JPH039390B2 - - Google Patents

Info

Publication number
JPH039390B2
JPH039390B2 JP57033406A JP3340682A JPH039390B2 JP H039390 B2 JPH039390 B2 JP H039390B2 JP 57033406 A JP57033406 A JP 57033406A JP 3340682 A JP3340682 A JP 3340682A JP H039390 B2 JPH039390 B2 JP H039390B2
Authority
JP
Japan
Prior art keywords
air
carbon dioxide
water
gas separation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57033406A
Other languages
Japanese (ja)
Other versions
JPS58150788A (en
Inventor
Hiroshi Ishii
Hiroo Tsucha
Minoru Imafuku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57033406A priority Critical patent/JPS58150788A/en
Publication of JPS58150788A publication Critical patent/JPS58150788A/en
Publication of JPH039390B2 publication Critical patent/JPH039390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 この発明は空気を冷却して利用する装置、例え
ば深冷分離方式による酸素、窒素の製造装置や低
温製造装置などの水、炭酸ガスの分離除去方法に
関し、水、炭酸ガス除去装置の前段に水、炭酸ガ
スを透過するガス分離膜を設置することにより、
空気中の水、炭酸ガスの一部または全部を除去
し、後工程の水、炭酸ガス除去装置の負担を軽減
あるいは省略するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and removing water and carbon dioxide in equipment that cools and utilizes air, such as oxygen and nitrogen production equipment and low-temperature production equipment using cryogenic separation methods. By installing a gas separation membrane that permeates water and carbon dioxide gas before the gas removal device,
This method removes some or all of the water and carbon dioxide from the air, reducing or omitting the burden on water and carbon dioxide removal equipment in subsequent processes.

空気を冷却して利用する装置としては、例えば
深冷分離方式による酸素、窒素製造装置がある。
この装置は例えば第1図に示すようにフイルタで
清浄化された原料空気は管1を経て圧縮機2に導
かれ、ここで約8Kg/cm2に加圧され、さらに予冷
器3に送られ、数℃まで予冷される。この予冷に
よつて原料空気中の水分はドレーンとなつてドレ
ーンボトル4で分離される。水分が飽和した空気
は管5を経て、切替弁6,6……によつて切替使
用される2基の吸着塔7a,7bの一方の吸着塔
7aに導入される。吸着塔7には水および炭酸ガ
スを吸着するモレキユラーシーブスが充填されて
おり、吸着塔7aに導入された原料空気中の水、
炭酸ガスが吸着、除去される。吸着塔7aを出た
乾燥脱炭酸ガス空気は、管8を経てコールドボツ
クス9に送られ、冷却、精製され、製品酸素ある
いは製品窒素が管10に得られる。製品ガス以外
の廃ガス、は寒冷を回収されたうえ、コールドボ
ツクス9より管11に導出される。一方、水、炭
酸ガスを吸着して飽和した吸着塔7bには、上記
廃ガスが管11、ヒータ12を経て、約100℃程
度に加熱されて導入され、吸着塔7bのパージ再
生が行われる。これによつて、吸着塔7bは次の
吸着にそなえることになる。
Examples of devices that cool and utilize air include oxygen and nitrogen production devices using a cryogenic separation method.
In this device, for example, as shown in Fig. 1, raw air that has been purified by a filter is guided through a pipe 1 to a compressor 2, where it is pressurized to about 8 kg/cm 2 and then sent to a precooler 3. , precooled to a few degrees Celsius. Due to this pre-cooling, moisture in the raw material air becomes a drain and is separated in the drain bottle 4. The air saturated with moisture is introduced through the pipe 5 into one of the two adsorption towers 7a, 7b, which is used selectively by the switching valves 6, 6, . . . The adsorption tower 7a is filled with molecular sieves that adsorb water and carbon dioxide, and the water in the raw air introduced into the adsorption tower 7a,
Carbon dioxide gas is adsorbed and removed. The dry decarbonized air leaving the adsorption tower 7a is sent to a cold box 9 through a pipe 8, where it is cooled and purified, and product oxygen or nitrogen product is obtained in a pipe 10. The waste gas other than the product gas is cooled and then discharged from the cold box 9 to the pipe 11. On the other hand, the waste gas is heated to about 100° C. and introduced into the adsorption tower 7b, which is saturated by adsorbing water and carbon dioxide gas, through a pipe 11 and a heater 12, and purge regeneration of the adsorption tower 7b is performed. . This prepares the adsorption tower 7b for the next adsorption.

