JPH0247414B2 - HIKARIFUAIBABOZAINOSEIZOHOHO - Google Patents

HIKARIFUAIBABOZAINOSEIZOHOHO

Info

Publication number
JPH0247414B2
JPH0247414B2 JP13772384A JP13772384A JPH0247414B2 JP H0247414 B2 JPH0247414 B2 JP H0247414B2 JP 13772384 A JP13772384 A JP 13772384A JP 13772384 A JP13772384 A JP 13772384A JP H0247414 B2 JPH0247414 B2 JP H0247414B2
Authority
JP
Japan
Prior art keywords
glass
plasma torch
chamber
gas
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13772384A
Other languages
Japanese (ja)
Other versions
JPS6117433A (en
Inventor
Toshihide Tokunaga
Tatsuo Teraoka
Tsuneyoshi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13772384A priority Critical patent/JPH0247414B2/en
Publication of JPS6117433A publication Critical patent/JPS6117433A/en
Publication of JPH0247414B2 publication Critical patent/JPH0247414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • C03B37/01823Plasma deposition burners or heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、プラズマ炎を用いた光フアイバ母材
の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to an improvement in a method for manufacturing an optical fiber preform using a plasma flame.

一般に、光フアイバ母材の製造は、MCVD(化
学気相沈積)法、VAD(気相軸付)法によつて行
われており、そして、これらの方法の熱源は主に
酸水素バーナが用いられている。
Generally, optical fiber base materials are manufactured using the MCVD (chemical vapor deposition) method and the VAD (vapor deposition) method, and the heat source for these methods is mainly an oxyhydrogen burner. It is being

一方、プラズマ炎を用いる場合は、プラズマ炎
の高温を利用して直接ガラス成形が可能であり、
プラズマ炎の中心は約2万℃である。この温度を
利用し合成ガラスを形成する方法としては、(1)プ
ラズマ炎のジエツト部に混合ガスを導入する方法
及び(2)プラズマガスに混合ガスを混合する方法な
どがある。このうち、(1)はふつ素ドープガスを形
成するには、ドーパント材であるフロンガスの熱
分解反応が十分でなく、ふつ素の高ドープ化が難
しい。また、(2)は混合ガスの増加によりプラズマ
炎が不安定となり、ガラス膜の成長速度を向上す
ることが難しい。
On the other hand, when using plasma flame, it is possible to directly form glass by utilizing the high temperature of plasma flame.
The temperature at the center of the plasma flame is approximately 20,000°C. Methods for forming synthetic glass using this temperature include (1) a method of introducing a mixed gas into the jet portion of a plasma flame, and (2) a method of mixing a mixed gas with plasma gas. Among these, (1) is difficult to highly dope with fluorine because the thermal decomposition reaction of the dopant material, fluorocarbon gas, is insufficient to form a fluorine-doped gas. In addition, in (2), the plasma flame becomes unstable due to an increase in the mixed gas, making it difficult to improve the growth rate of the glass film.

本発明は上記の状況に鑑みなされたものであ
り、ふつ素の高ドープ化が得られると共に、ガラ
ス膜の成長速度を向上できる光フアイバ母材の製
造方法を提供することを目的としたものである。
The present invention was made in view of the above situation, and aims to provide a method for manufacturing an optical fiber base material that can achieve high fluorine doping and improve the growth rate of the glass film. be.

[発明の概要] 本発明の光フアイバ母材の製造方法は、高周波
プラズマトーチによりプラズマ炎を発生させ該プ
ラズマ炎にガラス形成用の原料を反応ガス導入管
を介し供給し、加熱反応によりチヤンバ内のガラ
ス旋盤に支持されたターゲツト棒外周面に直接ふ
つ素ドープガラスの混合を行なう場合に、上記高
周波プラズマトーチの後方からフロン系ガスを供
給し、かつ、前方からガラス形成用の主原料を上
記チヤンバ内に供給する方法である。即ち、フロ
ン系の反応ガス高周波プラズマトーチの後方から
供給しプラズマ炎の熱によりFを分離させ、この
Fを高周波プラズマトーチの前方に供給される
SiCl4から形成されるSiC2とチヤンバ内で反応さ
せ、ターゲツト棒外周上にFドープガラスを形成
する方法がある。
[Summary of the Invention] The method for manufacturing an optical fiber base material of the present invention involves generating a plasma flame using a high-frequency plasma torch, supplying a raw material for glass formation to the plasma flame through a reaction gas introduction tube, and causing a heating reaction inside the chamber. When mixing fluorine-doped glass directly onto the outer peripheral surface of a target rod supported on a glass lathe, a fluorocarbon-based gas is supplied from the rear of the high-frequency plasma torch, and the main raw material for glass formation is mixed from the front. This is a method of supplying it into the chamber. That is, a fluorocarbon-based reactive gas is supplied from the rear of the high-frequency plasma torch, F is separated by the heat of the plasma flame, and this F is supplied to the front of the high-frequency plasma torch.
There is a method in which F-doped glass is formed on the outer periphery of a target rod by reacting it with SiC 2 formed from SiCl 4 in a chamber.

