JPH0244153B2 - - Google Patents

Info

Publication number
JPH0244153B2
JPH0244153B2 JP58031186A JP3118683A JPH0244153B2 JP H0244153 B2 JPH0244153 B2 JP H0244153B2 JP 58031186 A JP58031186 A JP 58031186A JP 3118683 A JP3118683 A JP 3118683A JP H0244153 B2 JPH0244153 B2 JP H0244153B2
Authority
JP
Japan
Prior art keywords
latch
circuit
diode
voltage
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031186A
Other languages
Japanese (ja)
Other versions
JPS59155953A (en
Inventor
Hiroshi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58031186A priority Critical patent/JPS59155953A/en
Publication of JPS59155953A publication Critical patent/JPS59155953A/en
Publication of JPH0244153B2 publication Critical patent/JPH0244153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、CMOS大規模集積回路(以下LSI
と称す)において、電源端子間にサージが印加さ
れた場合にラツチアツプを防ぐためのラツチアツ
プ防止回路に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a CMOS large-scale integrated circuit (hereinafter referred to as LSI).
This invention relates to a latch-up prevention circuit for preventing latch-up when a surge is applied between power supply terminals.

〔従来技術〕[Prior art]

従来のラツチアツプを防止するための対策を施
こしたCMOS LSIの内部回路の、半導体構造の
断面図を第1図に示す。なおこの第1図はN-
板のものを示す。第1図において、1はN-基板、
2はドレインP+拡散領域、3はソースP+拡散領
域、4はN+拡散領域、5はP-ウエル、6はP+
散領域、7はドレインN+拡散領域、8はソース
N+拡散領域、9〜13は酸化膜、14,15は
ゲート電極、16,17は電位がVDDである配
線、18,19は電位がVSSである配線である。
Figure 1 shows a cross-sectional view of the semiconductor structure of the internal circuit of a CMOS LSI that takes conventional latch-up prevention measures. Note that this Figure 1 shows the N - substrate. In Figure 1, 1 is an N -substrate ,
2 is the drain P + diffusion region, 3 is the source P + diffusion region, 4 is the N + diffusion region, 5 is the P - well, 6 is the P + diffusion region, 7 is the drain N + diffusion region, 8 is the source
N + diffusion regions, 9 to 13 are oxide films, 14 and 15 are gate electrodes, 16 and 17 are wirings whose potential is VDD , and 18 and 19 are wirings whose potential is VSS .

このような半導体構造がラツチアツプを起した
場合の等価回路を第2図aに示す。第2図aにお
いて、Tr1は第1図のドレインP+拡散領域2をエ
ミツタ、N-基板1をベース、P-ウエル5をコレ
クタとするラテラルP+N-P-トランジスタ、Tr2
はソースN+拡散領域8をエミツタ、P-ウエル5
をベース、N-基板1をコレクタとするラテラル
N+P-N-トランジスタ、R1はN-基板1とP+拡散
領域6の間のP-ウエル5の抵抗成分、R2はドレ
インP+拡散領域2の抵抗成分、R3はP-ウエル5
とN+拡散領域4の間のN-基板1の抵抗成分、R4
はソースN+拡散領域8の抵抗成分である。
An equivalent circuit when such a semiconductor structure causes latch-up is shown in FIG. 2a. In FIG. 2a, Tr 1 is a lateral P + N - P - transistor with the drain P + diffusion region 2 of FIG. 1 as the emitter, the N - substrate 1 as the base, and the P - well 5 as the collector , Tr 2
emitter source N + diffusion region 8, P - well 5
lateral with base and N - substrate 1 as collector
N + P - N - transistor, R 1 is the resistance component of P - well 5 between N - substrate 1 and P + diffusion region 6, R 2 is the resistance component of drain P + diffusion region 2, R 3 is P - Well 5
and the resistance component of the N - substrate 1 between the N + diffusion region 4, R 4
is the resistance component of the source N + diffusion region 8.