ところで、このような深冷分離方式の酸素、窒
素製造装置では、水、炭酸ガスを吸着した吸着塔
7のパージ再生に上述のように廃ガスをヒータ1
2で100℃以上に加熱し、この加熱廃ガスを用い
て行つているため多くの電力を消費し、電力原単
位上昇の原因となつている。また、吸着塔7は相
当大きな装置となるため製作費が嵩み、設備費の
増大の原因となつている。
By the way, in such cryogenic separation type oxygen and nitrogen production equipment, the waste gas is passed through the heater 1 as described above for purge regeneration of the adsorption tower 7 that has adsorbed water and carbon dioxide gas.
2, it is heated to over 100℃ and the heating waste gas is used for this process, which consumes a lot of electricity and causes an increase in the electricity consumption rate. Furthermore, since the adsorption tower 7 is a fairly large device, the manufacturing cost is high, causing an increase in equipment cost.

また、第2図は空気を冷却して利用する装置の
別の例を示すもので、このものは液体窒素の寒冷
を利用した低温空気装置である。図示しないフイ
ルタにより清浄化された原料空気は、管13を経
てブロア14に導びかれ、加圧されたのち管15
を経て、第1熱交換器16に送られる。第1熱交
換器16では、原料空気が液体窒素貯槽17から
の液体窒素によつて数℃に予冷され、空気中の大
部分の水は凝縮除去される。ついで、この空気は
ドライヤ18に送られる。ドライヤ18には、モ
レキユラーシーブスが吸着材として充填されてい
るとともに脱着用のヒータ19が内蔵されてい
る。このドライヤ18で残りの水、炭酸ガスが除
去された空気は、管20を経て第2熱交換器21
に導びかれ、ここで液体窒素と熱交換され、約−
150℃程度まで冷却された製品低温空気が管22
に導出される。ところが、ドライヤ18は所定量
の空気を処理すると水、炭酸ガスの吸着能力がな
くなるため、低温空気製造を停止し、ドライヤ1
8を再生する必要がある。このためには、液体窒
素の第1および第2熱交換器16,21への供給
を停止し、ドライヤ18に内蔵されたヒータ19
によつて吸着材を約150℃に加熱するとともにブ
ロア14から空気をドライヤ18に流し、吸着材
に吸着された水、炭酸ガスを数時間かけて脱着し
なければならない。したがつて、ドライヤ18の
再生にはかなりの時間と電力を必要とし、装置の
運転が非効率的であり、また不経済でもある。
Furthermore, FIG. 2 shows another example of a device that cools and utilizes air, and this is a low-temperature air device that utilizes the cold of liquid nitrogen. The raw air that has been purified by a filter (not shown) is led to a blower 14 through a pipe 13, and is pressurized.
It is then sent to the first heat exchanger 16. In the first heat exchanger 16, the raw air is precooled to several degrees Celsius by liquid nitrogen from the liquid nitrogen storage tank 17, and most of the water in the air is condensed and removed. This air is then sent to the dryer 18. The dryer 18 is filled with molecular sieves as an adsorbent and has a built-in heater 19 for desorption. The air from which remaining water and carbon dioxide have been removed by this dryer 18 passes through a pipe 20 to a second heat exchanger 21.
Here, heat is exchanged with liquid nitrogen, and approximately -
Product low-temperature air cooled to about 150°C flows into pipe 22.
is derived. However, once the dryer 18 processes a predetermined amount of air, it loses its ability to adsorb water and carbon dioxide gas, so it stops producing low-temperature air, and the dryer 18 stops producing low-temperature air.
8 needs to be played. For this purpose, the supply of liquid nitrogen to the first and second heat exchangers 16 and 21 is stopped, and the heater 19 built in the dryer 18 is
It is necessary to heat the adsorbent to approximately 150° C. and to flow air from the blower 14 to the dryer 18 to desorb water and carbon dioxide adsorbed onto the adsorbent over several hours. Therefore, regeneration of the dryer 18 requires a considerable amount of time and power, making the operation of the device inefficient and uneconomical.

