JPH10203842A - Production of optical fiber base material - Google Patents

Production of optical fiber base material

Info

Publication number
JPH10203842A
JPH10203842A JP10008392A JP839298A JPH10203842A JP H10203842 A JPH10203842 A JP H10203842A JP 10008392 A JP10008392 A JP 10008392A JP 839298 A JP839298 A JP 839298A JP H10203842 A JPH10203842 A JP H10203842A
Authority
JP
Japan
Prior art keywords
gas
optical fiber
natural gas
quartz tube
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10008392A
Other languages
Japanese (ja)
Inventor
Shoken Go
承憲 呉
Chinkan Kin
鎭漢 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH10203842A publication Critical patent/JPH10203842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • C03B2207/38Fuel combinations or non-standard fuels, e.g. H2+CH4, ethane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform improvement of quality and reduction in cost by heating a silica tube with a heat source generating a small amount of water component. SOLUTION: A natural gas 24 is charged to a burner 20 for heating a silica tube 10 in a flow rate of 60-70(L/min) by gas flow rate-regulating part 26b controlled by computer controlling part 28, and oxygen 22 is charged in an amount capable of completely burning the natural gas by the gas flow rate- regulating part 26a. One of LNG, LPG, methane gas and propane gas is used as the natural gas 24 for enabling the deposition and shrinking efficiency of the silica tube 10 to be increased by using the flow rate as small as it can and by using the smaller flow rate of the natural gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ母材製造
方法に係り、特に、MCVD法の石英管加熱手法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform, and more particularly to a quartz tube heating method of the MCVD method.

【0002】[0002]

【従来の技術】現在では、石英を主材料とし、屈折制御
のために燐やゲルマニウムなどの酸化物を混入した石英
系光ファイバが広く用いられている。その光ファイバの
母材製造方法には、MCVD法(modified chemical vap
our deposition)、VAD法(vapour phase axial depos
ition)、OVD法(outside vapor phase deposition)が
あり、高品質を得やすいMCVD法が主に用いられてい
る。
2. Description of the Related Art At present, quartz optical fibers containing quartz as a main material and containing an oxide such as phosphorus or germanium for controlling refraction are widely used. The optical fiber preform manufacturing method includes an MCVD method (modified chemical vap).
our deposition), VAD method (vapour phase axial depos
), OVD method (outside vapor phase deposition), and the MCVD method that easily obtains high quality is mainly used.

【0003】図1に示すようにMCVD法は、石英管1
0の両端をガラス旋盤50のチャック52に固定させ、
その石英管10の内部に原料ガス供給系56から、酸素
を利用してSiCl4、GeCl4、適正量の添加物質か
ら組成された原料ガスを輸送する。そして、石英管50
を回転させながら、熱源として水素及び酸素を供給する
バーナー20で石英管10を加熱することにより石英管
10の内部に高温領域(hot zone)を形成し、該高温領域
で原料ガスを反応させて粒子化する。このときの反応式
はSiCl4+O2→SiO2+2Cl2,GeCl4+O2
→GeO2+2Cl2である。反応後の粒子は、高温領域
よりも先の温度の低い石英管10の内側面に付着する。
この反応を実施しつつバーナー20を原料ガス12の流
れ方向へ適正速度で移動させると、石英管10の内側面
に徐々に粒子が付着していく。またこのときに、バーナ
ー20の通過部分はその高熱によって付着粒子が焼結(s
intering)し、ガラス状に変換される。
[0003] As shown in FIG.
0 are fixed to the chuck 52 of the glass lathe 50,
A source gas composed of SiCl 4 , GeCl 4 , and an appropriate amount of an additive is transported from the source gas supply system 56 into the quartz tube 10 using oxygen. And the quartz tube 50
By rotating the quartz tube 10 with a burner 20 that supplies hydrogen and oxygen as a heat source, a high temperature zone (hot zone) is formed inside the quartz tube 10 and the source gas is reacted in the high temperature region. Particles. The reaction formula at this time is SiCl 4 + O 2 → SiO 2 + 2Cl 2 , GeCl 4 + O 2
→ GeO 2 + 2Cl 2 . The particles after the reaction adhere to the inner surface of the quartz tube 10 having a lower temperature than the high temperature region.
When the burner 20 is moved at an appropriate speed in the flow direction of the raw material gas 12 while performing this reaction, particles gradually adhere to the inner surface of the quartz tube 10. At this time, the passing portion of the burner 20 causes the adhered particles to sinter (s
intering) and converted to a glassy state.

