JPH0248287B2 - - Google Patents

Info

Publication number
JPH0248287B2
JPH0248287B2 JP59010111A JP1011184A JPH0248287B2 JP H0248287 B2 JPH0248287 B2 JP H0248287B2 JP 59010111 A JP59010111 A JP 59010111A JP 1011184 A JP1011184 A JP 1011184A JP H0248287 B2 JPH0248287 B2 JP H0248287B2
Authority
JP
Japan
Prior art keywords
adsorption
regeneration
adsorption tower
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59010111A
Other languages
Japanese (ja)
Other versions
JPS60153919A (en
Inventor
Osamu Kita
Kazuo Someya
Hirohiko Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP59010111A priority Critical patent/JPS60153919A/en
Publication of JPS60153919A publication Critical patent/JPS60153919A/en
Publication of JPH0248287B2 publication Critical patent/JPH0248287B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原料ガス中の炭酸ガス、水分等の不
純物を吸着除去するために設けられる吸着塔の吸
着および再生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for adsorption and regeneration of an adsorption tower provided for adsorbing and removing impurities such as carbon dioxide and water in a raw material gas.

〔発明の背景〕[Background of the invention]

ガスの深冷分離を行なう設備においては、深冷
分離装置内で凝固、閉塞の原因となる炭酸ガス、
水分等の不純物を除去するために吸着塔が設けら
れている。吸着塔は、通常、2基以上設けられて
おり、1基の吸着塔が不純物の吸着を行なつてい
る間に、他の吸着塔は吸着された不純物を吸着剤
から除去する再生が行なわれる。つまり、複数の
吸着塔を交互に切換えて、吸着、再生工程を繰り
返す。このような技術は、例えば、特開昭47−
38577号公報、特開昭48−18163号公報、特開昭48
−59082号公報、特開昭49−27483号公報、特開昭
49−27484号公報、特開昭49−78679号公報、特開
昭49−88782号公報、特開昭52−62177号公報、特
開昭54−8173号公報に開示されている。
In equipment that performs cryogenic separation of gas, carbon dioxide gas, which can solidify and cause blockage in the cryogenic separator,
An adsorption tower is provided to remove impurities such as moisture. There are usually two or more adsorption towers, and while one adsorption tower is adsorbing impurities, the other adsorption towers perform regeneration to remove the adsorbed impurities from the adsorbent. . That is, a plurality of adsorption towers are alternately switched and the adsorption and regeneration steps are repeated. Such technology is known, for example, from Japanese Patent Application Laid-Open No. 1973-
Publication No. 38577, Japanese Unexamined Patent Publication No. 18163, Japanese Unexamined Patent Publication No. 1973
-59082 Publication, JP-A-49-27483, JP-A-Sho
It is disclosed in JP-A-49-27484, JP-A-49-78679, JP-A-49-88782, JP-A-52-62177, and JP-A-54-8173.

吸着塔の再生には、上述した公報に示す如き
種々の方法が知られているが、この中には窒素な
どの再生ガスを用いるものが含まれている。再生
ガスを利用する吸着塔の再生は、第1図に示すよ
うに、加熱昇温工程−保温再生工程−冷却工程で
行なわれる。つまり、再生工程の終期は、吸着工
程に適した温度まで冷却する。吸着塔の再生は、
他方の吸着塔が吸着工程にある時間内に行なわれ
る必要があるが、短時間での再生を行なうにはい
かにして早期に加熱昇温するか、いかにして早期
に冷却するかが重要である。再生ガス量を多量に
供給することにより再生工程に要する時間を短縮
可能であるが、好ましい方法とは言えない。
Various methods are known for regenerating adsorption towers, as shown in the above-mentioned publications, and these include methods using regeneration gas such as nitrogen. As shown in FIG. 1, regeneration of the adsorption tower using regeneration gas is performed through a heating temperature raising step, a heat retention regeneration step, and a cooling step. That is, at the end of the regeneration process, the temperature is cooled to a temperature suitable for the adsorption process. Regeneration of adsorption tower is
It is necessary for the other adsorption tower to perform the adsorption process within a certain time, but in order to regenerate in a short time, it is important to quickly raise the temperature and cool it down quickly. be. Although it is possible to shorten the time required for the regeneration process by supplying a large amount of regeneration gas, this is not a preferable method.