また、第3図は空気を冷却して利用する装置と
してドライアイスを用いた低温空気製造装置を示
すものである。清浄化された原料空気は、管2
3、ブロア24を経て熱交換器25に導入され
る。熱交換器25には、ドライアイス槽26で冷
却された低温アルコールが管27を通つて導びか
れており、この低温アルコールによつて原料空気
は−60℃程度に冷却され、製品低温空気として管
28に導出される。この際、原料空気中の水分
は、熱交換器25に氷結して、除去されるが、氷
結量が多いため、30分程度の運転毎に装置を止め
て、ブロア24からの空気を熱交換器25に導入
し、氷を融かす必要がある。この操作には約3時
間を要し、装置の稼働率が非常に低いという欠点
があつた。
Furthermore, FIG. 3 shows a low-temperature air production device using dry ice as a device for cooling and utilizing air. The purified raw air is transferred to pipe 2
3. It is introduced into the heat exchanger 25 via the blower 24. Low-temperature alcohol cooled in a dry ice tank 26 is guided to the heat exchanger 25 through a pipe 27, and the raw material air is cooled to about -60°C by this low-temperature alcohol, and is used as product low-temperature air. It is led out to tube 28. At this time, the moisture in the raw air is frozen in the heat exchanger 25 and removed, but since there is a large amount of freezing, the device is stopped every 30 minutes of operation and the air from the blower 24 is used for heat exchange. It is necessary to introduce the ice into the container 25 and melt the ice. This operation required about 3 hours and had the disadvantage that the operating rate of the apparatus was very low.

このように、空気を原料とし、この空気を冷却
して利用する装置においては、空気中に含有され
る水分、炭酸ガスの悪影響をさけるために、冷却
前に水、炭酸ガスを除去する必要があるが、この
水、炭酸ガスの分離、除去には上述の種々の欠点
や問題点がある。
In this way, in devices that use air as a raw material and cool it, it is necessary to remove water and carbon dioxide before cooling to avoid the negative effects of moisture and carbon dioxide contained in the air. However, this separation and removal of water and carbon dioxide gas has the various drawbacks and problems mentioned above.

この発明は上記事情に鑑みてなされたもので、
上記空気利用装置において水、炭酸ガスの分離、
除去に伴う種々の問題点を解決し、後工程の水、
炭酸ガス除去装置の負担を低減もしくは省略する
ことのできる水、炭酸ガスの分離、除去方法を提
供することを目的とし、原料空気中の水、炭酸ガ
スの一部または全部を予かじめガス分離膜を用い
て分離除去することを特徴とするものである。
This invention was made in view of the above circumstances,
Separation of water and carbon dioxide in the above air utilization equipment,
Solving various problems associated with removal, water in the subsequent process,
The purpose is to provide a method for separating and removing water and carbon dioxide gas that can reduce or omit the burden on carbon dioxide removal equipment. It is characterized by separation and removal using a membrane.