【0004】光ファイバ母材では、上記反応によって石
英管10の内側面にクラッド層を形成した後、原料ガス
の成分を変えてコア層を形成する。そして、石英管10
の外側から2300℃以上で加熱して石英管10を収縮
させるコラプス(collapse)過程を経た後、クローズ(clo
se)過程を行うことにより、光ファイバ母材は製造され
る。
In the optical fiber preform, after forming a cladding layer on the inner surface of the quartz tube 10 by the above reaction, a core layer is formed by changing the components of the raw material gas. And the quartz tube 10
After a collapse process in which the quartz tube 10 is shrunk by being heated at 2300 ° C. or more from the outside, the quartz tube 10 is closed.
The optical fiber preform is manufactured by performing the process (se).

【0005】[0005]

【発明が解決しようとする課題】上記のような光ファイ
バ母材製造方法において、石英管を加熱する熱源のバー
ナーは水素と酸素を利用している。したがって、バーナ
ーによる石英管加熱過程で水素と酸素の反応からかなり
の水が発生し、製造設備に錆びが発生して寿命に影響す
る。また、発生する水が多いと、石英管表面の水酸基
(OH-)含有量を増加させるので、光ファイバの伝送
損失にも影響してくる。さらに、水素は高価なので高コ
ストであるし、爆発の危険性から取り扱いにも注意を要
する。
In the above optical fiber preform manufacturing method, a burner as a heat source for heating the quartz tube uses hydrogen and oxygen. Therefore, during the heating of the quartz tube by the burner, considerable water is generated from the reaction between hydrogen and oxygen, and rust is generated in the manufacturing equipment, which affects the life. Further, when a large amount of water is generated, the hydroxyl group (OH ) content on the surface of the quartz tube is increased, which also affects the transmission loss of the optical fiber. Furthermore, hydrogen is expensive and therefore expensive, and requires careful handling due to the danger of explosion.

【0006】[0006]

【課題を解決するための手段】水の発生を抑制するため
に本発明では、天然ガスを熱源に使用する光ファイバ母
材製造方法とする。これにより、水酸基(OH-)を最
小限に抑え、より安価な天然ガスの使用でコストを減ら
すものである。また天然ガスは、水素に比べ危険性が少
なく取り扱いが容易である。
SUMMARY OF THE INVENTION In order to suppress the generation of water, the present invention provides a method for manufacturing an optical fiber preform using natural gas as a heat source. This minimizes hydroxyl groups (OH ) and reduces costs by using cheaper natural gas. Natural gas is less dangerous than hydrogen and is easier to handle.

【0007】より具体的には、MCVD法による光ファ
イバ母材製造方法において、光ファイバ母材となる石英
管の内部に原料ガスを送りつつ、ガス流量制御部により
流量を調整して酸素及び天然ガスを熱源に供給し加熱す
ることにより、前記石英管の内壁にクラッド層及びコア
層を形成する過程と、該コア層形成後の石英管を、前記
ガス流量制御部により流量を調整して酸素及び天然ガス
を熱源に供給し加熱することにより、収縮させる過程
と、を実施することを特徴とする。クラッド層及びコア
層を形成する過程では、天然ガスの流量を60〜70リ
ットル/分に調整して熱源に供給する。このときの酸素
は、天然ガスを完全燃焼させられる流量に調整して熱源
に供給する。また、コア層形成後の石英管を収縮させる
過程では、天然ガスの流量を100リットル/分に調整
して熱源に供給する。
More specifically, in a method for manufacturing an optical fiber preform by the MCVD method, while feeding a raw material gas into a quartz tube serving as an optical fiber preform, the flow rate is adjusted by a gas flow rate control unit to control oxygen and natural gas. The process of forming a clad layer and a core layer on the inner wall of the quartz tube by supplying a gas to a heat source and heating the same, and adjusting the flow rate of the quartz tube after the core layer is formed by the gas flow control unit so that And shrinking by supplying natural gas to a heat source and heating the heat source. In the process of forming the clad layer and the core layer, the flow rate of the natural gas is adjusted to 60 to 70 l / min and supplied to the heat source. The oxygen at this time is adjusted to a flow rate at which natural gas can be completely burned and supplied to the heat source. In the process of shrinking the quartz tube after the core layer is formed, the flow rate of natural gas is adjusted to 100 liter / min and supplied to the heat source.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施形態につき添
付図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0009】図2は、図1のようなMCVD法のバーナ
ー20部分を拡大して示した説明図である。図2に示す
ように、熱源のバーナー20に天然ガス24を供給する
ようにしている。
FIG. 2 is an explanatory view showing an enlarged view of the burner 20 of the MCVD method as shown in FIG. As shown in FIG. 2, the natural gas 24 is supplied to the burner 20 as a heat source.