上記第1図に示すように、N-基板1上にN+
散領域4を設けてこれVDD電位を与え、またP-
エル5上にP+拡散領域6を設けてこれにVSS電位
を与えることにより、ラテラルトランジスタ
Tr1,Tr2のコレクタ抵抗R1,R3を、例えば第1
図において上記N+拡散領域4及びP+拡散領域6
を各々図の左右両端に配置した場合に比べて小さ
くすることができる。この結果、上記ラテラルト
ランジスタTr1,Tr2のベースに流れ込むベース
電流を小さくすることができ、ラツチアツプをあ
る程度防止することができる。
As shown in FIG. 1 above, an N + diffusion region 4 is provided on the N - substrate 1 and given a V DD potential, and a P + diffusion region 6 is provided on the P - well 5 and given a V SS potential. By giving the lateral transistor
For example, the collector resistances R 1 and R 3 of Tr 1 and Tr 2 are
In the figure above N + diffusion region 4 and P + diffusion region 6
can be made smaller than if they were placed at both the left and right ends of the figure. As a result, the base current flowing into the bases of the lateral transistors Tr 1 and Tr 2 can be reduced, and latch-up can be prevented to some extent.

ここで、ラツチアツプというのは、外部からの
サージ電流Iが、例えば第2図bのようにトラン
ジスタTr3のエミツタから抵抗R1に流れ込み、外
抵抗R1での電圧降下によつてトランジスタTr2
オンし、抵抗R3に電流が流れ、トランジスタTr1
がオンし、該トランジスタTr1を通して抵抗R1
電流が流れ、これにより上記トランジスタTr2
オンが保持されるというサイリスタ動作のことを
いう。ここでトランジスタTr3のエミツタはN-
基板上の外部端子につながるP+拡散のことであ
る。
Here, latch-up means that a surge current I from the outside flows into the resistor R1 from the emitter of the transistor Tr3 as shown in FIG . turns on, current flows through resistor R3 , and transistor Tr1
is turned on, current flows through the transistor Tr 1 to the resistor R 1 , and this keeps the transistor Tr 2 on. Here, the emitter of transistor Tr 3 is N -
This refers to the P + diffusion that connects to external terminals on the board.

従来のラツチアツプ対策は回路全体を上記のよ
うな構造にする必要があるため、パターンが大き
くなり、LSIの集積度が低くなつたり、また、パ
ターン設計が煩雑になるという欠点があつた。
Conventional latch-up countermeasures require the entire circuit to have the structure described above, which has the disadvantage of increasing the size of the pattern, lowering the degree of LSI integration, and complicating pattern design.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除
去するためになされたもので、基板上に構成され
たLSIにおいて、VDD,VSS電源の両端子間に形成
されたダイオードと、抵抗及びダイオード接続さ
れたMOSトランジスタからなり上記ダイオード
と並列に接続された直列体とを設け、上記MOS
トランジスタの両端電圧を内部回路に供給するよ
うにすることにより、ラツチアツプのトリガとな
るLSI外部からのサージを著しく減少させること
ができ、内部回路については、従来のようなラツ
チアツプ対策を施す必要のないラツチアツプ防止
回路を提供することを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and in an LSI configured on a substrate, a diode formed between both terminals of the V DD and V SS power supplies, a resistor, and a diode are used. A series body consisting of connected MOS transistors and connected in parallel with the above diode is provided, and the above MOS transistor is connected in parallel with the above diode.
By supplying the voltage across the transistor to the internal circuit, it is possible to significantly reduce surges from outside the LSI that trigger latch-up, and there is no need to take conventional latch-up measures for the internal circuit. The purpose is to provide a latch-up prevention circuit.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。第3図はN-基板1上に構成されたLSIの、
2つの電源端子VSSとVDD間に、この発明のラツ
チアツプ防止回路を設けた場合の等価回路を示し
ている。第3図において、20はLSIのVSS端子、
21はVDD端子、22はこれら両端子20,21
間に形成されたP+N-N+ダイオード、23はこの
ダイオード22のN-基板2部分の抵抗成分、4
0はダイオード22と並列に接続された直列体で
あり、該直列体40において24は抵抗、25は
ゲート、ソース、及びP-ウエルが短絡されたN
チヤンネルMOSトランジスタである。また、2
6,27はそれぞれLSIの内部回路に電源を供給
する端子である。
An embodiment of the present invention will be described below with reference to the drawings. Figure 3 shows the LSI configured on the N - board 1.
This figure shows an equivalent circuit when the latch-up prevention circuit of the present invention is provided between two power supply terminals V SS and V DD . In Figure 3, 20 is the V SS terminal of the LSI,
21 is the V DD terminal, 22 is both these terminals 20, 21
23 is the resistance component of the N - substrate 2 portion of this diode 22, 4 is the P + N - N + diode formed between the two.
0 is a series body connected in parallel with the diode 22, in the series body 40, 24 is a resistor, and 25 is an N whose gate, source, and P - well are short-circuited.
It is a channel MOS transistor. Also, 2
6 and 27 are terminals that supply power to the internal circuits of the LSI, respectively.