以下、この発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図は、この発明の水、炭酸ガスの分離除去
方法を第1図に示した深冷分離式酸素、窒素製造
装置に適用した例を示すもので、第1図に示した
ものと同一構成部分には同一符号を付し、その説
明は省略する。この例の装置と第1図に示した装
置とが異る点は、ドレーンボトル4にて水分の大
部分が除去された原料空気が、ガス分離装置30
に導びかれ、ここで残余の水と炭酸ガスの大部分
が分離除去されたのち吸着塔7に送られることに
ある。ガス分離装置30は、その内部に酢酸セル
ロース、シリコーンゴムなどの水、炭酸ガスをよ
く透過するガス分離膜が設けられたもので、この
分離膜の表裏面間に水、炭酸ガスの分圧差を与え
ることにより水、炭酸ガスを分離することができ
るものである。そして、このガス分離装置30の
ガス分離膜の一方の側には上記原料空気が導びか
れ、他方の側にはコールドボツクス9から管11
に導出される廃ガスの一部が管31を経て導びか
れ、原料空気中の水、炭酸ガスはガス分離膜を透
過して廃ガスに流れ、原料空気中の水、炭酸ガス
の大部分が除去される。なお、この際、原料ガス
中の酸素あるいは窒素の一部が廃ガスに透過して
流れ込む。このように原料空気を吸着塔7に導入
する以前にガス分離装置30に導入し、ここであ
らかじめ水、炭酸ガスを除去すれば、吸着塔7の
吸着時間が長くなり、再生回数が低減し、また吸
着塔7の容量が小型化できる。したがつて、装置
全体として結果的に酸素あるいは窒素の電力原単
位が減少し、生産コストが低減されるとともに、
吸着塔7の小型化が計れる。
Figure 4 shows an example in which the water and carbon dioxide separation and removal method of the present invention is applied to the cryogenic separation type oxygen and nitrogen production equipment shown in Figure 1, and is the same as that shown in Figure 1. The same reference numerals are given to the constituent parts, and the explanation thereof will be omitted. The difference between the apparatus of this example and the apparatus shown in FIG.
Here, most of the remaining water and carbon dioxide are separated and removed, and then sent to the adsorption tower 7. The gas separation device 30 is equipped with a gas separation membrane made of cellulose acetate, silicone rubber, etc. that is highly permeable to water and carbon dioxide. It is possible to separate water and carbon dioxide gas by providing water and carbon dioxide. The raw material air is led to one side of the gas separation membrane of this gas separation device 30, and the pipe 11 from the cold box 9 is introduced to the other side.
A part of the waste gas discharged into the feed air is led through the pipe 31, and the water and carbon dioxide in the raw air pass through the gas separation membrane and flow into the waste gas, and most of the water and carbon dioxide in the raw air are passed through the gas separation membrane. is removed. Note that at this time, part of the oxygen or nitrogen in the raw material gas permeates and flows into the waste gas. In this way, if the raw air is introduced into the gas separation device 30 before being introduced into the adsorption tower 7 and water and carbon dioxide are removed therein, the adsorption time of the adsorption tower 7 will be increased, and the number of regenerations will be reduced. Further, the capacity of the adsorption tower 7 can be reduced in size. Therefore, as a result, the power consumption of oxygen or nitrogen is reduced for the entire device, and the production cost is reduced.
The adsorption tower 7 can be made smaller.

第5図は、この発明を第2図の低温空気製造装
置に適用した例を示し、第2図に示したものと同
一構成部分には同一符号を付してその説明を省略
する。この例の装置は、第1熱交換器16にて数
℃に予冷され、大部分の水が除去された原料空気
をガス分離装置30に送りこみ、ここで、水、炭
酸ガスを除去したうえ次工程のドライヤ18に導
入している点に特徴がある。ガス分離装置30の
ガス分離膜の一方の側には第1熱交換器16を出
た原料空気が導びかれ、他方の側には、第1熱交
換器16で原料空気と熱交換して気化した窒素ガ
スが管32を経て導入され、ガス分離膜の両側で
水、炭酸ガスの分圧差が与えられている。これに
よつて原料空気中の水、炭酸ガスはガス分離膜を
透過し、除去される。ガス分離装置30を出た空
気はついでドライヤ18に送られ、さらに脱水、
脱炭酸ガスされたうえ、第2熱交換器21に送ら
れ、製品低温空気となる。このようにガス分離装
置30を設けることによつて、ドライヤ18に持
込まれる水、炭酸ガス量が減少し、使用時間が延
長されるとともに、ドライヤ18の再生に要する
電力が減少し、コスト低減が計れる。
FIG. 5 shows an example in which the present invention is applied to the low-temperature air production apparatus shown in FIG. 2, and the same components as those shown in FIG. 2 are designated by the same reference numerals and their explanations will be omitted. In the device of this example, raw air that has been precooled to several degrees Celsius in the first heat exchanger 16 and from which most of the water has been removed is sent to the gas separation device 30, where water and carbon dioxide are removed and then The feature is that it is introduced into the dryer 18 in the next process. The feed air that has exited the first heat exchanger 16 is guided to one side of the gas separation membrane of the gas separation device 30, and the feed air that has been heat exchanged with the feed air in the first heat exchanger 16 is introduced to the other side. Vaporized nitrogen gas is introduced through pipe 32, and a partial pressure difference between water and carbon dioxide gas is provided on both sides of the gas separation membrane. As a result, water and carbon dioxide in the raw air pass through the gas separation membrane and are removed. The air exiting the gas separation device 30 is then sent to the dryer 18 where it is further dehydrated and
After being decarbonized, the air is sent to the second heat exchanger 21 and becomes product low-temperature air. By providing the gas separation device 30 in this way, the amount of water and carbon dioxide brought into the dryer 18 is reduced, the usage time is extended, and the electric power required to regenerate the dryer 18 is reduced, resulting in cost reduction. It can be measured.