[実施例] 以下本発明の光フアイバ母材の製造方法を実施
例を用い図面により説明する。図は実施装置の断
面図である。図において、1は高周波プラズマト
ーチ、2は高周波プラズマトーチ1の上方から吹
き込まれるフロン12(CCl2F2)の反応ガス導入
管、2Aは高周波プラズマトーチ1の下方からチ
ヤンバ4内にガラス形成用の主原料のSiCl4を供
給する反応ガス導入管である。3はN2のガスが
供給されるガスシールキヤツプ、4はチヤンバで
ある。5はガラス旋盤で、ターゲツト棒6の回転
駆動及びヘツドを上下移動駆動するモータ18を
それぞれ有する移動ヘツド17によりターゲツト
棒6の両端を支承しており、ヘツド9上を軸方向
に駆動装置(図示せず)により駆動されるように
なつている。8はヘツド9上に取り付けられたス
トツパー、7はガラス膜、10はバツフアタン
ク、11は排気管、12は熱交換器、13はスク
ラバー、14は排気フアン、15はバルブ、16
はガス圧力計である。
[Example] Hereinafter, the method for manufacturing an optical fiber base material of the present invention will be explained using examples and drawings. The figure is a sectional view of the implementation device. In the figure, 1 is a high-frequency plasma torch, 2 is a reactant gas introduction pipe of Freon 12 (CCl 2 F 2 ) blown from above the high-frequency plasma torch 1, and 2A is a glass-forming tube from below the high-frequency plasma torch 1 into the chamber 4. This is a reaction gas introduction pipe that supplies SiCl 4 , the main raw material. 3 is a gas seal cap to which N 2 gas is supplied, and 4 is a chamber. Reference numeral 5 designates a glass lathe, in which both ends of the target rod 6 are supported by a movable head 17 having a motor 18 for rotating the target rod 6 and driving the head up and down, and a driving device (see Fig. (not shown). 8 is a stopper attached to the head 9, 7 is a glass membrane, 10 is a buffer tank, 11 is an exhaust pipe, 12 is a heat exchanger, 13 is a scrubber, 14 is an exhaust fan, 15 is a valve, 16
is a gas pressure gauge.

そして、ガラス膜7の精製にあたつては、高周
波プラズマトーチ1に、矢印の如く酸素を送り込
んで酸素プラズマ炎を発生させる。また、反応ガ
ス導入管2からフロンガス12を50c.c./minを、反
応ガス導入管2AからSiCl42000mg/min酸素ガ
スキヤリアにして送り込み、反応チヤンバ4内の
プラズマ炎の下方で反応させ、10mmφの石英ガラ
ス棒のターゲツト棒7上に、FドープSiO2系ガ
ラス膜7を粋咳させる。ターゲツト棒6はガラス
旋盤5によつて一定の回転数にて回転駆動される
ようになつており、ガラス旋盤5はヘツド9上を
矢印の軸方向に駆動されてターゲツト棒6の外周
及び長手方向にガラス膜7を形成することができ
る。尚、フロンガスは、CCl2F2・CF4・CClF3
CCl3F・C2F6・C2ClF5・C2Cl4F2・SIF4を用いて
もよい。
To purify the glass film 7, oxygen is fed into the high frequency plasma torch 1 as shown by the arrow to generate an oxygen plasma flame. In addition, 50 c.c./min of chlorofluorocarbon gas 12 is fed from the reaction gas introduction pipe 2, and SiCl 4 2000 mg/min oxygen gas carrier is fed from the reaction gas introduction pipe 2A, and the reaction is caused to occur below the plasma flame in the reaction chamber 4. An F-doped SiO 2 -based glass film 7 is sputtered onto a target rod 7 made of quartz glass rod. The target rod 6 is rotated at a constant rotation speed by a glass lathe 5, and the glass lathe 5 is driven on a head 9 in the axial direction of the arrow to rotate the target rod 6 in the outer circumference and longitudinal direction. A glass film 7 can be formed thereon. In addition, fluorocarbon gases include CCl 2 F 2 , CF 4 , CClF 3 ,
CCl 3 F.C 2 F 6.C 2 ClF 5.C 2 Cl 4 F 2.SIF 4 may also be used.

