JPH0247887A - Coupling distribution feedback type semiconductor laser - Google Patents

Coupling distribution feedback type semiconductor laser

Info

Publication number
JPH0247887A
JPH0247887A JP63199357A JP19935788A JPH0247887A JP H0247887 A JPH0247887 A JP H0247887A JP 63199357 A JP63199357 A JP 63199357A JP 19935788 A JP19935788 A JP 19935788A JP H0247887 A JPH0247887 A JP H0247887A
Authority
JP
Japan
Prior art keywords
mode
semiconductor laser
phase shift
lambda
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63199357A
Other languages
Japanese (ja)
Other versions
JPH0514436B2 (en
Inventor
Akira Sugimura
杉村 陽
Tatsuya Kimura
達也 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63199357A priority Critical patent/JPH0247887A/en
Publication of JPH0247887A publication Critical patent/JPH0247887A/en
Publication of JPH0514436B2 publication Critical patent/JPH0514436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1246Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts plurality of phase shifts

Abstract

PURPOSE:To make a mode of delta=0 exist as the lowest degree mode and make the mode distribution flat by a method wherein a center phase shift is specified, phase shifts on both sides are specified and lengths of the respective four portions divided by the phase shifts at the above three positions are specified in order from the end part. CONSTITUTION:An active layer 2 made of, for instance, InGaAs, GaAs or the like is provided between a cladding layer 1 and a cladding layer 3 made of, for instance, InP, AlGaAs or the like. Three light phase shifted parts whose phase shifts are phi1=lambda(1+q)/4, phi2=lambda/4 and phi3=lambda(1-q)/4 are provided. A coupling distribution feedback structure is constituted in such a manner that the length of four portions divided by the three parts are L(1+d)/4, L(1-d)/4, L(1-d)/4 and L(1+d)/4. When a laser which has the flat mode distribution and is stable for the application to a long resonator is realized by utilizing such coupling distribution feedback structure, a symmetrical structure is employed, so that the advantage that oscillation of a mode of delta=0 can be provided is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発振周波数が安定しており、スペクトル幅の
狭い半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser having a stable oscillation frequency and a narrow spectrum width.

〔従来技術〕[Prior art]

発振周波数が安定している結合分布帰還型半導体レーザ
(DFBレーザ)の従来例の主要部を第6図に示す。こ
の第6図に示す構造では、スペクトル幅を狭くするため
に共振器長を長くすると、中心付近の光強度が高くなり
すぎて、空間的ホールバーニングを生じモードが不安定
になる。これを改善するためには、第7図に示す結合位
相シフト分布帰還(DFB)構造が有効である。
FIG. 6 shows the main parts of a conventional example of a coupled distributed feedback semiconductor laser (DFB laser) whose oscillation frequency is stable. In the structure shown in FIG. 6, if the resonator length is increased in order to narrow the spectral width, the light intensity near the center becomes too high, causing spatial hole burning and making the mode unstable. In order to improve this, a combined phase shift distributed feedback (DFB) structure shown in FIG. 7 is effective.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記の従来構造では、発振周波数とフラ
ッグ周波数との差δがOのモードは、最低次モードとな
らず、δ≠0である2つのモードが最低次モードとなる
ため、この最低次モードを抑圧する方法でレーザ動作さ
せなければならないという問題があった。
However, in the conventional structure described above, the mode in which the difference δ between the oscillation frequency and the flag frequency is O is not the lowest-order mode, but the two modes in which δ≠0 are the lowest-order modes. The problem is that the laser must be operated in a way that suppresses the

更に、これを改善するために、第8図のように3箇所の
位相シフト量φをλ/4からずらせる構造が提案されて
いる。ここで、λはレーザ光の波長である。しかし、こ
の第8図に示す構造では、δが0にならないため発振周
波数がサンプルごとにバラツクという問題があった。
Furthermore, in order to improve this problem, a structure has been proposed in which the phase shift amount φ at three locations is shifted from λ/4 as shown in FIG. Here, λ is the wavelength of the laser beam. However, in the structure shown in FIG. 8, there was a problem in that the oscillation frequency varied from sample to sample because δ did not become 0.

