit, 10...
metal plate.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロストリツプ線路で構成される半導体
整合回路の直流バイアス回路において、100Ω以
上の高特性インピーダンス(乃至は高リアスタン
ス)線路を実現するための細導体線路に対し、こ
の細導体線路の高特性インピーダンスを保つたま
ま、熱伝導特性を改善するために、前記マイクロ
ストリツプ線路が形成されている絶縁体基板上に
少なくとも1個以上の中継パターンを設け、前記
細導体線路をこの中継パターンを介して中継し、
この中継パターンの寸法は前記細導体線路の太さ
の数倍程度であることを特徴とする直流バイアス
回路。
1 In the DC bias circuit of a semiconductor matching circuit composed of microstrip lines, the height of this thin conductor line is In order to improve heat conduction characteristics while maintaining characteristic impedance, at least one relay pattern is provided on the insulator substrate on which the microstrip line is formed, and the thin conductor line is connected to this relay pattern. relayed via
A DC bias circuit characterized in that the dimensions of this relay pattern are approximately several times the thickness of the thin conductor line.
JP55140952A 1980-10-07 1980-10-07 Direct current bias circuit Granted JPS5765001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55140952A JPS5765001A (en) 1980-10-07 1980-10-07 Direct current bias circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55140952A JPS5765001A (en) 1980-10-07 1980-10-07 Direct current bias circuit

Publications (2)

Publication Number Publication Date
JPS5765001A JPS5765001A (en) 1982-04-20
JPH0249041B2 true JPH0249041B2 (en) 1990-10-29

Family

ID=15280623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55140952A Granted JPS5765001A (en) 1980-10-07 1980-10-07 Direct current bias circuit

Country Status (1)

Country Link
JP (1) JPS5765001A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160606U (en) * 1984-04-02 1985-10-25 日本電気株式会社 Broadband lumped constant type circulator
JP6940750B2 (en) * 2017-04-28 2021-09-29 日亜化学工業株式会社 Laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884553A (en) * 1972-01-24 1973-11-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645201Y2 (en) * 1976-02-04 1981-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884553A (en) * 1972-01-24 1973-11-09

Also Published As

Publication number Publication date
JPS5765001A (en) 1982-04-20

Similar Documents

Publication Publication Date Title
US3784883A (en) Transistor package
US5977631A (en) Semiconductor device including a semiconductor package with electromagnetic coupling slots
JPH0321089B2 (en)
JPS58190046A (en) Semiconductor device
JPS6332263B2 (en)
JP7049500B2 (en) Substrate for mounting semiconductor devices and semiconductor devices
JPH07142669A (en) Molded semiconductor device
US20040050587A1 (en) Transmission line and device including the same
JPH0249041B2 (en)
GB2149207A (en) Improvements in or relating to diamond heatsink assemblies
US4340901A (en) Lead connecting structure for a semiconductor device
JPH11195666A (en) Semiconductor device
JP2004153795A (en) Transmission line
JPH0119269B2 (en)
JPS6122344Y2 (en)
JPH0735932A (en) Hybrid optical waveguide circuit
JPH043681B2 (en)
JPH03230556A (en) Lead frame for semiconductor device
JPS60242603A (en) Method of producing film resistor
JPH0520904B2 (en)
JPH0724289B2 (en) High frequency hybrid integrated circuit
JPH06112279A (en) Method of manufacturing semiconductor device
JPS60170911A (en) Printed inductor
JPS5838615Y2 (en) High frequency semiconductor device
JP2966613B2 (en) High frequency semiconductor package