第6図は、この発明の水、炭酸ガスの分離除去
方法を第3図に示した低温空気製造装置に適用し
た例を示したもので、第3図に示したものと同一
構成部分には同一符号を付してその説明を省略す
る。この例においては、ブロア24を出た原料空
気は、ガス分離装置30に導入され、ついで熱交
換器25に送られるように構成されている。ガス
分離装置30のガス分離膜の一方の側には上述の
ように原料空気が導入され、他方の側にはドライ
アイス槽26で気化した炭酸ガスが管33を経て
導入され、ガス分離膜の両側で水の分圧差が与え
られる。これによつて原料空気中の水が除去され
る。このように熱交換器25の前段にガス分離装
置30を設けて原料空気中の水を除去することに
よつて熱交換器25に持込まれる水が減少し、熱
交換器25の使用時間が延長され、装置の運転時
間が延長され、装置の稼働率が著るしく高められ
る。
FIG. 6 shows an example in which the water and carbon dioxide separation and removal method of the present invention is applied to the low-temperature air production equipment shown in FIG. 3. The same reference numerals are used to omit the explanation. In this example, the feed air exiting the blower 24 is introduced into a gas separation device 30 and then sent to a heat exchanger 25. As mentioned above, raw air is introduced into one side of the gas separation membrane of the gas separation device 30, and carbon dioxide gas vaporized in the dry ice tank 26 is introduced into the other side through the pipe 33, and the gas separation membrane is A partial pressure difference of water is given on both sides. This removes water from the feed air. In this way, by providing the gas separation device 30 before the heat exchanger 25 to remove water from the raw air, the amount of water brought into the heat exchanger 25 is reduced, and the usage time of the heat exchanger 25 is extended. The operating time of the equipment is extended, and the availability of the equipment is significantly increased.

以上説明したように、この発明の空気利用装置
の水、炭酸ガスの分離除去方法は、原料空気中の
水、炭酸ガスの一部または全部をあらかじめガス
分離膜を用いて分離除去し、しかるのちこの空気
を冷却工程に送るものであるので、吸着塔や熱交
換器などの水、炭酸ガス分離除去装置に持ち込ま
れる水、炭酸ガス量が減少し、水、炭酸ガス分離
除去装置の負担が軽減もしくは省略でき、このた
め水、炭酸ガス分離除去装置の可使時間が延長さ
れ、再生時間が短縮される。また、水、炭酸ガス
分離除去装置の容量を小さくでき、装置の小型化
が計れ、設備費が低減される。さらに、水、炭酸
ガス分離除去装置の可使時間が延長され、再生時
間が短縮されるので空気利用装置の運転時間が延
長され、装置の稼働率が向上する。また、水、炭
酸ガス分離除去装置の再生時間が短縮されること
から再生のための電力が節減でき、空気利用装置
の電力原単位が低下し、製造コストの低減が計れ
る。
As explained above, in the method for separating and removing water and carbon dioxide gas in the air utilization device of the present invention, part or all of the water and carbon dioxide gas in the raw air is separated and removed in advance using a gas separation membrane, and then Since this air is sent to the cooling process, the amount of water in adsorption towers and heat exchangers, as well as the amount of water and carbon dioxide brought into the carbon dioxide separation and removal equipment, is reduced, reducing the burden on the water and carbon dioxide separation and removal equipment. Alternatively, it can be omitted, thereby extending the pot life of the water and carbon dioxide gas separation and removal device and shortening the regeneration time. Furthermore, the capacity of the water and carbon dioxide separation/removal device can be reduced, the device can be downsized, and equipment costs can be reduced. Furthermore, the pot life of the water and carbon dioxide separation and removal device is extended and the regeneration time is shortened, so the operating time of the air utilization device is extended and the operating rate of the device is improved. In addition, since the regeneration time of the water and carbon dioxide gas separation and removal device is shortened, the power required for regeneration can be saved, the power consumption rate of the air utilization device is reduced, and manufacturing costs can be reduced.