なお、第6図〜第8図において、11.13は例えばI
nP、 AlGaAs等からなるクラッド層、12は例
えばInGaAs、 GaAs等からなる活性層である
In addition, in FIGS. 6 to 8, 11.13 is, for example, I
The cladding layer 12 is made of nP, AlGaAs, etc., and the active layer 12 is made of InGaAs, GaAs, etc., for example.

本発明は、前記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

本発明の目的は、δ=0のモードが最低次で存在し、か
つモード分布が平担になる結合分布帰還型半導体レーザ
を提供することにある。
An object of the present invention is to provide a coupled distributed feedback semiconductor laser in which the mode of δ=0 exists at the lowest order and the mode distribution is flat.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明は、3箇所の位相シ
フト部位を有する結合分布帰還型半導体レーザであって
、真中の位相シフト量がλ/4であり、両側の位相シフ
トが0、−1,1を除く−1と1の間のパラメータqに
対してλ(1+q)/4及びλ(1−q)/4であり、
かつこの3箇所の位相シフトにより4分割された各部分
の長さが端から順にL(1+d)/4.L(1−d)/
4.L(1−d)/4.L(1+d)/4であり、但し
λはレーザ光の波長、Lは半導体レーザの全長、dは−
1と1を除く−1と1の間の数であることを最も主要な
特徴とする。
In order to achieve the above object, the present invention provides a coupled distributed feedback semiconductor laser having three phase shift sites, in which the phase shift amount at the center is λ/4, and the phase shifts at both sides are 0, -. λ(1+q)/4 and λ(1-q)/4 for a parameter q between −1 and 1 excluding 1 and 1,
The length of each portion divided into four by the phase shift at these three locations is L(1+d)/4. L(1-d)/
4. L(1-d)/4. L(1+d)/4, where λ is the wavelength of the laser beam, L is the total length of the semiconductor laser, and d is -
The most important feature is that it is a number between -1 and 1, excluding 1 and 1.

〔作用〕[Effect]

前述の手段によれば、3箇所ある位相シフトをφ□=λ
(1+q)/4.φ2=λ/4.φ、=λ(1q)/4
、但し−1<q<0、O<q<1とし。
According to the above-mentioned means, the phase shift at three locations is φ□=λ
(1+q)/4. φ2=λ/4. φ,=λ(1q)/4
, where -1<q<0 and O<q<1.

この位相シフトで4分割された各部分の長さQ1tρZ
+ f13+ ρ、をそれぞれΩ□−1!4=L(1+
d)/4.Ω、=123=L(1−d)/4とし、但し
−1くdく1と設定することにより、前述のδ=0のモ
ードが最低次で存在し、かつモード分布が平担になる結
合分布帰還型半導体レーザを提供することができる。
The length of each part divided into four by this phase shift Q1tρZ
+ f13+ ρ, respectively Ω□-1!4=L(1+
d)/4. Ω, = 123 = L (1 - d) / 4, but by setting -1 × d × 1, the mode of δ = 0 mentioned above exists at the lowest order, and the mode distribution becomes flat. A coupled distributed feedback semiconductor laser can be provided.

すなわち、従来の構造はφ、=φ2=φ3であり、前述
のq=Qの場合のみがこれと重複するが、本発明ではq
≠0が特徴である。
That is, the conventional structure is φ, = φ2 = φ3, and only the case of q=Q described above overlaps with this, but in the present invention, q
≠0 is a characteristic.

(発明の実施例〕 以下、本発明の一実施例を図面を用いて具体的に説明す
る。
(Embodiment of the Invention) An embodiment of the present invention will be specifically described below with reference to the drawings.

第1図は、本・発明の一実施例の結合分布帰還型半導体
レーザの概略構成を説明するための要部断面図である。
FIG. 1 is a sectional view of a main part for explaining the schematic structure of a coupled distributed feedback semiconductor laser according to an embodiment of the present invention.

本実施例の結合分布帰還型半導体レーザは、第1図に示
すように、例えばInP、 AlGaAs等からなるク
ラッド層1とクラッド層3の間に2例えばInGaAs
、 GaAs等からなる活性層2が設けられている。
As shown in FIG. 1, the coupled distributed feedback semiconductor laser of this embodiment has two layers of, for example, InGaAs, between a cladding layer 1 and a cladding layer 3 made of, for example, InP, AlGaAs, etc.
An active layer 2 made of , GaAs, or the like is provided.