一方、吸着工程において、十分な吸着をさせる
には吸着剤を多量に充填することも一つの方法で
あるが、吸着剤は高価であり、好ましい方法とは
言えない。吸着剤の吸着特性は、第2図に示すよ
うに、吸着温度が低く、被吸着物の分圧が高いほ
ど吸着されやすい。したがつて、十分な吸着性能
を長時間得るためには、出来るだけ低い温度で運
転されることが望ましい。しかし、吸着時に発生
する吸着熱などのため、長時間吸着塔内を最適な
温度に保つことは難しく、必ずしも十分な吸着性
能が得られていない。つまり、その分だけ多くの
吸着剤を使用しなければならないということであ
る。
On the other hand, in the adsorption step, one method to achieve sufficient adsorption is to fill a large amount of adsorbent, but the adsorbent is expensive and cannot be said to be a preferable method. As shown in FIG. 2, the adsorption characteristics of the adsorbent are such that the lower the adsorption temperature and the higher the partial pressure of the adsorbed material, the easier it will be to adsorb the adsorbent. Therefore, in order to obtain sufficient adsorption performance for a long period of time, it is desirable to operate at as low a temperature as possible. However, due to the heat of adsorption generated during adsorption, it is difficult to maintain the inside of the adsorption tower at an optimal temperature for a long period of time, and sufficient adsorption performance is not always obtained. In other words, more adsorbent must be used accordingly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、経済的な吸着および再生を可
能とする吸着塔の吸着および再生方法を提供する
ものである。
An object of the present invention is to provide a method for adsorption and regeneration of an adsorption column that enables economical adsorption and regeneration.

〔発明の概要〕[Summary of the invention]

本発明は、吸着塔内に伝熱管を配し、再生工程
の冷却時およびそれに続く吸着工程において、該
伝熱管に冷却流体を通し、該冷却流体によつて吸
着塔の冷却を行なうことを特徴とする。
The present invention is characterized in that a heat transfer tube is disposed within the adsorption tower, and a cooling fluid is passed through the heat transfer tube during cooling in the regeneration step and in the subsequent adsorption step, and the adsorption tower is cooled by the cooling fluid. shall be.

これによつて、再生ガスの消費を増加させるこ
となく短時間再生を行ない、また吸着剤の使用が
少なくとも十分な吸着性能を得ることができ、経
済的な運転が実現できる。
Thereby, regeneration can be performed for a short time without increasing the consumption of regeneration gas, and at least sufficient adsorption performance can be obtained by using an adsorbent, so that economical operation can be realized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的実施例に基づき詳細に説
明する。第3図は本発明の一実施例を示す図面で
ある。この図において、1は原料ガス供給のため
に設けられた管、2と4は切替弁、3は吸着塔で
ある。5は原料ガスを深冷分離装置に供給するた
めの管、6は原料ガスの供給を受けて製品ガスと
廃ガスとに分離する深冷分離装置、7は製品ガス
を輪送するための管、8は廃ガスを輸送するため
の管である。9は再生ガスを吸着塔に供給するた
めの管、10は再生ガスを加熱するための再生加
熱器、11は吸着塔に供給された再生ガスを排気
するための管、12は吸着塔3内に配された伝熱
管(熱交換器)、13は伝熱管に加熱流体を供給
するための管、14は伝熱管に供給された加熱流
体を排出するための管、15は伝熱管に冷却流体
を供給するための管、16は伝熱管に供給された
冷却流体を排出するための管である。
Hereinafter, the present invention will be explained in detail based on specific examples. FIG. 3 is a diagram showing an embodiment of the present invention. In this figure, 1 is a pipe provided for supplying raw material gas, 2 and 4 are switching valves, and 3 is an adsorption tower. 5 is a pipe for supplying raw material gas to a cryogenic separation device, 6 is a cryogenic separation device that receives the supply of raw material gas and separates it into product gas and waste gas, and 7 is a pipe for transporting product gas. , 8 is a pipe for transporting waste gas. 9 is a pipe for supplying regeneration gas to the adsorption tower, 10 is a regeneration heater for heating the regeneration gas, 11 is a pipe for exhausting the regeneration gas supplied to the adsorption tower, and 12 is inside the adsorption tower 3. 13 is a tube for supplying heating fluid to the heat exchanger tubes, 14 is a tube for discharging the heating fluid supplied to the heat exchanger tubes, 15 is a cooling fluid for the heat exchanger tubes. 16 is a tube for discharging the cooling fluid supplied to the heat transfer tubes.