なお本発明によるガス分離装置を利用した場合
上記した如く水分、炭酸ガス対策に有効である
が、原料空気が窒素リツチになる特徴もある。従
つて例えば、窒素製造装置に利用した場合には収
率を高めることのできる別異な効果も期待でき
る。
Note that when the gas separation device according to the present invention is used, it is effective as a countermeasure against moisture and carbon dioxide as described above, but it also has the characteristic that the raw air becomes nitrogen-rich. Therefore, for example, when used in a nitrogen production device, a different effect of increasing the yield can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、いずれも従来の空気利
用装置における水、炭酸ガスの分離除去方法を示
す系統図、第4図ないし第6図は、いずれもこの
発明の水、炭酸ガスの分離除去方法を適用した空
気を冷却して利用する装置の例を示す系統図であ
る。 7a,7b……吸着塔、9……コールドボツク
ス、16……第1熱交換器、25……熱交換器、
30……ガス分離装置。
Figures 1 to 3 are system diagrams showing a method for separating and removing water and carbon dioxide in a conventional air utilization device, and Figures 4 to 6 are system diagrams showing a method for separating water and carbon dioxide according to the present invention. FIG. 2 is a system diagram showing an example of a device that cools and utilizes air to which a removal method is applied. 7a, 7b...adsorption tower, 9...cold box, 16...first heat exchanger, 25...heat exchanger,
30...Gas separation device.

Claims (1)

【特許請求の範囲】 1 空気を原料とし、この空気を冷却して利用す
る空気利用装置において、原料空気をガス分離装
置のガス分離膜の一方の側に導き、他方の側に廃
ガスの一部を導いて原料空気中の水、炭酸ガスの
大部分を該ガス分離膜を通過せしめて分離除去
し、然る後にこの空気を精製、冷却し、液化精留
分離して、廃ガスの一部を前記ガス分離装置の他
方の側に導入し、前記透過した水、炭酸ガスを流
すことを特徴とする空気利用装置の水、炭酸ガス
の分離除去方法。 2 空気を原料とし、この空気を冷却して利用す
る空気利用装置において、原料空気を液体窒素と
熱交換して数℃に予冷し、ドレーン分離を行つた
後、ガス分離装置のガス分離膜の一方の側に導
き、他方の側に上記熱交換により気化した窒素ガ
スの一部を導いて、原料空気中の水、炭酸ガスを
該ガス分離膜を透過せしめて分離除去し、然る後
にこの空気を更に精製し前記液体窒素と熱交換し
て冷却することを特徴とする空気利用装置の水、
炭酸ガスの分離除去方法。 3 空気を原料とし、この空気を冷却して利用す
る空気利用装置において、原料空気をガス分離装
置のガス分離膜の一方の側に導き、他方の側に熱
交換による冷却装置にて用いるドライアイスの気
化による炭酸ガスを導いて、原料空気中の水の一
部または全部を前記ガス分離膜を通過せしめて分
離除去し、然る後にこの空気をドライアイスによ
り冷却した循環メタノールと熱交換して冷却する
ことを特徴とする空気利用装置の水の分離除去方
法。
[Claims] 1. In an air utilization device that uses air as a raw material and cools this air for use, the raw material air is guided to one side of a gas separation membrane of a gas separation device, and the waste gas is introduced to the other side. Most of the water and carbon dioxide in the raw air is separated and removed by passing through the gas separation membrane, and then this air is purified, cooled, and separated by liquefaction rectification to remove part of the waste gas. 1. A method for separating and removing water and carbon dioxide in an air utilization device, characterized by introducing a part into the other side of the gas separation device and flowing the permeated water and carbon dioxide. 2. In an air utilization device that uses air as a raw material and uses this air by cooling it, the raw material air is precooled to several degrees Celsius by heat exchange with liquid nitrogen, and after drain separation is performed, the gas separation membrane of the gas separation device is A part of the nitrogen gas vaporized by the heat exchange is introduced to one side, and a part of the nitrogen gas vaporized by the above heat exchange is introduced to the other side, and water and carbon dioxide in the raw air are permeated through the gas separation membrane to be separated and removed. Water of an air utilization device characterized in that air is further purified and cooled by heat exchange with the liquid nitrogen;
Method for separating and removing carbon dioxide gas. 3 In air utilization equipment that uses air as a raw material and cools this air for use, the raw air is guided to one side of the gas separation membrane of the gas separation equipment, and the dry ice used in the cooling equipment by heat exchange is introduced to the other side. The carbon dioxide gas produced by the vaporization of is introduced, and part or all of the water in the raw air is passed through the gas separation membrane to be separated and removed, and then this air is heat exchanged with circulating methanol cooled with dry ice. A method for separating and removing water in an air utilization device characterized by cooling.
JP57033406A 1982-03-03 1982-03-03 Method of separating and removing water and carbonic acid gas of air utilizer Granted JPS58150788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033406A JPS58150788A (en) 1982-03-03 1982-03-03 Method of separating and removing water and carbonic acid gas of air utilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033406A JPS58150788A (en) 1982-03-03 1982-03-03 Method of separating and removing water and carbonic acid gas of air utilizer