また、第4図は第3図のP+N-N+ダイオード2
2の構造断面図である。第4図において、1は
N-基板、28はP+拡散領域、29はN+拡散領
域、30は電位がVSSの配線、31は電位がVDD
の配線である。
Also, Figure 4 shows P + N - N + diode 2 in Figure 3.
FIG. 2 is a structural cross-sectional view of No. 2. In Figure 4, 1 is
N - substrate, 28 is a P + diffusion region, 29 is an N + diffusion region, 30 is a wiring whose potential is V SS , 31 is a wiring whose potential is V DD
This is the wiring.

次に作用効果について説明する。 Next, the effects will be explained.

第3図においてダイオード22の抵抗成分23
は、第4図のP+拡散領域28とN+拡散領域29
との距離を耐圧の許す範囲内で近くとり、また該
両拡散領域28,29を互いに平行に、パターン
上で長くはしらせることにより、数Ωから数十Ω
にすることができる。このようにするとサージ印
加時、LSI外部から見たダイナミツクな入力抵抗
は上記抵抗成分23で決まるので、サージ電圧が
ダイオード22にとつて順方向の場合、サージ電
流の大部分はダイオード22、抵抗23を通つ
て、VDD端子から外部に流れ出す。
In FIG. 3, the resistance component 23 of the diode 22
are the P + diffusion region 28 and the N + diffusion region 29 in Fig. 4.
By making the distance between the two diffusion regions 28 and 29 as close as possible within the range allowed by the withstand voltage, and by making both the diffusion regions 28 and 29 extend parallel to each other and long on the pattern, the resistance between several Ω and several tens of Ω is achieved.
It can be done. In this way, when a surge is applied, the dynamic input resistance seen from the outside of the LSI is determined by the resistance component 23, so if the surge voltage is in the forward direction with respect to the diode 22, most of the surge current will flow through the diode 22 and the resistor 23. It flows out from the VDD terminal through the VDD terminal.

なお、ここでダイナミツクな抵抗というのは、
サージ電圧が逆電圧の場合ダイオード22のブレ
ークダウン時の抵抗(微分抵抗)を、また順電圧
の場合はダイオード22のオン抵抗を意味する。
Note that the dynamic resistance here is
When the surge voltage is a reverse voltage, it means the resistance (differential resistance) of the diode 22 at the time of breakdown, and when it is a forward voltage, it means the on-resistance of the diode 22.

次に、サージ電圧がダイオード22にとつて、
逆方向の場合は、ダイオード22のブレークダウ
ン電圧が50V程度と高いため、サージ電圧からの
保護のためには、該ダイオード22だけでは不充
分であるが、抵抗24を内部回路に直列に、Nチ
ヤンネルMOSトランジスタ25を内部回路に並
列に接続しているので、サージ電圧が抵抗24と
NチヤンネルMOSトランジスタ25の抵抗成分
とで分割され、内部回路には小さい電圧がかかる
ことになり、これによりサージ電圧からの保護が
なされるものである。ここでNチヤンネルMOS
トランジスタ25はゲートの電位がP-ウエルと
同じであるために、ドレイン−P-ウエル間がツ
エナーダイオードとして働く。そのブレークダウ
ン電圧はゲート酸化膜厚によつて変わるが、例え
ばゲート酸化膜厚が800Åなら25V程度になる。
また、ドレインとソース間のダイナミツクな抵抗
値はチヤンネル幅Wが1000μmの場合、20Ω程度
になるので、今抵抗24の抵抗値を30Ωとする
と、端子26,27間の電圧は 25+25×20/30+20=35(V) になる。
Next, the surge voltage is applied to the diode 22,
In the case of the reverse direction, the breakdown voltage of the diode 22 is as high as about 50V, so the diode 22 alone is insufficient for protection from surge voltage, but the resistor 24 is connected in series with the internal circuit, N Since the channel MOS transistor 25 is connected in parallel to the internal circuit, the surge voltage is divided between the resistor 24 and the resistance component of the N-channel MOS transistor 25, and a small voltage is applied to the internal circuit. It provides protection from voltage. Here N channel MOS
Since the gate potential of the transistor 25 is the same as that of the P - well, the transistor 25 functions as a Zener diode between the drain and the P - well. The breakdown voltage varies depending on the gate oxide film thickness, but for example, if the gate oxide film thickness is 800 Å, it will be about 25V.
Also, the dynamic resistance value between the drain and source is about 20Ω when the channel width W is 1000 μm, so if the resistance value of the resistor 24 is now 30Ω, the voltage between terminals 26 and 27 is 25 + 25 × 20 / 30 + 20 =35(V).

なお、NチヤンネルMOSトランジスタ25が
オープンソースの場合は、チヤンネル幅Wを同じ
とするとダイナミツクな抵抗値は2倍近くにな
り、抵抗分割回路としてはMOSトランジスタの
方が適当である。
Note that if the N-channel MOS transistor 25 is open source, the dynamic resistance value will be nearly twice as long as the channel width W is the same, and a MOS transistor is more suitable as a resistance divider circuit.

このように順方向電圧のサージの場合は、サー
ジ電流がダイオード22を通つてVDD電源から外
部に流れ出し、内部回路にはほとんど流れ込まな
いので、ラツチアツプを引き起こすほどのトリガ
電流とはならない。また、逆方向電圧のサージの
場合は、その電圧値がダイオード22のブレーク
ダウン電圧よりも大きければ、順方向の場合と同
じように外部に流れ出す。ブレークダウン電圧よ
り小さい場合でも、ダイオード22の接合容量を
通して過渡的には、外部に電流は流れ出す。それ
に加え抵抗24とNチヤンネルMOSトランジス
タ25とによつてサージ電圧が分割されるので、
端子26,27間の電圧つまり内部回路にかかる
電圧が小さくなり、したがつて、V/R=Iによ
り、内部回路に流れ込むサージ電流が小さくな
り、ラツチアツプを引き起こすほどのトリガ電流
とはならない。このようにしてラツチアツプを防
止することができる。
In this way, in the case of a forward voltage surge, the surge current flows out from the V DD power supply through the diode 22 and hardly flows into the internal circuit, so the trigger current is not large enough to cause a latch-up. In addition, in the case of a reverse voltage surge, if the voltage value is greater than the breakdown voltage of the diode 22, the surge flows to the outside in the same way as in the forward direction. Even if the voltage is lower than the breakdown voltage, the current transiently flows to the outside through the junction capacitance of the diode 22. In addition, since the surge voltage is divided by the resistor 24 and the N-channel MOS transistor 25,
The voltage between terminals 26 and 27, that is, the voltage applied to the internal circuit, becomes small, and therefore, due to V/R=I, the surge current flowing into the internal circuit becomes small, and the trigger current does not become large enough to cause a latch-up. In this way latch-up can be prevented.