そして、位相シフト量がφ1=λ(1+q)/4゜φ2
=λ/4.φ3=λ(1−q)/4である光位相シフト
部分3箇所を有し、これに分割された4つの部分の長が
L(1+d)/4.L(1−d)/4゜L(1−d)/
4.L(1+d)/4であるような結合分布帰還構造に
なっている。
Then, the phase shift amount is φ1=λ(1+q)/4°φ2
=λ/4. It has three optical phase shift parts where φ3=λ(1-q)/4, and the lengths of the four divided parts are L(1+d)/4. L(1-d)/4゜L(1-d)/
4. The coupled distributed feedback structure is L(1+d)/4.

一般に、位相シフト部分を有する結合分布帰還(DFB
)構造のモードは、次の結合モード方程式(1)、(2
)を解くことで決定される。
Generally, coupled distributed feedback (DFB) with a phase-shifted part
) structure is expressed by the following coupled mode equations (1) and (2
) is determined by solving.

−dR/dZ+(α−jδ)R=jxS・・・・・(1
)d S/d Z+(α−jδ)S=jにR・・・・・
(2)ここで、R,Sは右進行、左進行の光の波動関数
、には光帰還の強さを表わすパラメータであり。
-dR/dZ+(α-jδ)R=jxS・・・(1
)d S/d Z+(α-jδ)S=j to R...
(2) Here, R and S are wave functions of light traveling to the right and to the left, and are parameters representing the strength of optical feedback.

結合分布帰還構造の溝の深さに比例する量である。It is an amount proportional to the depth of the groove of the coupled distributed feedback structure.

しきい値ゲインαとδは、式(1)及び式(2)を境界
条件のもとで解くことで求まる。
The threshold gains α and δ are determined by solving equations (1) and (2) under boundary conditions.

φ、=φ2=φ3=λ15.に=2.5の場合のαとδ
の関係(分数姿数)の計算結果を第2図に示す。
φ,=φ2=φ3=λ15. α and δ when = 2.5
The calculation results of the relationship (fraction figure number) are shown in Figure 2.

この場合、最低次(αが最小)のモードはδ≠0となる
。同様な計算を他の様々な構造で行った結果、第1図の
構造の場合δ=0にモードが存在することを発明者は見
出した。
In this case, the mode of the lowest order (α is the minimum) is δ≠0. As a result of performing similar calculations on various other structures, the inventor found that in the structure shown in FIG. 1, a mode exists at δ=0.

第1図の構造の範囲で、δ=0のモードのαとそれ以外
のモードの内の最低次モードとの差Δαを計算した結果
を第3図の点線で等高線として示した。Δα<O(斜線
領域)は、δ=Oのモードが最低次にならない領域であ
る。
Within the structure of FIG. 1, the difference Δα between α of the mode with δ=0 and the lowest order mode among the other modes is calculated, and the results are shown as contour lines using dotted lines in FIG. Δα<O (shaded region) is a region where the mode of δ=O does not become the lowest order.

結合分布帰還構造ではモード分布が平担になるため、長
井振器構造でも安定になる。モード分布の平担さは次の
関数Fで定義できる。
Since the mode distribution becomes flat in the coupled distributed feedback structure, even the Nagai shaker structure is stable. The flatness of the mode distribution can be defined by the following function F.

F=(、、’  (I(Z)−■、)”dz−・−−−
−−(3)但し、強度I(Z)=IR+”+1S12で
あり、I。は強度r (z)の平均値である。にを最適
にした時のモード分布の平担さの関数Fのd及びq依存
性の等高線を第3図の実線に示した。最も平担になるの
はq=0.4.d=0の構造であり、単一位相シフトの
場合に比べFは約1/6になる。この構造のモード分布
及び分散関数を第4図及び第5図に示した。この構造で
レーザ動作をさせた時のスペクトル幅は、長井振器効果
により単一位相シフトの場合と比較して115になる。
F=(,,' (I(Z)−■,)”dz−・−−
--(3) However, the intensity I(Z)=IR+''+1S12, where I is the average value of the intensity r(z). Contour lines of d and q dependence are shown as solid lines in Figure 3. The structure with q = 0.4 and d = 0 is the most flat, and F is approximately 1 compared to the case of a single phase shift. /6. The mode distribution and dispersion function of this structure are shown in Figures 4 and 5. When operating a laser with this structure, the spectral width is as follows in the case of a single phase shift due to the Nagai Oscillator effect. It becomes 115 compared to .