Publications (2)

Publication Number Publication Date
JPS58150788A JPS58150788A (en) 1983-09-07
JPH039390B2 true JPH039390B2 (en) 1991-02-08

Family

ID=12385710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033406A Granted JPS58150788A (en) 1982-03-03 1982-03-03 Method of separating and removing water and carbonic acid gas of air utilizer

Country Status (1)

Country Link
JP (1) JPS58150788A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701187A (en) * 1986-11-03 1987-10-20 Air Products And Chemicals, Inc. Process for separating components of a gas stream
JP2764956B2 (en) * 1988-11-10 1998-06-11 株式会社島津製作所 Aircraft passenger breathing system
US4934148A (en) * 1989-05-12 1990-06-19 Union Carbide Corporation Dry, high purity nitrogen production process and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254679A (en) * 1975-10-31 1977-05-04 Nippon Oxygen Co Ltd Air separation by liquefaction
JPS56124880A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Air liquefying and separating method and apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531510Y2 (en) * 1976-12-27 1980-07-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254679A (en) * 1975-10-31 1977-05-04 Nippon Oxygen Co Ltd Air separation by liquefaction
JPS56124880A (en) * 1980-03-05 1981-09-30 Hitachi Ltd Air liquefying and separating method and apparatus

Also Published As

Publication number Publication date
JPS58150788A (en) 1983-09-07

Similar Documents

Publication Publication Date Title
US4249915A (en) Removal of water and carbon dioxide from air
JP4519954B2 (en) Highly clean dry air and method and apparatus for producing dry air
US5220797A (en) Argon recovery from argon-oxygen-decarburization process waste gases
US3216178A (en) Process for regenerating an adsorbent bed
US5689974A (en) Method and apparatus for pre-purification for air cryogenic separation plant
JP2000317244A (en) Method and device for purifying gas
JPH04171019A (en) Process for removing water content in mixed gas
KR100873375B1 (en) Method and apparatus for purifying Helium gas
JPH07280432A (en) Plant for distilling air and method thereof
KR100845316B1 (en) Method and apparatus for recovery and recycling of used helium gas
JPH039390B2 (en)
KR20100077745A (en) Device for drying a compressed pure air
JP3532465B2 (en) Air separation device
JPH0378126B2 (en)
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
JPH11319458A (en) Pretreating device in air separation device
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH05172459A (en) Pretreation of raw material air in air separating process
CN218392962U (en) Hydrogen purifier
JPH0579754A (en) Manufacturing method of high purity nitrogen
JPH02287085A (en) Method of and apparatus for purifying argon for air separation device
JP3798338B2 (en) Clean dry air manufacturing method and apparatus used therefor
JP3515901B2 (en) Pretreatment device in air separation unit
JPH043877A (en) Air separating device
JPS60139311A (en) Regeneration of adsorbing tower