【0010】石英管10はガラス旋盤50のチャック5
2によって両端を固定されている。その石英管10の内
部へ原料ガス供給系52から、酸素をキャリアとしてS
iCl4、GeCl4、POCl3、フレオン(freon)など
の適正量の添加物質から組成された原料ガス12を流
す。そして、石英管50を50rpmで回転させながら
バーナー20により加熱し、高温領域14を形成する。
The quartz tube 10 is a chuck 5 of a glass lathe 50.
Both ends are fixed by 2. From the raw material gas supply system 52 to the inside of the quartz tube 10, oxygen is used as a carrier and S
A source gas 12 composed of an appropriate amount of an additive substance such as iCl 4 , GeCl 4 , POCl 3 , freon, etc. is flowed. Then, the quartz tube 50 is heated by the burner 20 while rotating at 50 rpm to form the high temperature region 14.

【0011】バーナー20は石英管10を表面温度19
00℃程度に加熱するものであるが、その際、コンピュ
ータ制御部28に従うガス流量制御部26bにより、天
然ガス24は60〜70(リットル/分)の流量で供給
され、また、コンピュータ制御部28に従うガス流量制
御部26aにより、酸素22は天然ガス24を完全燃焼
させる量だけ供給される。このように天然ガス24はで
きるだけ流量を少なくしてあり、その少ない流量で石英
管10の蒸着や収縮効率を高めるために、液化天然ガス
(LNG)、液化石油ガス(LPG)、特に、メタンガ
ス、プロパンガスのいずれかを使用する。
The burner 20 sets the quartz tube 10 at a surface temperature 19.
At this time, the natural gas 24 is supplied at a flow rate of 60 to 70 (liter / minute) by the gas flow control unit 26b according to the computer control unit 28. The oxygen 22 is supplied in such an amount as to completely burn the natural gas 24 by the gas flow control unit 26a according to the following. As described above, the flow rate of the natural gas 24 is reduced as much as possible. In order to increase the efficiency of vapor deposition and shrinkage of the quartz tube 10 at the low flow rate, liquefied natural gas (LNG), liquefied petroleum gas (LPG), particularly methane gas, Use any of the propane gases.

【0012】このバーナー20を熱源として石英管10
の長手方向に適切な速度で移動させることにより高温領
域14を移動させ、前述のようにしてクラッド層16と
コア層18を形成していく。
Using the burner 20 as a heat source, the quartz tube 10
By moving the high-temperature region 14 in the longitudinal direction at an appropriate speed, the clad layer 16 and the core layer 18 are formed as described above.

【0013】その後は、原料ガス供給系56からC
2、O2を石英管10へ送り、そして、ガス流量制御部
26bの制御により天然ガス24を100(リットル/
分)の流量でバーナー20へ供給する。これによる最適
条件で、バーナー20は2250〜2350℃の温度を
保持しつつ、石英管10の長手方向に毎分8cmの速度
で移動し、石英管10の内径が2〜3mmとされる。こ
のときに、石英管10の内部圧力は1.1気圧で一定に
保持する。なお、バーナー20は、石英管10へ送る原
料ガス12の成分によっては毎分4cmや毎分1.5c
mの速度で移動させることもできる。
Thereafter, C is supplied from the raw material gas supply system 56 to C
l 2 and O 2 are sent to the quartz tube 10 and the natural gas 24 is controlled to 100 (liter / liter) under the control of the gas flow controller 26b.
Minute) to the burner 20. Under the optimum conditions, the burner 20 moves at a speed of 8 cm per minute in the longitudinal direction of the quartz tube 10 while maintaining the temperature of 2250 to 2350 ° C., and the inner diameter of the quartz tube 10 is set to 2 to 3 mm. At this time, the internal pressure of the quartz tube 10 is kept constant at 1.1 atm. Note that the burner 20 may be 4 cm / min or 1.5 c / min depending on the composition of the raw material gas 12 sent to the quartz tube 10.
It can also be moved at a speed of m.

