JPH033618B2 - - Google Patents

Info

Publication number
JPH033618B2
JPH033618B2 JP27227985A JP27227985A JPH033618B2 JP H033618 B2 JPH033618 B2 JP H033618B2 JP 27227985 A JP27227985 A JP 27227985A JP 27227985 A JP27227985 A JP 27227985A JP H033618 B2 JPH033618 B2 JP H033618B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
optical fiber
core
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27227985A
Other languages
Japanese (ja)
Other versions
JPS62132740A (en
Inventor
Koji Okamura
Makoto Tsukamoto
Masaji Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27227985A priority Critical patent/JPS62132740A/en
Publication of JPS62132740A publication Critical patent/JPS62132740A/en
Publication of JPH033618B2 publication Critical patent/JPH033618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • C03B37/01892Deposition substrates, e.g. tubes, mandrels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 〔概要〕 内付化学気相堆積法により光フアイバ母材を製
造するにあたり、クラツドとなる石英ガラス管の
肉厚には、生産ロツトによりバラツキがある。し
たがつて石英ガラス管の内壁にクラツド堆積層を
生成して、このバラツキを無くし、その後、コア
堆積層を生成することにより、光フアイバ母材を
線引きして得られる光フアイバの屈折率、及び屈
折率分布のバラツキを無くする。
[Detailed Description of the Invention] [Summary] When manufacturing an optical fiber base material by the internal chemical vapor deposition method, the wall thickness of the quartz glass tube that becomes the cladding varies depending on the production lot. Therefore, by forming a cladding layer on the inner wall of the quartz glass tube to eliminate this variation, and then forming a core layer, the refractive index of the optical fiber obtained by drawing the optical fiber base material and Eliminate variations in refractive index distribution.

〔産業上の利用分野〕[Industrial application field]

本発明は、内付化学気相堆積法による石英系光
フアイバ母材の製造方法に関する。
The present invention relates to a method for manufacturing a silica-based optical fiber base material by an internal chemical vapor deposition method.

石英系光フアイバ母材の製造方法としては、内
付化学気相堆積法が広く使用されている。
Internal chemical vapor deposition is widely used as a method for manufacturing silica-based optical fiber base materials.

この内付化学気相堆積法とは、ガラスの原料で
あるSiCL4、GeCL4、POCL3等の原料ガスを酸素
と共に、加熱された石英ガラス管内に送込み、ク
ラツドとなる石英ガラス管よりも屈折率の大きい
コアとなるガラス層を、石英管の内壁面に堆積合
成する方法である。
This internal chemical vapor deposition method involves sending raw material gases such as SiCL 4 , GeCL 4 , POCL 3, etc., which are the raw materials for glass, into a heated quartz glass tube together with oxygen. This method involves depositing and synthesizing a core glass layer with a high refractive index on the inner wall surface of a quartz tube.

欺くして得られた光フアイバ母材は、2000℃以
上に加熱し、線引きすることにより、所望の線径
の光フアイバにすることができる。
The optical fiber base material obtained by deception can be heated to 2000° C. or higher and drawn into an optical fiber with a desired diameter.

第3図の光フアイバ母材の製造装置の構成図を
参照して、内付化学気相堆積法を詳述する。
The internal chemical vapor deposition method will be described in detail with reference to the configuration diagram of the optical fiber preform manufacturing apparatus shown in FIG.

第3図において、1は光フアイバのクラツドを
形成する、例えば外径が20mm、肉厚が1.7mm前後、
長さ1000mmの細長い中空の石英ガラス管である。
In Fig. 3, 1 forms the cladding of the optical fiber, for example, the outer diameter is 20 mm and the wall thickness is about 1.7 mm.
It is an elongated hollow quartz glass tube with a length of 1000 mm.