原料ガスは、管1を通り、切替弁2を経ていず
れかの吸着塔3に供給される。吸着塔3内では、
原料ガス中の炭酸ガス、水分等の不純物が除去さ
れ、原料ガスは切替弁4、管7を経て深冷分離装
置6に送られる。この深冷分離装置6において、
原料ガスは製品ガスと廃ガスに分離され、夫々管
7,8により輸送される。一方、吸着を行なつて
いない方の吸着塔3では、再生工程が実施される
が、これは次のように行なわれる。すなわち、再
生工程のうちの加熱昇温工程では、再生ガスを再
生加熱器10によつて280℃程度まで加熱昇温さ
せた後、管9、弁4を経由して吸着塔3に送気さ
れ、吸着剤を加熱昇温する。この加熱昇温の期間
において、蒸気または加熱器により昇温された加
温空気等の加熱流体を吸着塔内に配された伝熱管
12内に送気する。この加熱流体の送気により、
吸着塔3の内部の加熱昇温を助勢する。これによ
つて、加熱昇温工程を短時間に縮めることができ
ると共に、加熱昇温に要する再生ガスの消費を少
なくできる。吸着塔3内部の温度が所定温度、例
えば200℃程度に到達した時点において、加熱流
体の伝熱管12への送気を停止し、吸着塔内部を
一定時間所定温度に保持するよう再生ガス温度を
調節する。これによつて、吸着塔3の被吸着物の
脱着が行なわれる。この期間が保温再生工程であ
る。脱着完了あるいはほぼ脱着が完了すると、再
生ガスの加熱を停止して吸着剤の冷却を開始す
る。このとき、伝熱管12内へ水または寒冷ガス
(例えば液体窒素)などの冷却流体を送入開始す
る。この冷却流体の供給により、吸着塔3内の温
度は急冷され、冷却工程の時間が短縮される。こ
の時間短縮により、再生ガスの消費は減少すると
共に、再生工程全体の時間が短縮される。吸着塔
3内の温度が次の吸着工程に適する温度まで低下
すると、再生ガスの送気を停止し、次の吸着工程
に備える。弁の切替により吸着工程になると、原
料ガスをその吸着塔3内に送気し、不純物の吸着
を行なう。この吸着工程においても、引き続き伝
熱管12内には冷却流体を送入する。これによつ
て、吸着剤に不純物が吸着する際の吸着熱によつ
て吸着塔内の温度上昇を防止する。したがつて、
吸着塔内の吸着剤は、常に吸着に最適の温度を維
持することができ、その吸着能力を最大限に活用
できる。
The raw material gas passes through the pipe 1 and is supplied to one of the adsorption towers 3 via the switching valve 2 . Inside the adsorption tower 3,
Impurities such as carbon dioxide and moisture in the raw material gas are removed, and the raw material gas is sent to the cryogenic separator 6 via the switching valve 4 and the pipe 7. In this cryogenic separator 6,
The raw material gas is separated into product gas and waste gas, and transported by pipes 7 and 8, respectively. On the other hand, in the adsorption tower 3 that is not performing adsorption, a regeneration step is carried out as follows. That is, in the heating temperature raising step of the regeneration step, the regeneration gas is heated to about 280° C. by the regeneration heater 10 and then sent to the adsorption tower 3 via the pipe 9 and valve 4. , heating the adsorbent to raise its temperature. During this heating and temperature raising period, a heated fluid such as steam or heated air whose temperature has been raised by a heater is sent into the heat transfer tube 12 disposed within the adsorption tower. By supplying this heated fluid,
The heating inside the adsorption tower 3 is assisted in raising the temperature. As a result, the heating and temperature raising process can be shortened to a short time, and the consumption of regeneration gas required for heating and temperature raising can be reduced. When the temperature inside the adsorption tower 3 reaches a predetermined temperature, for example, about 200°C, the supply of heated fluid to the heat transfer tubes 12 is stopped, and the temperature of the regeneration gas is adjusted to maintain the inside of the adsorption tower at a predetermined temperature for a certain period of time. Adjust. As a result, the adsorbed substances in the adsorption tower 3 are desorbed. This period is the heat retention regeneration process. When desorption is complete or almost complete, heating of the regeneration gas is stopped and cooling of the adsorbent is started. At this time, feeding of a cooling fluid such as water or cold gas (for example, liquid nitrogen) into the heat transfer tube 12 is started. By supplying this cooling fluid, the temperature inside the adsorption tower 3 is rapidly cooled, and the time of the cooling process is shortened. This time reduction reduces the consumption of regeneration gas and shortens the overall regeneration process time. When the temperature inside the adsorption tower 3 falls to a temperature suitable for the next adsorption step, the supply of regeneration gas is stopped and preparation is made for the next adsorption step. When the adsorption step is started by switching the valve, the raw material gas is fed into the adsorption tower 3 to adsorb impurities. Even in this adsorption step, the cooling fluid is continuously fed into the heat transfer tubes 12. This prevents the temperature in the adsorption tower from rising due to heat of adsorption when impurities are adsorbed onto the adsorbent. Therefore,
The adsorbent in the adsorption tower can always maintain the optimum temperature for adsorption, and its adsorption capacity can be utilized to the fullest.