【0014】次いで、反対側から石英管10の端部を長
く加熱して完全に密封した後、石英管10を30rpm
で回転させながらバーナー20を毎分0.8cmの速度
で徐々に移動させる最適条件で石英管10全体を完全に
収縮させ、光ファイバ母材が製造される。
Next, after heating the end of the quartz tube 10 from the opposite side for a long time to completely seal it, the quartz tube 10 is cooled to 30 rpm.
The entirety of the quartz tube 10 is completely shrunk under the optimal conditions in which the burner 20 is gradually moved at a speed of 0.8 cm per minute while rotating at a speed of, and an optical fiber preform is manufactured.

【0015】以上の過程で製造された光ファイバ母材の
表面には炭素成分と硫黄成分が残る場合も考えられ、従
来ではこれが問題となって天然ガスの使用はできなかっ
た。本実施形態ではこれを、上記のような天然ガス及び
酸素の供給条件により天然ガスの完全燃焼を実現するこ
とで解決し、また、炭素成分と硫黄成分が残った場合で
もフッ酸エッチングにより除去することで解決する。
It is considered that a carbon component and a sulfur component may remain on the surface of the optical fiber preform manufactured in the above process, and this has been a problem so far, and natural gas cannot be used. In the present embodiment, this is solved by realizing complete combustion of the natural gas under the supply conditions of the natural gas and oxygen as described above, and even if the carbon component and the sulfur component remain, they are removed by hydrofluoric acid etching. To solve it.

【0016】[0016]

【発明の効果】本発明によれば、熱源に天然ガスを使用
するようにしたことにより、ガス費用を1/5ほどに減
らすことができ、光ファイバ母材の製造コストを節減し
且つ製造時間も短縮させることができるうえ、取り扱い
も容易となる。また、従来の酸素/水素バーナーのよう
な点火時の爆発音がなくなるので快適な作業環境を具現
することができ、さらに、水の発生が抑えられて設備の
劣化を防止することができる。そして、石英管表面の水
酸基含有量が最小限に抑えられ、光ファイバの伝送損失
を良好に保つことができる。
According to the present invention, by using natural gas as the heat source, the gas cost can be reduced to about 1/5, the production cost of the optical fiber preform can be reduced, and the production time can be reduced. Can be shortened, and handling becomes easy. Further, since the explosion sound at the time of ignition as in a conventional oxygen / hydrogen burner is eliminated, a comfortable working environment can be realized, and furthermore, the generation of water can be suppressed and the deterioration of the equipment can be prevented. Then, the hydroxyl group content on the surface of the quartz tube is minimized, and the transmission loss of the optical fiber can be kept good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】MCVD法による光ファイバ母材製造過程の説
明図。
FIG. 1 is an explanatory diagram of an optical fiber preform manufacturing process by an MCVD method.

【図2】本発明の光ファイバ母材製造方法を示した説明
図。
FIG. 2 is an explanatory view showing a method for producing an optical fiber preform according to the present invention.

【符号の説明】[Explanation of symbols]