以上の説明かられかるように、本実施例によれば、結合
分布帰還構造を用い、モード分布が平担で長井振器化に
対し安定なレーザを実現する際、第1図に示すような対
称性を有する構造にしているため、δ=Oのモードで発
振するようにできる利点がある。これは、このレーザを
コヒーレント光伝送システムや光センサシステムなどに
用いる際、発振周波数のバラつきが小さくなりシステム
全体の安定性が増加する利点がある。
As can be seen from the above description, according to this embodiment, when realizing a laser with a flat mode distribution and stable against Nagai oscillator conversion using a coupled distributed feedback structure, as shown in FIG. Since it has a symmetrical structure, it has the advantage of being able to oscillate in the δ=O mode. This has the advantage that when this laser is used in a coherent optical transmission system, an optical sensor system, etc., variations in the oscillation frequency are reduced and the stability of the entire system is increased.

以上、本発明を実施例にもとづき具体的に説明したが、
本発明は、前記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は言うまでもない。
The present invention has been specifically explained above based on examples, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、3箇所の位相
シフト部位を有する結合分布帰還型半導体レーザであっ
て、真中の位相シフト量をλ/4にし、両側の位置シフ
トが0、−1,1を除く−1と1の間のパラメータqに
対してλ(1+q)/4及びλ(1−q)/4にし、か
っこの3箇所の位置シフトにより4分割された各部分の
長さが端から順にL(1+d)/4.L(1−d)/4
.L(1−d)/4.L(1+d)/4にすることによ
り。
As described above, according to the present invention, there is provided a coupled distributed feedback semiconductor laser having three phase shift sites, in which the phase shift amount at the center is set to λ/4, and the position shifts at both sides are 0, -. For the parameter q between -1 and 1 excluding 1 and 1, set it to λ (1 + q) / 4 and λ (1 - q) / 4, and calculate the length of each part divided into 4 by shifting the position of the parentheses in 3 places. Starting from the end, L(1+d)/4. L(1-d)/4
.. L(1-d)/4. By setting L(1+d)/4.

δ=0のモードが最低次で存在し、かつモード分布が平
担になる結合分布帰還型半導体レーザを提供することが
できる。
It is possible to provide a coupled distributed feedback semiconductor laser in which the mode of δ=0 exists at the lowest order and the mode distribution is flat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の結合分布帰還型半導体レ
ーザの概略構成を説明するための要部断面図、 第2図は、結合位相シフトDFB構造を4等分割してい
る3箇所の位相シフト量が等しくλ/5でにが2.5で
ある構造の分散関数の図、第3図は、本発明の構造にお
いて構造パラメータd、qを変化させた時のΔα(点線
)及びF(実線)の計算値の等高線図、 第4図及び第5図は、本発明の構造でd=0゜q=0.
4の構造のレーザについてのモード分布及び分散関数の
図。 第6図は、従来構造である単一位相シフトDFB構造図
、 第7図は、他の従来構造の結合位相シフトDFB構造図
、 第8図は、他の従来構造の結合位相シフトDFB構造図
である。 図中、1,3・・・クラッド層、2・・・活性層。 第1図 2・・・滝牲1 3・・・クラ斗1
FIG. 1 is a cross-sectional view of the main parts for explaining the schematic configuration of a coupled distributed feedback semiconductor laser according to an embodiment of the present invention. FIG. 2 shows three points where the coupled phase shift DFB structure is equally divided into four parts. Figure 3 is a diagram of the dispersion function of a structure in which the phase shift amounts of are equal to λ/5 and 2.5, and Δα (dotted line) and Δα (dotted line) and The contour diagrams of the calculated values of F (solid line), FIGS. 4 and 5, show the structure of the present invention when d=0゜q=0.
FIG. 4 is a diagram of the mode distribution and dispersion function for the laser with structure No. 4. Fig. 6 is a structural diagram of a single phase shift DFB with a conventional structure. Fig. 7 is a structural diagram of a combined phase shift DFB with another conventional structure. Fig. 8 is a structural diagram of a combined phase shift DFB with another conventional structure. It is. In the figure, 1, 3... cladding layer, 2... active layer. Figure 1 2...Takisuke 1 3...Kurato 1