次に、この発明の適用例を説明する。 Next, an example of application of the present invention will be explained.

原料ガス条件 空気量1000Nm3/H、圧力5Kg/cm2, 温度30℃、炭酸ガス350PPM, 水分飽和 この条件において、炭酸ガス、水分を共に
IPPM以下に除去する吸着装置の仕様は次の通り
となる。ただし、吸着塔の再生切替時間は4時間
とし、原料空気の予冷は実施しないものとする。
Raw material gas conditions Air amount 1000Nm 3 /H, pressure 5Kg/cm 2 , temperature 30℃, carbon dioxide gas 350PPM, moisture saturation Under these conditions, both carbon dioxide gas and moisture
The specifications of the adsorption device that removes water below IPPM are as follows. However, the regeneration switching time of the adsorption tower is 4 hours, and the feed air is not precooled.

(従来技術における吸着装置の仕様) 吸着塔寸法:直径…600mm 高さ…2200mm 再生条件:再生ガス量…750Nm3/H 再生ガス温度…280℃ 吸着条件:吸着剤 合成ゼオライト…310Kg 平均吸着温度…35℃ (本発明適用例での吸着装置の仕様) 加熱流体は圧力10Kg/cm2Gの飽和蒸気を使用
し、冷却流体としては温度20℃の冷却水を使用し
た場合の仕様である。
(Specifications of adsorption equipment in conventional technology) Adsorption column dimensions: Diameter…600mm Height…2200mm Regeneration conditions: Regeneration gas amount…750Nm 3 /H Regeneration gas temperature…280℃ Adsorption conditions: Adsorbent Synthetic zeolite…310Kg Average adsorption temperature… 35°C (Specifications of the adsorption device in the application example of the present invention) The specifications are when saturated steam with a pressure of 10 kg/cm 2 G is used as the heating fluid, and cooling water with a temperature of 20°C is used as the cooling fluid.

吸着塔寸法:直径…500mm 高さ…2200mm 再生条件:再生ガス量…250Nm3/H 再生ガス温度…280℃ 飽和蒸気量…30Kg/H 冷却水量…5Ton/H 吸着条件:吸着剤 合成ゼオライト…230Kg 平均吸着温度…25℃ 冷却水量…5Ton/H この発明の適用例によれば、次のようなことが
判る。
Adsorption column dimensions: Diameter…500mm Height…2200mm Regeneration conditions: Regeneration gas amount…250Nm 3 /H Regeneration gas temperature…280℃ Saturated vapor amount…30Kg/H Cooling water amount…5Ton/H Adsorption conditions: Adsorbent Synthetic zeolite…230Kg Average adsorption temperature...25°C Cooling water amount...5Ton/H According to the application example of this invention, the following is found.

1 従来のものに較べ、吸着温度が低下したこと
により吸着剤使用量を20%以上低減できる。
1 Compared to conventional products, the amount of adsorbent used can be reduced by more than 20% due to the lower adsorption temperature.

2 吸着剤の再生に要する再生ガス量は、吸着剤
の量を低減したこと、再生加熱昇温工程と冷却
工程において加熱流体と冷却流体を使用したこ
とによつて、従来の半分以下に削減ができる。
したがつて、加熱流体、冷却流体にかかるコス
トの増加を考慮してもコスト低減の効果は大き
い。
2 The amount of regeneration gas required for regenerating the adsorbent has been reduced to less than half of the conventional amount by reducing the amount of adsorbent and using heating fluid and cooling fluid in the regeneration heating temperature raising process and cooling process. can.
Therefore, the effect of cost reduction is significant even when considering the increase in cost for heating fluid and cooling fluid.