10 石英管 12 原料ガス 14 高温領域(ホットゾーン) 16 クラッド層 18 コア層 20 バーナー 22 酸素 24 天然ガス 26a,26b ガス流量制御部 28 コンピュータ制御部 DESCRIPTION OF SYMBOLS 10 Quartz tube 12 Source gas 14 High temperature area (hot zone) 16 Cladding layer 18 Core layer 20 Burner 22 Oxygen 24 Natural gas 26a, 26b Gas flow control unit 28 Computer control unit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ母材となる石英管を加熱する
熱源に天然ガスを使用するようにしたことを特徴とする
光ファイバ母材製造方法。
1. A method for manufacturing an optical fiber preform, wherein natural gas is used as a heat source for heating a quartz tube serving as an optical fiber preform.
【請求項2】 天然ガスとして液化天然ガス又は液化石
油ガスを用いる請求項1記載の光ファイバ母材製造方
法。
2. The optical fiber preform manufacturing method according to claim 1, wherein liquefied natural gas or liquefied petroleum gas is used as the natural gas.
【請求項3】 天然ガスとしてメタンガス又はプロパン
ガスを用いる請求項1記載の光ファイバ母財製造方法。
3. The method according to claim 1, wherein methane gas or propane gas is used as natural gas.
【請求項4】 MCVD法による光ファイバ母材製造方
法において、 光ファイバ母材となる石英管の内部に原料ガスを送りつ
つ、ガス流量制御部により流量を調整して酸素及び天然
ガスを熱源に供給し加熱することにより、前記石英管の
内壁にクラッド層及びコア層を形成する過程と、該コア
層形成後の石英管を、前記ガス流量制御部により流量を
調整して酸素及び天然ガスを熱源に供給し加熱すること
により、収縮させる過程と、を実施するようにしたこと
を特徴とする光ファイバ母材製造方法。
4. A method for producing an optical fiber preform by an MCVD method, wherein a raw material gas is fed into a quartz tube serving as an optical fiber preform, and a flow rate is adjusted by a gas flow rate control unit to supply oxygen and natural gas to a heat source. By supplying and heating, a step of forming a clad layer and a core layer on the inner wall of the quartz tube, and adjusting the flow rate of the quartz tube after the core layer is formed by the gas flow rate control unit to reduce oxygen and natural gas. A process of contracting by supplying to a heat source and heating, thereby performing an optical fiber preform manufacturing method.
【請求項5】 天然ガスとして液化天然ガス又は液化石
油ガス、あるいはメタンガス又はプロパンガスのいずれ
かを用いる請求項4記載の光ファイバ母材製造方法。
5. The method for producing an optical fiber preform according to claim 4, wherein one of liquefied natural gas or liquefied petroleum gas, methane gas and propane gas is used as the natural gas.
【請求項6】 クラッド層及びコア層を形成する過程
で、天然ガスの流量を60〜70リットル/分に調整し
て熱源に供給する請求項4又は請求項5記載の光ファイ
バ母材製造方法。
6. The method for producing an optical fiber preform according to claim 4, wherein in the step of forming the clad layer and the core layer, the flow rate of the natural gas is adjusted to 60 to 70 l / min and supplied to the heat source. .
【請求項7】 コア層形成後の石英管を収縮させる過程
で、天然ガスの流量を100リットル/分に調整して熱
源に供給する請求項6記載の光ファイバ母材製造方法。
7. The method of manufacturing an optical fiber preform according to claim 6, wherein in the step of shrinking the quartz tube after forming the core layer, the flow rate of the natural gas is adjusted to 100 liter / min and supplied to the heat source.
【請求項8】 クラッド層及びコア層を形成する過程
で、天然ガスを完全燃焼させられる流量に調整して酸素
を熱源に供給する請求項4〜7のいずれか1項に記載の
光ファイバ母材製造方法。
8. The optical fiber mother according to claim 4, wherein in the step of forming the cladding layer and the core layer, the flow rate of the natural gas is adjusted to a value at which the natural gas can be completely burned, and oxygen is supplied to the heat source. Material manufacturing method.
【請求項9】 熱源の温度を2250〜2350℃に維
持するとともに毎分8cm、4cm又は1.5cmのいずれか
の速度で移動させながら石英管を収縮させる請求項4〜
8のいずれか1項に記載の光ファイバ母材製造方法。
9. The quartz tube is shrunk while maintaining the temperature of the heat source at 2250-2350 ° C. and moving at a speed of 8 cm, 4 cm or 1.5 cm per minute.
9. The method for producing an optical fiber preform according to any one of items 8 to 8.
【請求項10】 コア層形成後の石英管を収縮させる過
程で、石英管を30rpmで回転させながら熱源を毎分
0.8cmの速度で移動させて前記石英管内部を密閉する
請求項4〜9のいずれか1項に記載の光ファイバ母材製
造方法。
10. A process for shrinking the quartz tube after the core layer is formed, wherein the heat source is moved at a speed of 0.8 cm per minute while rotating the quartz tube at 30 rpm to seal the inside of the quartz tube. 10. The method for producing an optical fiber preform according to any one of items 9 to 9.
JP10008392A 1997-01-20 1998-01-20 Production of optical fiber base material Pending JPH10203842A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1997P1473 1997-01-20
KR1019970001473A KR100288739B1 (en) 1997-01-20 1997-01-20 Optical preform manufacturing method

Publications (1)

Publication Number Publication Date
JPH10203842A true JPH10203842A (en) 1998-08-04

Family

ID=19495087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10008392A Pending JPH10203842A (en) 1997-01-20 1998-01-20 Production of optical fiber base material

Country Status (6)