石英ガラス管1の両端にはそれぞれ、石英ガラ
ス管1をガラス旋盤4に装着して回転させるため
のサポート管(例えば外径35mm、内径30mm、長さ
400mmの細長い中空石英管)が融着されている。
この2つのサポート管のうち、ガラス旋盤4のベ
ツド上に装着された駆動側チヤツク5に支持され
る方を、排気側サポート管3と呼称し、従動側チ
ヤツク6に支持される他方を、投入側サポート管
2と呼称している。
At both ends of the quartz glass tube 1, support tubes (for example, outer diameter 35 mm, inner diameter 30 mm, length
A 400mm long hollow quartz tube) is fused.
Of these two support pipes, the one supported by the drive side chuck 5 mounted on the bed of the glass lathe 4 is called the exhaust side support pipe 3, and the other supported by the driven side chuck 6 is called the input side support pipe 3. It is called the side support pipe 2.

投入側サポート管2の端末を絞り、回転ジヨイ
ント7を介してガス供給装置10に連結し、コア
層(場合によつてはクラツド層のこともある)の
原料であるSiCL4、GeCL4、POCL3、等の原料ガ
ス及び酸素を蓄え、切り換えバルブ9を介してこ
れらのガスを選択し、石英ガラス管1の内部に供
給している。
The end of the support tube 2 on the input side is squeezed and connected to the gas supply device 10 via the rotating joint 7, and SiCL 4 , GeCL 4 , POCL, which is the raw material of the core layer (in some cases, the cladding layer), is 3 , etc. and oxygen are stored, and these gases are selected via a switching valve 9 and supplied to the inside of the quartz glass tube 1.

酸水素バーナー8は、ベツド上を石英ガラス管
1の軸心に平行して、往復運動する如く構成さ
れ、石英ガラス管1を1300℃乃至1600℃に加熱
し、原料ガスに石英ガラス管1内で熱酸化反応を
起こさせるものである。
The oxyhydrogen burner 8 is configured to reciprocate above the bed parallel to the axis of the quartz glass tube 1, heats the quartz glass tube 1 to 1300°C to 1600°C, and injects the raw material gas into the quartz glass tube 1. This causes a thermal oxidation reaction.

この酸水素バーナー8の前進(投入側サポート
管2側より排気側サポート管3側への運動)速度
は、例えば毎分180mmと比較的遅い速度であり、
後退速度は、例えば毎分1500mmの速戻りである。
The forward speed of this oxyhydrogen burner 8 (movement from the input side support pipe 2 side to the exhaust side support pipe 3 side) is a relatively slow speed of, for example, 180 mm per minute.
The retraction speed is, for example, 1500 mm per minute.

この際、コアガラスの屈折率、屈折率分布の一
定な光フアイバ母材の要望が強い。
At this time, there is a strong demand for an optical fiber base material with a constant refractive index of the core glass and a constant refractive index distribution.

〔従来の技術〕[Conventional technology]

従来の光フアイバ母材の製造方法は、第3図の
ような装置を使用して、ガラス旋盤4を駆動し、
石英ガラス管1(投入側サポート管2、排気側サ
ポート管3もともに回転する)を回転しながら、
ガス供給装置10より原料ガスを石英ガラス管1
内に送風し、且つ酸水素バーナー8に往復運動を
与えて、石英ガラス管1を一様に加熱して、第2
図の従来例の断面図の如くに、石英ガラス管1の
内壁に直接コア堆積層20を生成させている。
The conventional method for manufacturing optical fiber preforms uses a device as shown in FIG. 3 to drive a glass lathe 4,
While rotating the quartz glass tube 1 (both the input side support tube 2 and the exhaust side support tube 3 rotate),
The raw material gas is supplied from the gas supply device 10 to the quartz glass tube 1
The quartz glass tube 1 is uniformly heated by blowing air into the quartz glass tube 1 and giving reciprocating motion to the oxyhydrogen burner 8.
As shown in the cross-sectional view of the conventional example shown in the figure, a core deposit layer 20 is formed directly on the inner wall of the quartz glass tube 1.

詳述すれば、コア堆積層の原料ガスであるとこ
ろのSiCL4、GeCL4、POCL3を酸素とともに、石
英ガラス管1内に送風、加熱すると、熱酸化反応
によつて、ドーパントとしてGe、P等の酸化物
を含んだSiO2のガラス層が、石英ガラス管1の
管内壁に堆積してコア堆積層20を形成する。
Specifically, when SiCL 4 , GeCL 4 , and POCL 3 , which are raw material gases for the core deposited layer, are blown and heated together with oxygen into the quartz glass tube 1 , Ge and P are formed as dopants through a thermal oxidation reaction. A glass layer of SiO 2 containing oxides such as SiO 2 is deposited on the inner wall of the quartz glass tube 1 to form a core deposited layer 20 .