3 再生ガス量が低減することに伴ない、再生ガ
スを加熱する再生加熱器の容量の低減が可能で
ある。
3. As the amount of regeneration gas is reduced, it is possible to reduce the capacity of the regeneration heater that heats the regeneration gas.

なお、上述の適用例では、冷却流体として水を
利用したが、さらに低温の流体を利用すれば、更
に吸着剤の使用量の低減が可能である。また、上
述の実施例においては、空気の深冷分離装置の前
処理設備としての吸着装置について述べたが、本
発明はこれに限定されるものではない。本発明は
原料ガス中の炭酸ガスや水分等を吸着除去する吸
着装置全般に有効なものである。
Note that in the above application example, water was used as the cooling fluid, but if a lower temperature fluid is used, the amount of adsorbent used can be further reduced. Furthermore, in the above-described embodiments, an adsorption device was described as a pretreatment facility for an air cryogenic separation device, but the present invention is not limited thereto. The present invention is effective in general for adsorption devices that adsorb and remove carbon dioxide gas, moisture, etc. in raw material gas.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、吸
着塔の吸着および再生を経済的に行なうことがで
きる。
As described above in detail, according to the present invention, adsorption and regeneration of an adsorption tower can be carried out economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸着塔の吸着および再生を説明するた
めの図、第2図は吸着剤の吸着特性を説明するた
めの図、第3図は本発明の一実施例図面である。 1……管、2……切替弁、3……吸着塔、4…
…切替弁、5……管、6……深冷分離装置、7…
…管、8……管、9……管、10……再生加熱
器、11……管、12……伝熱管、13……管、
14……管、15……管、16……管。
FIG. 1 is a diagram for explaining adsorption and regeneration of an adsorption tower, FIG. 2 is a diagram for explaining the adsorption characteristics of an adsorbent, and FIG. 3 is a diagram of an embodiment of the present invention. 1...Pipe, 2...Switching valve, 3...Adsorption tower, 4...
...Switching valve, 5...Pipe, 6...Cryogenic separation device, 7...
...Tube, 8...Tube, 9...Tube, 10...Regeneration heater, 11...Tube, 12...Heat transfer tube, 13...Tube,
14...tube, 15...tube, 16...tube.

Claims (1)

【特許請求の範囲】 1 原料ガス中の不純物を吸着除去する複数の吸
着塔内にそれぞれ伝熱管を有し、該伝熱管に伝熱
流体を供給して、一方の吸着塔で吸着を行ない、
他方の吸着塔で再生を行ない、これを切替えて使
用する吸着塔の吸着および再生方法において、 前記吸着時、吸着塔内の伝熱管に冷却流体を供
給して吸着塔内の温度上昇を防止すると共に、吸
着塔内を所定の吸着温度に維持し、他方、前記再
生時、加熱昇温させた再生ガスを再生側の吸着塔
に供給すると共に、該吸着塔内の伝熱管に加熱流
体を供給し、吸着塔内が所定温度に到達時加熱流
体の供給を停止し、再生ガスの温度調節により吸
着塔内を所定温度に維持して脱着を行ない、脱着
完了後加熱しない再生ガスにより吸着剤を冷却す
ると共に、伝熱管に冷却流体を供給して吸着塔内
を吸着温度まで冷却後、冷却用再生ガスと冷却流
体との供給を停止することを特徴とする吸着塔の
吸着および再生方法。
[Scope of Claims] 1. Each of a plurality of adsorption towers for adsorbing and removing impurities in a raw material gas has a heat transfer tube, a heat transfer fluid is supplied to the heat transfer tubes, and adsorption is performed in one of the adsorption towers,
In an adsorption and regeneration method for an adsorption tower in which regeneration is performed in the other adsorption tower and used by switching between the adsorption towers, during the adsorption, a cooling fluid is supplied to a heat transfer tube in the adsorption tower to prevent a temperature rise in the adsorption tower. At the same time, the inside of the adsorption tower is maintained at a predetermined adsorption temperature, and on the other hand, during the regeneration, the heated and heated regeneration gas is supplied to the regeneration side adsorption tower, and the heated fluid is supplied to the heat transfer tube in the adsorption tower. When the inside of the adsorption tower reaches a predetermined temperature, the supply of heated fluid is stopped, and desorption is performed while maintaining the inside of the adsorption tower at a predetermined temperature by adjusting the temperature of the regeneration gas. After the desorption is completed, the adsorbent is removed by the unheated regeneration gas. A method for adsorption and regeneration of an adsorption tower, which comprises cooling the adsorption tower and cooling the inside of the adsorption tower to an adsorption temperature by supplying a cooling fluid to the heat transfer tube, and then stopping the supply of cooling regeneration gas and cooling fluid.
JP59010111A 1984-01-25 1984-01-25 Adsorption and regeneration of adsorbing tower Granted JPS60153919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010111A JPS60153919A (en) 1984-01-25 1984-01-25 Adsorption and regeneration of adsorbing tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010111A JPS60153919A (en) 1984-01-25 1984-01-25 Adsorption and regeneration of adsorbing tower