Country Link
JP (1) JPH10203842A (en)
KR (1) KR100288739B1 (en)
CN (1) CN1195110A (en)
DE (1) DE19800935A1 (en)
FR (1) FR2758549B1 (en)
GB (1) GB2321243B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742429B2 (en) * 2001-02-19 2011-08-10 住友電気工業株式会社 Method for producing glass particulate deposit
KR100398070B1 (en) * 2001-10-30 2003-09-19 엘지전선 주식회사 Water bocking method in the interfacing surface during the joining of core and clad
KR100490135B1 (en) * 2001-11-12 2005-05-17 엘에스전선 주식회사 Method of making optical fiber preform having ultimate low PMD
US20050180723A1 (en) * 2004-02-12 2005-08-18 Panorama Flat Ltd. Apparatus, method, and computer program product for structured waveguide including holding bounding region
US20050180675A1 (en) * 2004-02-12 2005-08-18 Panorama Flat Limited, A Western Australia Corporation Apparatus, method, and computer program product for structured waveguide including performance_enhancing bounding region
US20050180722A1 (en) * 2004-02-12 2005-08-18 Panorama Flat Ltd. Apparatus, method, and computer program product for structured waveguide transport
CN104129915A (en) * 2014-08-18 2014-11-05 苏州新协力环保科技有限公司 Novel manufacturing method of optical fiber performs

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230472A (en) * 1979-02-22 1980-10-28 Corning Glass Works Method of forming a substantially continuous optical waveguide
JPS5614443A (en) * 1979-07-17 1981-02-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of preform for optical fiber
US4280829A (en) * 1980-05-12 1981-07-28 Corning Glass Works Apparatus for controlling internal pressure of a bait tube
US4310339A (en) * 1980-06-02 1982-01-12 Corning Glass Works Method and apparatus for forming an optical waveguide preform having a continuously removable starting member
JPS60122740A (en) * 1983-12-07 1985-07-01 Furukawa Electric Co Ltd:The Manufacture of soot for optical fiber
JPS6117432A (en) * 1984-07-02 1986-01-25 Sumitomo Electric Ind Ltd Manufacture of optical fiber preform
JP3118822B2 (en) * 1990-09-07 2000-12-18 住友電気工業株式会社 Method for manufacturing glass articles
US5397372A (en) * 1993-11-30 1995-03-14 At&T Corp. MCVD method of making a low OH fiber preform with a hydrogen-free heat source

Also Published As

Publication number Publication date
GB9801084D0 (en) 1998-03-18
GB2321243B (en) 1999-08-25
KR19980066124A (en) 1998-10-15
FR2758549A1 (en) 1998-07-24
DE19800935A1 (en) 1998-07-30
GB2321243A (en) 1998-07-22
CN1195110A (en) 1998-10-07
KR100288739B1 (en) 2001-05-02
FR2758549B1 (en) 1999-10-08

Similar Documents

Publication Publication Date Title
EP1001912B1 (en) Apparatus and method for overcladding optical fiber preform rod and optical fiber drawing method
US11370691B2 (en) Enhanced particle deposition system and method
JP2007516929A (en) Manufacturing method of optical fiber preform
JPH10203842A (en) Production of optical fiber base material
JP5163416B2 (en) Method for producing porous glass base material
JP2005092211A (en) Low loss optical fiber and manufacturing method of optical fiber preform
US20050076680A1 (en) Method and apparatus for manufacturing optical fiber preforms using the outside vapor deposition process
US20050000252A1 (en) Method and apparatus for fabricating optical fiber preform using double torch in mcvd
WO2007054961A2 (en) Optical fiber preform having large size soot porous body and its method of preparation
US11780761B2 (en) Method for producing porous glass fine particle body and method for producing optical fiber preform
JPS6117433A (en) Manufacture of optical fiber preform
JP7195703B2 (en) Burner for synthesizing porous body and method for producing porous body
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
JPS6117434A (en) Manufacture of optical fiber preform
JPH0582333B2 (en)
JPH0333660B2 (en)
JPS6168337A (en) Production of parent material for optical fiber
JPS61222934A (en) Production of optical fiber preform
JPH033618B2 (en)
JPS63319224A (en) Production of base material for optical fiber
KR20010083653A (en) Method for manufacturing preform of optical fiber adapting MCVD process using multi-burner
JPH0114181B2 (en)
JPS60235734A (en) Method for treating quartz based porous glass layer