なお、酸水素バーナー8の1回の前進により、
厚さ50μm程度のコア膜が堆積されるので、堆積
層が光フアイバの外径−コア径比に合つた厚み、
(例えば石英ガラス管の外径が20mm、肉厚が1.7mm
の場合0.5mmの厚さのコア堆積層)に達するまで、
この操作を繰り返す。
In addition, by advancing the oxyhydrogen burner 8 once,
Since a core film with a thickness of about 50 μm is deposited, the thickness of the deposited layer matches the outer diameter - core diameter ratio of the optical fiber.
(For example, the outer diameter of a quartz glass tube is 20 mm and the wall thickness is 1.7 mm.
until reaching a core deposit layer of 0.5 mm thickness)
Repeat this operation.

その後、原料ガスの供給を停止し、酸水素バー
ナー8の火力を増加して、石英ガラス管1を1700
℃前後に加熱し軟化させ、表面張力の作用で中空
の石英ガラス管1を中実化している。
After that, the supply of raw material gas was stopped, the thermal power of the oxyhydrogen burner 8 was increased, and the quartz glass tube 1 was heated to 1700 m
The hollow quartz glass tube 1 is made solid by heating to around 0.degree. C. to soften it, and by the action of surface tension.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来手段により得られた光フ
アイバ母材は、石英ガラス管の肉厚d1が、ロツト
によりバラツキ(例えば0〜−0.3mm)がある。
このため、石英ガラス管の外側を酸水素バーナー
で所定の温度に加熱しても、内壁側のコア堆積層
部分の温度が異なる。このことに起因して、生成
されるコア堆積層(コアガラス)の屈折率を増加
するGeO2の含有量に増減がある。
However, in the optical fiber base material obtained by the above-mentioned conventional means, the wall thickness d1 of the quartz glass tube varies depending on the lot (for example, 0 to -0.3 mm).
Therefore, even if the outside of the quartz glass tube is heated to a predetermined temperature with an oxyhydrogen burner, the temperature of the core deposited layer portion on the inner wall side is different. Due to this, there is an increase or decrease in the content of GeO 2 which increases the refractive index of the core deposit layer (core glass) produced.

したがつて、得られた光フアイバ母材を線引き
した光フアイバは、コアの屈折率、及び屈折率分
布がバラツクという問題点がある。
Therefore, the optical fiber obtained by drawing the optical fiber base material has a problem in that the refractive index and refractive index distribution of the core vary.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明方法
は、内付化学気相堆積法により光フアイバ母材を
製造するにあたり、第1図のように、ロツト生産
されたそれぞれのクラツド層となる石英ガラス管
1の内壁に、石英ガラス管1の肉厚d1と、クラツ
ド堆積層11の厚さの和Dが、常に一定となるよ
うに、クラツド堆積層11を調整生成し、その
後、石英ガラス管1の内面に、所望の厚さのコア
堆積層20を生成して、コア堆積時の温度が一定
になるようにしたものである。
In order to solve the above-mentioned conventional problems, the method of the present invention, when manufacturing an optical fiber base material by an internal chemical vapor deposition method, as shown in FIG. A cladding layer 11 is adjusted and formed on the inner wall of the tube 1 so that the sum D of the wall thickness d1 of the quartz glass tube 1 and the thickness of the cladding layer 11 is always constant, and then the cladding layer 11 is formed on the inner wall of the quartz glass tube. A core deposited layer 20 of a desired thickness is formed on the inner surface of the core 1 to keep the temperature constant during core deposition.

〔作用〕[Effect]

上記本発明方法によれば、ロツト毎に異なる石
英ガラス管1の肉厚d1は、クラツド堆積層11に
より調整されて、その厚さの和Dは、常に一定で
ある。
According to the method of the present invention, the wall thickness d1 of the quartz glass tube 1, which varies from lot to lot, is adjusted by the cladding deposited layer 11, and the sum D of the thicknesses is always constant.