ここで、Fドープガラス形成にドーパント材と
してフロン12(CCl2F2)を用いた。C−Fの結合
エネルギーは、105Kcal/molであり、Fを遊離
させるためには高温を必要とし、この場合、プラ
ズマガスと同じ上部からフロン12を供給すること
により、プラズマトーチの高温により完全に分離
される。
Here, Freon 12 (CCl 2 F 2 ) was used as a dopant material to form the F-doped glass. The bond energy of C-F is 105 Kcal/mol, and high temperature is required to liberate F. In this case, by supplying Freon 12 from the same top as the plasma gas, it can be completely removed by the high temperature of the plasma torch. Separated.

プラズマ炎の下法にはSiOl4が供給される。
SiCl4は(1)式で示す反応を行なう。
SiOl 4 is supplied in the plasma flame method.
SiCl 4 performs the reaction shown in equation (1).

SiCl4+O2→SiO2+2Cl2 ……(1) (1)式は、1000℃以上で完全に右に反応は移る。
SiO2は分解したFと反応し、Fドープガラスが
形成される。(1)式よりSiO2は、SiCl4の量に依存
し、ここでは2000mg/minの場合成形速度は
25μm/cycleであつた。尚、移動ベツト17の移
動速度30mm/minである。また、5000mg/minの
SiCl4を供給してもガラス膜7の形成が可能であ
ることも確認済みである。
SiCl 4 +O 2 →SiO 2 +2Cl 2 ...(1) In equation (1), the reaction completely shifts to the right at 1000°C or higher.
SiO 2 reacts with decomposed F to form F-doped glass. From equation (1), SiO 2 depends on the amount of SiCl 4 , and here, at 2000 mg/min, the molding speed is
It was 25μm/cycle. Note that the moving speed of the moving bed 17 is 30 mm/min. Also, 5000mg/min
It has also been confirmed that the glass film 7 can be formed even if SiCl 4 is supplied.

このように本実施例の光フアイバ母材の製造方
法においては、フロン系の反応ガスを高周波プラ
ズマトーチの後法から供給しプラズマ炎の熱によ
りFを確実に分離させ、このFを高周波プラズマ
トーチの前方に供給されるSiCl4から形成される
SiO2反応材料とチヤンバ内で反応させターゲツ
ト棒外周上にFドープガラスを形成することがで
きるので、ふつ素を高ドープ化でき高い成長速度
でターゲツト棒外周上にガラス膜を形成できて生
産性を向上できる。
In this way, in the method for manufacturing the optical fiber base material of this embodiment, a fluorocarbon-based reactive gas is supplied from the high-frequency plasma torch after the high-frequency plasma torch, F is reliably separated by the heat of the plasma flame, and this F is transferred to the high-frequency plasma torch. formed from SiCl 4 fed in front of
Since F-doped glass can be formed on the outer periphery of the target rod by reacting with the SiO 2 reaction material in the chamber, it is possible to highly dope fluorine and form a glass film on the outer periphery of the target rod at a high growth rate, increasing productivity. can be improved.

上記実施例はターゲツト棒の軸線が水平の場合
について述べたが垂直位置の場合でも作用効果は
同じである。
Although the above embodiment has been described with respect to the case where the axis of the target rod is horizontal, the operation and effect are the same even when the axis of the target rod is in a vertical position.

[発明の効果] 以上記述した如く本発明の光フアイバ母材の製
造方法によれば、ふつ素の高ドープ化が得られる
と共にガラス膜の成長速度を向上できる効果を有
するものである。
[Effects of the Invention] As described above, according to the method for manufacturing an optical fiber base material of the present invention, it is possible to achieve high doping of fluorine and to improve the growth rate of a glass film.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の光フアイバ母材の製造方法を実施
例する装置の断面図である。 1……高周波プラズマトーチ、2,2A……反
応ガス導入管、4……チヤンバ、5……ガラス旋
盤、6……ターゲツト棒、7……ガラス膜。
The figure is a sectional view of an apparatus for carrying out the method of manufacturing an optical fiber preform according to the present invention. DESCRIPTION OF SYMBOLS 1... High frequency plasma torch, 2, 2A... Reaction gas introduction tube, 4... Chamber, 5... Glass lathe, 6... Target rod, 7... Glass film.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波プラズマトーチによりプラズマ炎を発
生させ該プラズマ炎にガラス形成用の原料を反応
ガス導入管を介し供給し、加熱反応によりチヤン
バ内のガラス旋盤に支持されたターゲツト棒外周
面に直接ふつ素ドープガラスの合成を行なう方法
において、上記高周波プラズマトーチの後方から
フロン系ガスを供給し、かつ、前方からガラス形
成用の主原料を上記チヤンバ内に供給することを
特徴とする光フアイバ母材の製造方法。
1. Generate a plasma flame with a high-frequency plasma torch, supply raw materials for glass formation to the plasma flame through a reaction gas introduction tube, and directly dope fluorine onto the outer circumferential surface of a target rod supported on a glass lathe in a chamber by a heating reaction. A method for synthesizing glass, characterized in that a fluorocarbon gas is supplied from the rear of the high-frequency plasma torch, and a main raw material for glass formation is supplied from the front into the chamber. Method.
JP13772384A 1984-07-03 1984-07-03 HIKARIFUAIBABOZAINOSEIZOHOHO Expired - Lifetime JPH0247414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13772384A JPH0247414B2 (en) 1984-07-03 1984-07-03 HIKARIFUAIBABOZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13772384A JPH0247414B2 (en) 1984-07-03 1984-07-03 HIKARIFUAIBABOZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6117433A JPS6117433A (en) 1986-01-25
JPH0247414B2 true JPH0247414B2 (en) 1990-10-19