Publications (2)

Publication Number Publication Date
JPS60153919A JPS60153919A (en) 1985-08-13
JPH0248287B2 true JPH0248287B2 (en) 1990-10-24

Family

ID=11741200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010111A Granted JPS60153919A (en) 1984-01-25 1984-01-25 Adsorption and regeneration of adsorbing tower

Country Status (1)

Country Link
JP (1) JPS60153919A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634351Y2 (en) * 1988-09-19 1994-09-07 溶融炭酸塩型燃料電池発電システム技術研究組合 Regenerative desulfurization equipment
JPH088972B2 (en) * 1989-03-28 1996-01-31 森川産業株式会社 Gas recovery equipment
FR2843705B1 (en) * 2002-08-21 2005-07-22 Conservatoire Nat Arts METHOD AND DEVICE FOR REGENERATING AN ADSORBENT
JP5579630B2 (en) * 2011-01-12 2014-08-27 株式会社日立製作所 Carbon dioxide recovery system
JP5864281B2 (en) * 2012-01-20 2016-02-17 株式会社日立製作所 CO2 separation and recovery equipment
JP5829168B2 (en) * 2012-03-30 2015-12-09 株式会社日立製作所 Carbon dioxide recovery system and carbon dioxide recovery method using the same
JP5897734B2 (en) * 2012-12-13 2016-03-30 株式会社日立製作所 CO2 recovery device and operation method thereof
DE102020215687A1 (en) * 2020-12-11 2022-06-15 Thyssenkrupp Ag CO2 absorber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490073A (en) * 1977-12-28 1979-07-17 Mitsubishi Heavy Ind Ltd Mixed gas concentrator
JPS54152667A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Pretreating method for air separation plant
JPS5551611A (en) * 1978-10-06 1980-04-15 Lucas Industries Ltd Suspension system for car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490073A (en) * 1977-12-28 1979-07-17 Mitsubishi Heavy Ind Ltd Mixed gas concentrator
JPS54152667A (en) * 1978-05-24 1979-12-01 Hitachi Ltd Pretreating method for air separation plant
JPS5551611A (en) * 1978-10-06 1980-04-15 Lucas Industries Ltd Suspension system for car

Also Published As

Publication number Publication date
JPS60153919A (en) 1985-08-13

Similar Documents

Publication Publication Date Title
KR100192697B1 (en) Purification of gases using solid absorbents
US4738694A (en) Process and plant for purification by adsorption on activated carbon and corresponding adsorber vessel
JPH0350561B2 (en)
US4986835A (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
CN104888741A (en) Solid adsorbent regeneration process
JPH0248287B2 (en)
JPH07280432A (en) Plant for distilling air and method thereof
JPS60129116A (en) Adsorbing device regenerable without heating
JPH0768127A (en) Hot-air desorption type solvent recovering device
JP3010099B2 (en) Supercritical fluid extraction device
US2642955A (en) Gas separation by adsorption
CN104073310A (en) Device and method for purifying and drying natural gas
CN210303031U (en) Multi-bed temperature swing adsorption gas purification system
US6634119B2 (en) Adsorptive ethanol drying apparatus using microwaves and operating method thereof
JP3544860B2 (en) Pretreatment device in air separation unit
JPH05172459A (en) Pretreation of raw material air in air separating process
JP2000229213A (en) Double tube or multi-tube type adsorption device
JP3727461B2 (en) Gas separation method and apparatus
CN215233135U (en) Adsorption device
JPH0938445A (en) Method for regenerating adsorption tower
JP2000279740A (en) Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JPS58170518A (en) Operation of adsorbing tower
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
CN114849416A (en) Purification of a gas stream using pre-regenerative adsorption in a closed loop
JPH039390B2 (en)