したがつて、コア堆積時において、石英ガラス
管1の外側を酸水素バーナーで所定の温度に加熱
すると、熱伝達量が一定となり、内壁側のコア堆
積層部分の温度をGeO2の含有量が最大となる所
定温度に一定することができる。
Therefore, when the outside of the quartz glass tube 1 is heated to a predetermined temperature with an oxyhydrogen burner during core deposition, the amount of heat transfer becomes constant, and the temperature of the core deposited layer portion on the inner wall side increases as the GeO 2 content increases. The temperature can be kept constant at the maximum predetermined temperature.

即ち、生成されるコア堆積層20は、GeO2
含有量が一定となり、得られた光フアイバ母材を
線引きした光フアイバは、コアの屈折率、及び屈
折率分布が一定となり安定する。
That is, the generated core deposited layer 20 has a constant GeO 2 content, and the optical fiber obtained by drawing the obtained optical fiber base material has a constant core refractive index and a stable refractive index distribution.

〔実施例〕〔Example〕

以下図示実施例により、本発明方法を具体的に
説明する。なお、全国を通じて同一符号は同一対
象物を示す。
The method of the present invention will be specifically explained below with reference to the illustrated examples. Note that the same code indicates the same object throughout the country.

第1図は本発明方法の1実施例の光フアイバ母
材の断面図である。
FIG. 1 is a cross-sectional view of an optical fiber preform in one embodiment of the method of the present invention.

本発明方法は、まず石英ガラス管1の肉厚d1
予め測定した後に、石英ガラス管1の両端に投入
側サポート管2と排気側サポート管3を接続し、
第3図に示す装置を使用して、ガラス旋盤4を駆
動し、石英ガラス管1を回転しながら、ガス供給
装置10より、クラツド堆積層11の原料ガスで
あるところのSiCL4、POCL3、を酸素とともに、
石英ガラス管1内に送風、加熱して、(D−d1
の厚さのクラツド堆積層11を生成する。このD
は、各ロツトの石英ガラス管1の肉厚の最大のも
のより、わずかに大きい寸法である。
In the method of the present invention, first, the wall thickness d 1 of the quartz glass tube 1 is measured in advance, and then the input side support tube 2 and the exhaust side support tube 3 are connected to both ends of the quartz glass tube 1.
Using the apparatus shown in FIG. 3, while driving the glass lathe 4 and rotating the quartz glass tube 1, SiCL 4 , POCL 3 , which is the raw material gas for the cladding layer 11, is supplied from the gas supply device 10. with oxygen,
By blowing air into the quartz glass tube 1 and heating it, (D-d 1 )
A cladding deposited layer 11 having a thickness of . This D
is slightly larger than the maximum wall thickness of the quartz glass tube 1 of each lot.

例えば、石英ガラス管1の肉厚d1が、1.4mmの
場合は、SiCL4の流量を500c.c./分、酸水素バー
ナー8の速度を200mm/分で、10回往復させ、石
英ガラス管1の外側温度を1350℃で加熱して、厚
さが0.50mmのクラツド堆積層11を生成する。
For example, if the wall thickness d 1 of the quartz glass tube 1 is 1.4 mm, the flow rate of SiCL 4 is 500 c.c./min, the speed of the oxyhydrogen burner 8 is 200 mm/min, and the quartz glass tube is The outside temperature of the tube 1 is heated to 1350° C. to produce a cladding deposit layer 11 with a thickness of 0.50 mm.

また、石英ガラス管1の肉厚d1が、1.5mmの場
合は、SiCL4の流量を500c.c./分、酸水素バーナ
ー8の速度200mm/分で、8回往復させ、石英ガ
ラス管1の外側温度を1350℃で加熱して、厚さが
0.40mmのクラツド堆積層11を生成する。
In addition, when the wall thickness d 1 of the quartz glass tube 1 is 1.5 mm, the flow rate of SiCL 4 is 500 c.c./min, the speed of the oxyhydrogen burner 8 is 200 mm/min, and the quartz glass tube is Heating the outside temperature of 1 to 1350℃, the thickness
A cladding deposit layer 11 of 0.40 mm is generated.