Claims (1)

【特許請求の範囲】[Claims] (1)3箇所の位相シフト部位を有する結合分布帰還型
半導体レーザであって、真中の位相シフト量がλ/4で
あり、両側の位相シフトが0、−1、1を除く−1と1
の間のパラメータqに対してλ(1+q)/4及びλ(
1−q)/4であり、かつこの3箇所の位相シフトによ
り4分割された各部分の長さが端から順にL(1+d)
/4、L(1−d)/4、L(1−d)/4、L(1+
d)/4であり、但しλはレーザ光の波長、Lは半導体
レーザの全長、dは−1と1を除く−1と1の間の数で
あることを特徴とする結合分布帰還型半導体レーザ。
(1) A coupled distributed feedback semiconductor laser having three phase shift parts, in which the phase shift amount in the middle is λ/4, and the phase shifts on both sides are 0, -1, -1 and 1 excluding 1.
λ(1+q)/4 and λ(
1-q)/4, and the length of each portion divided into four by these three phase shifts is L(1+d) in order from the end.
/4, L(1-d)/4, L(1-d)/4, L(1+
d)/4, where λ is the wavelength of the laser beam, L is the total length of the semiconductor laser, and d is a number between -1 and 1 excluding -1 and 1. laser.
JP63199357A 1988-08-10 1988-08-10 Coupling distribution feedback type semiconductor laser Granted JPH0247887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63199357A JPH0247887A (en) 1988-08-10 1988-08-10 Coupling distribution feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63199357A JPH0247887A (en) 1988-08-10 1988-08-10 Coupling distribution feedback type semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0247887A true JPH0247887A (en) 1990-02-16
JPH0514436B2 JPH0514436B2 (en) 1993-02-25

Family

ID=16406417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63199357A Granted JPH0247887A (en) 1988-08-10 1988-08-10 Coupling distribution feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0247887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330268B1 (en) 1998-08-27 2001-12-11 Nec Corporation Distributed feedback semiconductor laser
US6574261B2 (en) 1998-08-27 2003-06-03 Nec Corporation Distributed feedback semiconductor laser
WO2004069524A1 (en) * 2003-01-27 2004-08-19 Nike, Inc. Method for flange bonding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330268B1 (en) 1998-08-27 2001-12-11 Nec Corporation Distributed feedback semiconductor laser
US6574261B2 (en) 1998-08-27 2003-06-03 Nec Corporation Distributed feedback semiconductor laser
WO2004069524A1 (en) * 2003-01-27 2004-08-19 Nike, Inc. Method for flange bonding

Also Published As

Publication number Publication date
JPH0514436B2 (en) 1993-02-25

Similar Documents

Publication Publication Date Title
US7262435B2 (en) Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
JP3186705B2 (en) Distributed feedback semiconductor laser
US7027476B2 (en) Tunable semiconductor lasers
JP2822988B2 (en) Distributed feedback semiconductor laser
JPH0247887A (en) Coupling distribution feedback type semiconductor laser
GB2209408A (en) Optical waveguide device having surface relief diffraction grating
JPS61222189A (en) Semiconductor laser
US7277465B2 (en) Semiconductor laser
JPS6250075B2 (en)
JPS6362917B2 (en)
JPS63186A (en) Semiconductor laser
JPS63269592A (en) Semiconductor laser
JPS6295886A (en) Distribution feedback construction semiconductor laser
JP4033822B2 (en) DBR tunable light source
JPS63185A (en) Semiconductor laser
JPH038386A (en) Coupling distributed-feedback type semiconductor laser
JPS63260185A (en) Distributed feedback type semiconductor laser
JPS6284583A (en) Distributed feedback type semiconductor laser
JPH02181988A (en) Surface emission type semiconductor laser
JPS6320888A (en) Semoconductor light-emitting device
CN115377792A (en) Monolithic integrated internal feedback narrow linewidth semiconductor laser
JPS6212178A (en) Distributed feedback type semiconductor laser
JPH06196799A (en) Distributed-feedback semiconductor laser
JPS61283192A (en) Semiconductor laser device
JPS60111488A (en) Wavelength control type semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees