JPH0243360A - Physical vapor deposition device - Google Patents

Physical vapor deposition device

Info

Publication number
JPH0243360A
JPH0243360A JP19279088A JP19279088A JPH0243360A JP H0243360 A JPH0243360 A JP H0243360A JP 19279088 A JP19279088 A JP 19279088A JP 19279088 A JP19279088 A JP 19279088A JP H0243360 A JPH0243360 A JP H0243360A
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
heater
temp
heaters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19279088A
Other languages
Japanese (ja)
Inventor
Tadashi Komori
唯志 小森
Isao Ito
功 伊藤
Seishiro Saida
才田 誠四郎
Shoji Nagashima
長島 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19279088A priority Critical patent/JPH0243360A/en
Publication of JPH0243360A publication Critical patent/JPH0243360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize the substrate temp. at the time of vapor deposition and to form a homogeneous film having an excellent adhesive property by dividing heaters for heating the substrate opposite to an evaporating source and controlling the outputs of the respectively divided heaters according to the temp. distribution of the substrate. CONSTITUTION:The heater 4 for heating the substrate 3 opposite to the evaporating source 2 is provided in a vacuum chamber 1 of the physical vapor deposition device and is divided to 4a, 4b, 4c. The temp. of the substrate 3 is measured by thermocouples 5a, 5b, 5c disposed in accordance with the divided positions and the outputs of the respective heaters 4a, 4b, 4c are controlled by a controller. The substrate 3 is previously uniformly heated by the heaters 4a, 4b, 4c and the outputs of the respective heaters 4a, 4b, 4c are controlled according to the temp. distribution of the substrate 3 after the start of evaporation. The nonuniform distribution of the temp. of the substrate 3 by the radiation heat of the evaporating source 2 is prevented in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオンプレーテインク、スパッタリング、真
空蒸着等のPVD(physical vapor d
eposition)法によって、金属やプラスチック
等の基板に皮膜を形成するための物理蒸着装置に関する
ものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to PVD (physical vapor deposition) such as ion plate ink, sputtering, and vacuum evaporation.
The present invention relates to a physical vapor deposition apparatus for forming a film on a substrate such as metal or plastic using a deposition method.

[従来の技術] 金属やプラスチック等の基板の表面にセラミックスや金
属の皮膜を形成して、装飾性や耐食性を向上させたり、
電気的特性等各種の機能を付与する手段としてPVD法
か利用されている。
[Prior art] A ceramic or metal film is formed on the surface of a metal or plastic substrate to improve decorativeness and corrosion resistance.
The PVD method is used as a means of imparting various functions such as electrical properties.

PVD法においては、基板は適正な温度に加熱して蒸着
される。基板の温度は、皮膜の膜質や基板に対する密着
性に影響するのて、温度制御は蒸着における重要な条件
の−・つである。加熱源としては、抵抗加熱、赤外線ラ
ンプ等のヒーターか使用されている。
In the PVD method, the substrate is heated to an appropriate temperature for vapor deposition. Since the temperature of the substrate affects the film quality and adhesion of the film to the substrate, temperature control is an important condition in vapor deposition. As a heating source, a heater such as resistance heating or an infrared lamp is used.

蒸着装置としては、固定された基板に蒸着するバッチ方
式と、基板を連続的に移動させつつ蒸着する連続方式が
ある。何れの方式においても、従来装置の基板加熱用ヒ
ーターは、基板全体に均一に熱を与える構造になってい
た。すなわち、基板単位面積当たりの入熱量が均一・に
なるように設計されていた。
There are two types of vapor deposition apparatuses: a batch method that deposits on a fixed substrate, and a continuous method that deposits while continuously moving the substrate. In either method, the heater for heating the substrate of the conventional device has a structure that uniformly applies heat to the entire substrate. In other words, the design was such that the amount of heat input per unit area of the substrate was uniform.

[発明か解決しようとする課題] 従来の物理蒸着装置においては、蒸着前の予備加熱時に
は基板全体が均一加熱されるが、蒸着を開始すると、蒸
発源からの輻射熱によって基板の温度かさらに上昇して
温度分布か不均一になる。
[Problem to be solved by the invention] In conventional physical vapor deposition equipment, the entire substrate is uniformly heated during preheating before vapor deposition, but when vapor deposition starts, the temperature of the substrate further increases due to radiant heat from the evaporation source. temperature distribution becomes uneven.

たとえば、マクネトロン型スパッタリンクにおいては、
磁界によりプラズマを部分的に集中させて効率的にスパ
ッタリンクを行うのて、蒸発源のプラズマが集中する部
分が局部的に高温になる。このため、蒸発源からの輻射
熱によって基板か局部的に加熱され、基板の温度分布か
不均一になる。
For example, in the McNetron type sputter link,
By concentrating the plasma locally using a magnetic field and performing sputter linking efficiently, the portion of the evaporation source where the plasma is concentrated becomes locally hot. Therefore, the substrate is locally heated by the radiant heat from the evaporation source, resulting in uneven temperature distribution on the substrate.

また、イオンブレーティングおよび真空蒸着においては
、物質を溶融し蒸発させて基板に付着させるのて、蒸発
源の温度は蒸着物質の融点以上の高温になっており、基
板の蒸発源に近い部分か局部的に加熱されて温度分布か
不均一になる。
In addition, in ion blating and vacuum evaporation, the temperature of the evaporation source is higher than the melting point of the evaporation material because the material is melted, evaporated, and attached to the substrate. Localized heating results in uneven temperature distribution.

従来の装置においては、基板加熱用のヒーターが、基板
全体に均一に熱を与える構造になっていたため、蒸着時
におけるこのような温度分布の不均一を防止することか
てきない。
In conventional apparatuses, the heater for heating the substrate has a structure that applies heat uniformly to the entire substrate, so it is impossible to prevent such non-uniformity in temperature distribution during vapor deposition.

蒸着時に基板の温度か不均一だと皮膜か不均質になり、
また基板に対する密着性の不良個所か生しる。さらに、
基板に熱歪みによる変形か生しることもある。
If the temperature of the substrate is uneven during vapor deposition, the film will be uneven.
In addition, poor adhesion to the substrate may occur. moreover,
The substrate may also be deformed due to thermal strain.

本発明は、イオンプレーテインク、スパッタリンク、真
空蒸着等のPVD法により基板に皮膜を形成するための
物理蒸着装置において、蒸着前の予備加熱時のみならず
、蒸着時にも基板の温度分布を均一にすることにより、
均質て密着性のすくれた皮膜を形成することを目的とす
る。
The present invention provides a physical vapor deposition apparatus for forming a film on a substrate using PVD methods such as ion plate ink, sputter link, and vacuum evaporation, which controls the temperature distribution of the substrate not only during preheating before evaporation but also during evaporation. By making it uniform,
The purpose is to form a homogeneous and adhesive film.

[課題を解決するための手段] この目的を達成するだめの本発明は、物理蒸着により基
板に皮膜を形成する装置てあって、蒸発源に対向して基
板加熱用のヒーターを分割して設け、分割された各ヒー
ターの出力を基板の温度分布に応じて調節可能にしたこ
とを特徴とする。
[Means for Solving the Problems] To achieve this object, the present invention includes an apparatus for forming a film on a substrate by physical vapor deposition, in which a heater for heating the substrate is separately installed facing an evaporation source. , the output of each divided heater can be adjusted according to the temperature distribution of the substrate.

[作用] このようにヒーターを分割し、分割したヒーター毎に出
力を調節可能にしたことから、基板の温度分布や他の作
業条件等の変動に応じて、ヒーターの出力を常に適正範
囲に維持し得る。
[Function] By dividing the heater in this way and making it possible to adjust the output for each divided heater, the output of the heater can always be maintained within the appropriate range in response to changes in the temperature distribution of the board and other working conditions. It is possible.

[発明の実施態様コ 以下、第1図に示すハツチ式のスパッタリンク装置を例
として、本発明装置を具体的に説明する。真空チャンバ
ー1内の蒸発源2に対向して、基板3を加熱するための
ヒーター4か分割して設けである。本例ては、ヒーター
4は4a、4b、4cに3分割されている。基板3の温
度は分割位置に対応じて配冒した熱電対5a、5b、5
cて測定され、その測定値に応じて図示しない制御装置
により各ヒーターの出力を調節てきるようになっている
。図中、6は排気口、7はガス導入口、8は蒸発源2と
基板3の間に高周波を印加するための高周波電源である
[Embodiment of the Invention] Hereinafter, the apparatus of the present invention will be specifically explained using the hatch type sputter link apparatus shown in FIG. 1 as an example. A heater 4 for heating the substrate 3 is provided in a divided manner, facing the evaporation source 2 in the vacuum chamber 1 . In this example, the heater 4 is divided into three parts 4a, 4b, and 4c. The temperature of the substrate 3 is determined by thermocouples 5a, 5b, 5 distributed according to the dividing positions.
According to the measured values, the output of each heater can be adjusted by a control device (not shown). In the figure, 6 is an exhaust port, 7 is a gas inlet, and 8 is a high frequency power source for applying high frequency between the evaporation source 2 and the substrate 3.

なお、分割された各ヒーターの出力は、基板温度の測定
値に基づいて調節する他、蒸着時における基板位置の温
度分布か既知の場合は、予め設定しておいてもよい。
Note that the output of each divided heater may be adjusted based on the measured value of the substrate temperature, or may be set in advance if the temperature distribution at the substrate position during vapor deposition is known.

第1図のようなハツチ式の装置においては、蒸着前には
各ヒーター4a、4b、4cに一様な出力を与えて基板
3は均一に予備加熱されるが、蒸着開始後は基板3の温
度分布に応してC上ヒータ−4a、4b、4c出力を調
節することにより、蒸発源の輻射熱に基づく温度の不均
一分布か防止される。また、蒸発源の種類やサイズ、基
板のサイズやエミッシビティー等の特性、蒸着条件等に
応じて、予め各ヒーターの出力を適正値に設定しておく
こともてきる。
In the hatch-type apparatus shown in FIG. 1, the substrate 3 is uniformly preheated by giving uniform output to each heater 4a, 4b, and 4c before vapor deposition, but after the start of vapor deposition, the substrate 3 is preheated uniformly. By adjusting the output of the upper C heaters 4a, 4b, and 4c according to the temperature distribution, uneven temperature distribution due to the radiant heat of the evaporation source can be prevented. Further, the output of each heater can be set in advance to an appropriate value according to the type and size of the evaporation source, the characteristics such as the size and emissivity of the substrate, the evaporation conditions, and the like.

連続式の場合は、第1図のような蒸発源に対向するヒー
ターては材料の予備加熱をすることかてきないので、基
板の温度分布に及ぼず蒸発源の影響が大きく、本発明は
特に有効である。
In the case of a continuous type, the heater facing the evaporation source as shown in Fig. 1 can only preheat the material, so the temperature distribution of the substrate is not affected and the influence of the evaporation source is large. It is valid.

[実施例コ 実施例1 第1図に示すバッチ式スパッタリンク装置により、AQ
203ターゲットを蒸発源として、300mm X30
0mm 、厚さ0.3mmのステンレス鋼基板にAQ2
03皮膜を形成した。カス導入ロアからは后ガスを導入
し、チャンバー1内の圧力は5 x 10−’Torr
に制御した。各ヒーター4a、4b、4cの出力を一様
に設定して基板3を300°Cに予備加熱した後、蒸着
を開始し、熱電対5a、5b、5cによる測温値により
各ヒーターの出力を調節しつつ所定の厚さの皮膜を形成
した。蒸着終了直後の基板の温度分布は、第3図の実線
に示すように:100mm幅て300°C±10℃てあ
った。なお、図中の破線は蒸着中も各ヒーターの出力を
一様にした従来例である。
[Example 1] Using the batch type sputter link apparatus shown in FIG.
300mm x 30 with 203 target as evaporation source
AQ2 on a stainless steel substrate with a thickness of 0.3 mm and a thickness of 0.3 mm.
03 film was formed. Gas is introduced from the waste introduction lower, and the pressure inside chamber 1 is 5 x 10-'Torr.
was controlled. After preheating the substrate 3 to 300°C by setting the output of each heater 4a, 4b, 4c uniformly, vapor deposition is started, and the output of each heater is adjusted based on the temperature value measured by the thermocouples 5a, 5b, 5c. A film of a predetermined thickness was formed while adjusting the thickness. The temperature distribution of the substrate immediately after the completion of vapor deposition was as shown by the solid line in FIG. 3: 100 mm wide and 300° C.±10° C. Note that the broken line in the figure is a conventional example in which the output of each heater is made uniform even during vapor deposition.

実施例2 第2図に示す連続式イオンプレーテインク装置により、
T1を蒸発源とし、300[1111幅、厚さ[]、3
+n+nのステンレス鋼帯板を基板としてこれを紙面垂
直方向に搬送しつつ、TiN皮膜を形成した。カス導入
ロアからはN2カスを導入し、チャンバー1内の圧力は
I X 1O−3Torrに制御した。各ヒーター4a
、4b、4cの出力を一様に設定して基板3の周辺を3
00°Cに予備加熱した後、蒸着を開始し、熱電対5a
、5b、5cによる測温値により各ヒーターの出力を調
節しつつ、基板を通板し、連続的に所定の厚さの皮膜を
形成した。蒸着中の基板の温度分布は第4図の実線に示
すように300InII1幅て300°C±10°Cて
時間的変化はほとんど見られなかった。なお、図中の破
線は蒸着中にも各ヒーターの出力を一様にした従来例で
ある。
Example 2 Using the continuous ion plate ink device shown in Fig. 2,
T1 is the evaporation source, 300 [1111 width, thickness [], 3
A TiN film was formed on a +n+n stainless steel strip plate as a substrate while being transported in a direction perpendicular to the plane of the paper. N2 sludge was introduced from the sludge introduction lower, and the pressure inside the chamber 1 was controlled to I x 10-3 Torr. Each heater 4a
, 4b, and 4c are set uniformly, and the periphery of the board 3 is
After preheating to 00°C, vapor deposition is started and the thermocouple 5a
, 5b, and 5c while adjusting the output of each heater based on the measured temperature values, the substrate was passed through the substrate to continuously form a film of a predetermined thickness. As shown by the solid line in FIG. 4, the temperature distribution of the substrate during vapor deposition was 300° C.±10° C. with almost no change over time. Note that the broken line in the figure is a conventional example in which the output of each heater is made uniform even during vapor deposition.

[発明の効果] イオンプレーテインク、スパッタリンク、真空蒸着等の
PVD法により基板に皮膜を形成するに際して、本発明
装置を使用することにより、ハツチ式のみならず連続式
においても、蒸着時の基板温度か均一となり、均質て電
着性のすぐれた皮膜か得られる。
[Effect of the invention] When forming a film on a substrate by PVD methods such as ion plate ink, sputter link, and vacuum evaporation, by using the apparatus of the present invention, it is possible to reduce the time during evaporation not only by hatch type but also by continuous type. The substrate temperature becomes uniform, and a homogeneous film with excellent electrodepositivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明例を示す図、第3図および
第4図は本発明の効果を示す図である。 l・・・真空チャンバー、2・・・蒸発源、3・・・基
板、4・・・ヒーター、5・・・熱電対、6・・・排気
口、7・・・カス導入口、8・・・高周波電源、9・・
・+1 CDヒーム電源、10・・・加速電極電源。
FIGS. 1 and 2 are diagrams showing an example of the present invention, and FIGS. 3 and 4 are diagrams showing the effects of the present invention. l... Vacuum chamber, 2... Evaporation source, 3... Substrate, 4... Heater, 5... Thermocouple, 6... Exhaust port, 7... Waste inlet, 8... ...High frequency power supply, 9...
・+1 CD heam power supply, 10...acceleration electrode power supply.

Claims (1)

【特許請求の範囲】[Claims] 1、物理蒸着により基板に皮膜を形成する装置であって
、蒸発源に対向して基板加熱用のヒーターを分割して設
け、分割された各ヒーターの出力を基板の温度分布に応
じて調節可能にしたことを特徴とする物理蒸着装置。
1. A device that forms a film on a substrate by physical vapor deposition. A heater for heating the substrate is provided separately facing the evaporation source, and the output of each divided heater can be adjusted according to the temperature distribution of the substrate. A physical vapor deposition apparatus characterized by:
JP19279088A 1988-08-03 1988-08-03 Physical vapor deposition device Pending JPH0243360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19279088A JPH0243360A (en) 1988-08-03 1988-08-03 Physical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19279088A JPH0243360A (en) 1988-08-03 1988-08-03 Physical vapor deposition device

Publications (1)

Publication Number Publication Date
JPH0243360A true JPH0243360A (en) 1990-02-13

Family

ID=16297042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19279088A Pending JPH0243360A (en) 1988-08-03 1988-08-03 Physical vapor deposition device

Country Status (1)

Country Link
JP (1) JPH0243360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707706A (en) * 1994-07-20 1998-01-13 Hitachi, Ltd. Magnetic recording disk medium having a magnetic layer with uniform properties over the disk surface
JP2011127139A (en) * 2009-12-15 2011-06-30 Konica Minolta Holdings Inc Method and apparatus for producing piezoelectric thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707706A (en) * 1994-07-20 1998-01-13 Hitachi, Ltd. Magnetic recording disk medium having a magnetic layer with uniform properties over the disk surface
US5976661A (en) * 1994-07-20 1999-11-02 Hitachi, Ltd. Magnetic recording medium and method of fabricating the same
US6156405A (en) * 1994-07-20 2000-12-05 Hitachi, Ltd. Magnetic recording medium and method of fabricating the same
JP2011127139A (en) * 2009-12-15 2011-06-30 Konica Minolta Holdings Inc Method and apparatus for producing piezoelectric thin film

Similar Documents

Publication Publication Date Title
KR910007536B1 (en) High temperature heating sputtering process
EP1548809B8 (en) Heat treatment method and heat treatment apparatus
WO2010038384A1 (en) Film forming apparatus and film forming method using same
JPH0243360A (en) Physical vapor deposition device
TW550304B (en) Apparatus and method of forming protection coating for plasma display
CN110791745B (en) Orthogonal radiation auxiliary conduction heating equipment suitable for roll-to-roll continuous strip
JPH03183778A (en) Method and device for forming deposited film
JP2000150136A (en) Microwave heating method and its device
KR0160067B1 (en) Vapor source heated by resistance for vacuum deposited steel sheet
US4466875A (en) Auxiliary heater for magnetron sputtering
JPH0711438A (en) Method and device for forming film while controlling temperature of substrate
JP7128358B2 (en) Plating layer control device and method in PVD plating process
SU1671732A1 (en) Method of chrome-plating steel products
CN113235053B (en) Evaporation coating method with intelligently adjustable evaporation rate
JPH0529232A (en) Normal pressure vapor deposition device
JPH03253572A (en) Heater in vacuum vessel
JP2023028407A (en) Target temperature control type sputtering apparatus
KR20230007939A (en) Method of processing substrate using heater temperature control
JPS61147874A (en) Vacuum deposition device
JPH083145B2 (en) Semiconductor manufacturing equipment
JPH11183038A (en) Heating furnace
JPH0479182A (en) Heater for vacuum
JPS59199036A (en) Device for forming thin film
JP2002184790A (en) Plate material for heating substrate, and method of manufacturing cadmium telluride film
JPH0543090Y2 (en)