なお、上記実施例ではN-基板上に構成された
CMOS LSIに本発明のラツチアツプ防止回路を
設けた場合について説明したが、基板がP-の場
合であつても同様の効果を奏する。この場合の等
価回路としては、第4図において、電源端子VSS
側にある抵抗25が、VDD側になるだけである。
In addition, in the above embodiment, the
Although the case where the latch-up prevention circuit of the present invention is provided in a CMOS LSI has been described, the same effect can be achieved even when the substrate is P - . The equivalent circuit in this case is shown in Figure 4 as the power supply terminal V SS
Only the resistor 25 on the side becomes the V DD side.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明のラツチアツプ防止回
路をチツプ周辺に配置するならば、電源端子VSS
VDD間にかかるサージの、内部回路への影響を著
しく減少させることができ、内部回路については
従来のようなラツチアツプ対策をほどこす必要が
なく、そのパターンが小さくなり、LSIの集積度
を高くすることができ、上記ラツチアツプ防止回
路に加え、さらに従来の対策を内部回路にほどこ
しておけば、ラツチアツプ耐量は、格段に向上す
ることになる。
As described above, if the latch-up prevention circuit of the present invention is placed around the chip, the power supply terminals V SS ,
The influence of the surge applied between V DD on the internal circuit can be significantly reduced, and there is no need to take conventional latch-up countermeasures for the internal circuit, and the pattern becomes smaller, allowing for higher LSI integration. In addition to the latch-up prevention circuit described above, if conventional countermeasures are applied to the internal circuit, the latch-up resistance can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のラツチアツプ対策を施こした
CMOS回路の一例を示す図、第2図a,bはそ
れぞれ第1図の回路の等価回路及び該回路のラツ
チアツプ時の等価回路を示す図、第3図は本発明
の一実施例によるラツチアツプ防止回路の等価回
路図、第4図は第3図の回路中のダイオードの半
導体構造の断面図である。 20……VSS電源端子、21……VDD電源端子、
22……P+N-N+ダイオード、24……抵抗、2
5……ゲート、ソース、P-ウエルが短絡された
NチヤンネルMOSトランジスタ、40……直列
体。なお図中同一符号は同一、又は相当部分を示
す。
Figure 1 shows the conventional latch-up countermeasure.
A diagram showing an example of a CMOS circuit. FIGS. 2a and 2b are diagrams showing an equivalent circuit of the circuit in FIG. 1 and an equivalent circuit at the time of latch-up of the circuit, respectively. FIG. The equivalent circuit diagram of the circuit, FIG. 4, is a cross-sectional view of the semiconductor structure of the diode in the circuit of FIG. 20...V SS power supply terminal, 21...V DD power supply terminal,
22...P + N - N + diode, 24... Resistor, 2
5...N-channel MOS transistor whose gate, source, and P - well are short-circuited, 40...Series body. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 N-又はP-基板上に構成されたCMOS大規模
集積回路中のラツチアツプ防止回路であつて、 VDD電源端子とVSS電源端子間に、ゲート、ソ
ース、P-ウエルを短絡したNチヤンネルMOSト
ランジスタ又はゲート、ソース、P-基板を短絡
したNチヤンネルMOSトランジスタのいずれか
一方と抵抗とを直列接続してなる直列体と、P+
N-N+又はN+P-P+ダイオードとを並列に接続し、 上記NチヤンネルMOSトランジスタの両端電
圧を上記CMOS大規模集積回路の内部回路に供
給するようにしたことを特徴とするラツチアツプ
防止回路。
[Claims] 1 A latch-up prevention circuit in a CMOS large-scale integrated circuit configured on a N - or P - substrate, which includes a gate, source, P - between a V DD power supply terminal and a V SS power supply terminal. A series body formed by connecting a resistor in series with either an N-channel MOS transistor whose well is short-circuited or an N-channel MOS transistor whose gate, source, and P - substrate are short-circuited, and a P +
Latch-up prevention characterized by connecting an N - N + or N + P - P + diode in parallel, and supplying the voltage across the N-channel MOS transistor to the internal circuit of the CMOS large-scale integrated circuit. circuit.
JP58031186A 1983-02-24 1983-02-24 Latch up preventing circuit Granted JPS59155953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58031186A JPS59155953A (en) 1983-02-24 1983-02-24 Latch up preventing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58031186A JPS59155953A (en) 1983-02-24 1983-02-24 Latch up preventing circuit

Publications (2)

Publication Number Publication Date
JPS59155953A JPS59155953A (en) 1984-09-05
JPH0244153B2 true JPH0244153B2 (en) 1990-10-02

Family

ID=12324401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58031186A Granted JPS59155953A (en) 1983-02-24 1983-02-24 Latch up preventing circuit

Country Status (1)

Country Link
JP (1) JPS59155953A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059770A (en) * 1983-09-13 1985-04-06 Nec Corp Semiconductor device
JP4933871B2 (en) * 2006-09-28 2012-05-16 紀伊産業株式会社 Squeeze coating container

Also Published As

Publication number Publication date
JPS59155953A (en) 1984-09-05

Similar Documents

Publication Publication Date Title
JPS63147357A (en) Static electricity discharge protecting circuit
JPH03272180A (en) Semiconductor integrated circuit
KR0166509B1 (en) Electrostatic protection circuit
WO2017157117A1 (en) Electrostatic discharge (esd) protective circuit for integrated circuit
JP2570610B2 (en) Semiconductor device
JPH0318347B2 (en)
JP3267479B2 (en) Semiconductor integrated circuit device
JP2002141467A (en) Semiconductor device
JP3499578B2 (en) Semiconductor integrated circuit
JPH0410225B2 (en)
JPH0244153B2 (en)
JP2982250B2 (en) Semiconductor device
JPS6143468A (en) Protective circuit
JPS6233752B2 (en)
JP3128813B2 (en) Semiconductor integrated circuit
JPH07193193A (en) Semiconductor device
JPH0532908B2 (en)
JPH0553075B2 (en)
JPS63316475A (en) Input protective circuit
JP3535744B2 (en) Semiconductor integrated circuit
JPS63115363A (en) Input protection circuit
JPH05267586A (en) Output protection network
JPH039559A (en) Protective device of complementary field effect transistor
JPH03102912A (en) Static electricity protecting circuit
JP2870923B2 (en) Protection circuit for semiconductor integrated circuit