Family

ID=15205319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13772384A Expired - Lifetime JPH0247414B2 (en) 1984-07-03 1984-07-03 HIKARIFUAIBABOZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0247414B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581517U (en) * 1992-04-03 1993-11-05 ポップリベット・ファスナー株式会社 clip
JP2009007242A (en) * 2007-05-29 2009-01-15 Shin Etsu Chem Co Ltd Method of manufacturing optical fiber preform using high frequency induction thermal plasma torch
US8322165B2 (en) 2007-08-10 2012-12-04 Shin-Etsu Chemical Co., Ltd. Apparatus for fabricating an optical fiber
US8707741B2 (en) 2009-07-27 2014-04-29 Shin-Etsu Chemical Co., Ltd Method of manufacturing optical fiber preform using plasma torch

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015706B4 (en) * 2005-04-05 2008-07-03 Heraeus Quarzglas Gmbh & Co. Kg Process for producing a preform for optical fibers
JP4926164B2 (en) * 2008-12-26 2012-05-09 信越化学工業株式会社 Optical fiber preform manufacturing method and apparatus using high frequency induction thermal plasma torch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581517U (en) * 1992-04-03 1993-11-05 ポップリベット・ファスナー株式会社 clip
JP2009007242A (en) * 2007-05-29 2009-01-15 Shin Etsu Chem Co Ltd Method of manufacturing optical fiber preform using high frequency induction thermal plasma torch
US8322165B2 (en) 2007-08-10 2012-12-04 Shin-Etsu Chemical Co., Ltd. Apparatus for fabricating an optical fiber
US8707741B2 (en) 2009-07-27 2014-04-29 Shin-Etsu Chemical Co., Ltd Method of manufacturing optical fiber preform using plasma torch

Also Published As

Publication number Publication date
JPS6117433A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
EP0471139B1 (en) Method of making high purity, non-porous fused silica bodies
JP4089922B2 (en) Method and apparatus for making fused silica by combustion of a liquid reactant
JPH08502470A (en) Method and apparatus for manufacturing preforms for quartz glass lightwave conductors
JPH0247414B2 (en) HIKARIFUAIBABOZAINOSEIZOHOHO
JPH0459254B2 (en)
JPH10203842A (en) Production of optical fiber base material
JP4124198B2 (en) Method of manufacturing optical fiber preform using MCVD method including dehydration and dechlorination processes, and optical fiber manufactured by this method
JPH0247415B2 (en) HIKARIFUAIBABOZAINOSEIZOHOHO
JPH0582333B2 (en)
US20050000252A1 (en) Method and apparatus for fabricating optical fiber preform using double torch in mcvd
JPH038737A (en) Production of preform for optical fiber
JPH03242342A (en) Production of preform for optical fiber
JPH0114181B2 (en)
JPH10330129A (en) Production of porous glass body for optical fiber
JPS6168337A (en) Production of parent material for optical fiber
JPS6168338A (en) Production of parent material for optical fiber
JPS61151031A (en) Production of optical fiber preform
RU2061111C1 (en) Process for preparing synthetic quartz articles
JPS5925738B2 (en) Optical glass fiber manufacturing method
JPS5767046A (en) Manufacture of glass base material for laser
JPS55113635A (en) Manufacture of glass fiber base material
JPS60151241A (en) Manufacture of base material for optical fiber
JPS6229379B2 (en)
JPH033618B2 (en)
JPS6117435A (en) Manufacture of optical fiber preform