このようにして、石英ガラス管1の肉厚d1と、
クラツド堆積層11の厚さの和Dを、例えば、
1.9mmとする。
In this way, the wall thickness d 1 of the quartz glass tube 1 and
The sum D of the thickness of the cladding layer 11 is, for example,
Set to 1.9mm.

このようにクラツド堆積層11を生成後、切り
換えバルブ9を切換え、コア堆積層20の原料ガ
スであるところのSiCL4、GeCL4、POCL3を酸素
とともに、石英ガラス管1内に送風し、酸水素バ
ーナー8で加熱し、例えば50回往復運動させ、
0.5mmのコア堆積層20を生成する。
After forming the cladding layer 11 in this manner, the switching valve 9 is switched to blow SiCL 4 , GeCL 4 , and POCL 3 , which are the raw material gases for the core layer 20 , into the quartz glass tube 1 along with oxygen. Heat it with a hydrogen burner 8 and make it reciprocate, for example, 50 times,
A core deposit layer 20 of 0.5 mm is generated.

その後原料ガスの供給を停止し、酸水素バーナ
ー8の火力を増加して、石英ガラス管1を1700℃
前後に加熱し軟化させ、表面張力の作用で中空の
石英ガラス管1を中実化している。
After that, the supply of raw material gas was stopped, and the thermal power of the oxyhydrogen burner 8 was increased to heat the quartz glass tube 1 to 1700℃.
The hollow quartz glass tube 1 is made solid by heating it back and forth to soften it and by the action of surface tension.

上述のように、石英ガラス管1の肉厚d1と、ク
ラツド堆積層11の厚さの和Dを、各ロツトにつ
いて一定にし、コア堆積層20の生成時に、石英
ガラス管1の外側を酸水素バーナーで所定の温度
に加熱すると、熱伝達量が一定となるので、肉壁
側のコア堆積層部分の温度をGeO2の含有量が最
大となる所定温度に一定とすることができる。
As described above, the sum D of the wall thickness d 1 of the quartz glass tube 1 and the thickness of the cladding layer 11 is made constant for each lot, and when the core layer 20 is formed, the outside of the quartz glass tube 1 is exposed to acid. When heated to a predetermined temperature with a hydrogen burner, the amount of heat transfer becomes constant, so the temperature of the core deposited layer portion on the wall side can be kept constant at the predetermined temperature at which the content of GeO 2 is maximum.

したがつて、生成されるコア堆積層20は
GeO2の含有量が一定となり、得られた光フアイ
バ母材を線引きした光フアイバは、コアの屈折
率、及び屈折率分布が一定となる安定する。
Therefore, the generated core deposit layer 20 is
The content of GeO 2 becomes constant, and the optical fiber obtained by drawing the obtained optical fiber base material is stable, with the refractive index of the core and the refractive index distribution being constant.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法は、内付化学気
相堆積法により光フアイバ母材を製造するにあた
り、石英ガラス管の肉厚の生産ロツト毎のバラツ
キを、石英ガラス管の肉厚とクラツド堆積層の厚
さの和を一定に調整した後に、コア堆積層を生成
する方法であつて、光フアイバ母材を線引きして
得られる光フアイバの屈折率、及び屈折率分布の
バラツキがなくなり、安定した特性が得られると
いう、実用上で優れた効果がある。
As explained above, the method of the present invention, when manufacturing an optical fiber base material by the internal chemical vapor deposition method, takes into account the variation in the wall thickness of the silica glass tube from production lot to production lot. This method generates a core deposited layer after adjusting the sum of the thicknesses of the layers to a constant value, and the method eliminates variations in the refractive index and refractive index distribution of the optical fiber obtained by drawing the optical fiber base material, making it stable. It has excellent practical effects in that it provides the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の1実施例の光フアイバ母
材の断面図、第2図は従来手段による光フアイバ
母材の断面図、第3図は光フアイバ母材の製造装
置の構成図である。図において、 1は石英ガラス管、2は投入側サポート管、3
は排気側サポート管、4はガラス旋盤、8は酸水
素バーナー、10はガス供給装置、11はクラツ
ド堆積層、20はコア堆積層を示す。
Fig. 1 is a sectional view of an optical fiber preform according to an embodiment of the method of the present invention, Fig. 2 is a sectional view of an optical fiber preform according to a conventional method, and Fig. 3 is a configuration diagram of an optical fiber preform manufacturing apparatus. be. In the figure, 1 is a quartz glass tube, 2 is an input side support tube, and 3 is a quartz glass tube.
1 is an exhaust side support pipe, 4 is a glass lathe, 8 is an oxyhydrogen burner, 10 is a gas supply device, 11 is a cladding layer, and 20 is a core layer.

Claims (1)

【特許請求の範囲】 1 内付化学気相堆積法により光フアイバ母材を
製造するにあたり、 ロツト生産されたそれぞれのクラツド層となる
石英ガラス管1の肉厚と、該石英ガラス管1の内
壁に形成するクラツド堆積層11の厚さの和を、
常に一定とすべく、該クラツド堆積層11を調整
生成し、 その後、該クラツド堆積層11の内面に、コア
堆積層20を生成することを特徴とする光フアイ
バ母材の製造方法。
[Claims] 1. In manufacturing an optical fiber base material by an internal chemical vapor deposition method, the wall thickness of the quartz glass tube 1 forming each cladding layer produced in a lot and the inner wall of the quartz glass tube 1 are determined. The sum of the thicknesses of the cladding layer 11 formed in
A method for manufacturing an optical fiber base material, which comprises adjusting and forming the cladding layer 11 so as to keep the cladding layer constant, and then forming a core layer 20 on the inner surface of the cladding layer 11.
JP27227985A 1985-12-03 1985-12-03 Production of parent material for optical fiber Granted JPS62132740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27227985A JPS62132740A (en) 1985-12-03 1985-12-03 Production of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27227985A JPS62132740A (en) 1985-12-03 1985-12-03 Production of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS62132740A JPS62132740A (en) 1987-06-16
JPH033618B2 true JPH033618B2 (en) 1991-01-21

Family

ID=17511637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27227985A Granted JPS62132740A (en) 1985-12-03 1985-12-03 Production of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS62132740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385681B2 (en) * 2003-08-11 2009-12-16 住友電気工業株式会社 Optical fiber preform manufacturing method and optical fiber manufacturing method

Also Published As

Publication number Publication date
JPS62132740A (en) 1987-06-16

Similar Documents

Publication Publication Date Title
US4378985A (en) Method and apparatus for forming an optical waveguide fiber
US4235616A (en) Optical waveguide manufacturing process and article
US4528009A (en) Method of forming optical fiber having laminated core
US4257797A (en) Optical fiber fabrication process
CA2328143A1 (en) Method of making an optical fiber preform
US4191545A (en) Optical fiber fabrication process
GB2043623A (en) Process for the production of glass fibres
US4388095A (en) Method of producing a glass layer on an interior surface of a hollow body
CN100478291C (en) Methods for modifying ovality of optical fiber preforms and method for producing optical fiber
JP4124198B2 (en) Method of manufacturing optical fiber preform using MCVD method including dehydration and dechlorination processes, and optical fiber manufactured by this method
JPH033618B2 (en)
Dabby et al. Borosilicate clad fused silica core fiber optical waveguide with low transmission loss prepared by a high‐efficiency process
JPH10203842A (en) Production of optical fiber base material
JPH0210095B2 (en)
JPH03242342A (en) Production of preform for optical fiber
JPH04243931A (en) Production of optical fiber preform
JPH0333660B2 (en)
JPH02304B2 (en)
JP2624985B2 (en) Manufacturing method of high refractive index difference micro core base material
JPH0867524A (en) Production of preform of optical fiber
JPH10330129A (en) Production of porous glass body for optical fiber
JPS62108748A (en) Preparation of glass fiber base material
EP0023209B1 (en) Improved optical fiber fabrication process
JPH0475174B2 (en)
JPS61222936A (en) Plasma cvd process