JPH0243348A - Amorphous magnetic alloy - Google Patents

Amorphous magnetic alloy

Info

Publication number
JPH0243348A
JPH0243348A JP1059927A JP5992789A JPH0243348A JP H0243348 A JPH0243348 A JP H0243348A JP 1059927 A JP1059927 A JP 1059927A JP 5992789 A JP5992789 A JP 5992789A JP H0243348 A JPH0243348 A JP H0243348A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
amorphous magnetic
magnetic alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1059927A
Other languages
Japanese (ja)
Other versions
JPH0765147B2 (en
Inventor
Hiroshi Sakakima
博 榊間
Mitsuo Satomi
三男 里見
Harufumi Sakino
先納 治文
Eiichi Hirota
広田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1059927A priority Critical patent/JPH0765147B2/en
Publication of JPH0243348A publication Critical patent/JPH0243348A/en
Publication of JPH0765147B2 publication Critical patent/JPH0765147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title amorphous magnetic alloy easy to produce and having excellent mechanical characteristics, low magnetostriction, and excellent magnetic characteristics by specifying the composition of the alloy consisting of Fe, Co, Ni, Nb, Cu, and B. CONSTITUTION:The amorphous magnetic alloy has the composition shown by the formula MaTbBc. In the formula, M is at least one kind among Fe, Co and Ni, T is a mixture consisting essentially of Nb and contg. <=10atomic% Cu, B is boron, (a), (b) and (c) are respectively atomic%, (a+b+c)=100, 60<=a<=95, 2<=b<=20, 0<c<=30, or preferably 0<c<=10. The amorphous magnetic alloy can be easily formed into a ribbon shape by the single roll method with good mass-productivity, and has a mechanical characteristic withstanding bend ing. In addition, the alloy has a low magnetostriction constant, and is appropri ately used for a magnetic head or a transformer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、製造が容易で、かつ機械的特性が良しぐはト
ランス用の磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic alloy for transformers that is easy to manufacture and has good mechanical properties.

従来の技術 近年超急冷技術の漁舟により種々の非晶質磁性合金が得
られるようになった。歴史的にはガン法もしくはピスト
ンアンビル法及びスプラ、トクエンチング法等によりF
e−P −G 、 Go −P −B 。
BACKGROUND OF THE INVENTION In recent years, various amorphous magnetic alloys have become available using fishing boats using ultra-quenching technology. Historically, F
e-P-G, Go-P-B.

Ni −Bなどの非晶質合金が得られたという報告があ
り、まだP、G、Bと遷移金属の組合せにより非晶質合
金が得られる事が知られている。このうち、Pは蒸気圧
が高く、組成ずれが生ずる問題や公害上の間唄があシ、
一方Cは溶解中に遷移金属中に固溶させるのが困難であ
るばかりでなく。
There have been reports that amorphous alloys such as Ni-B have been obtained, and it is still known that amorphous alloys can be obtained by combining P, G, B and transition metals. Among these, P has a high vapor pressure, which causes problems such as composition deviation and pollution problems.
On the other hand, C is not only difficult to form into a solid solution in the transition metal during melting.

分離析出するなど製造上の問題点が多い。その為。There are many manufacturing problems such as separation and precipitation. For that reason.

現在Bが最も有効な元素である事力刃知られている。Currently B is known to be the most effective element.

非晶質磁性合金の作製法は、現在では前述のような方法
にかわって両ロール法や片ロール法が主流となって来て
いる。これは以前の方法が不安定形の非晶質薄片しか得
られないのに対し、これらの方法を用いるととにより一
定幅、一定厚みのリボン形状の非晶質磁性合金を容易だ
得ることができるので工業上の利徹が大きい為である。
Currently, the two-roll method and the one-roll method have become mainstream as methods for producing amorphous magnetic alloys, replacing the methods described above. This is because previous methods can only yield unstable amorphous flakes, whereas these methods can easily yield ribbon-shaped amorphous magnetic alloys with a constant width and thickness. This is because the industrial advantages are large.

更に量産性を考慮すると片ロール法が優れており、実用
上は片ロール法により合金薄帯(リボン)が得られる事
が望ましい。
Furthermore, considering mass production, the single roll method is superior, and in practice it is desirable to obtain alloy thin strips (ribbons) by the single roll method.

ところが、遷移金属とホウ素の組合せより成る組成を有
する非晶質磁性合金、・は両ロール法では比較的容易に
11幅ぐらいのものが得られているが。
However, an amorphous magnetic alloy having a composition consisting of a combination of a transition metal and boron, with a width of about 11, can be obtained relatively easily by the double roll method.

片ロール法ではせいぜい中音が1〜2M肩ぐらいのもの
しか得られていない。これ以上の幅のものを得ようとす
ると片ロール法では冷却が十分でなくなるため、ロール
から凝固したリボンが離れ巻き取られる際もリボンの温
度が400〜SOO″Ctiどもあるだめ、得られたリ
ボンが酸化し変色する。まだ、このようにして得られた
非晶質磁性合金は、本来非晶質合金がもつ180°折シ
曲げに耐える機械的特性を有せず、極めて脆いものであ
った。この非晶質磁性合金は機械的特性が劣るのみなら
ず、磁気特性もまた好ましくないものであった。従って
、(Fe−Go−Ni)−B系の特性良好なる非晶質磁
性合金を片ロール法で幅広のリボン形状として得る事は
極めて困難な事であった。
With the single roll method, at best, only a midrange sound of about 1 to 2M can be obtained. If you try to obtain a width wider than this, cooling will not be sufficient with the single roll method, so even when the solidified ribbon is separated from the roll and wound, the temperature of the ribbon will be 400~SOO''Cti. The ribbon oxidizes and discolors.However, the amorphous magnetic alloy obtained in this way does not originally have the mechanical properties that amorphous alloys have to withstand 180° bending, and is extremely brittle. This amorphous magnetic alloy not only had poor mechanical properties, but also had unfavorable magnetic properties.Therefore, (Fe-Go-Ni)-B based amorphous magnetic alloys with good properties It was extremely difficult to obtain a wide ribbon shape using the single roll method.

また、(Fe−Go −Ni ) −B系を改良した(
Fe−Go−Ni) −Zr系、 (Fe−Go−Ni
) −Zr−B系などが発表されており、これらの材料
は従来の(Fe−Go−Ni)−B系に比べ容易に片ロ
ール法によって幅広の非晶質リボンを得ることができる
。しかしながら、これらのZrを含む合金系、け極めて
酸化されやすいだめ、空気中で母合金を溶解して片ロー
ル法により超急冷し、非晶質合金化するのは極めて困難
である。
In addition, we improved the (Fe-Go-Ni)-B system (
(Fe-Go-Ni) -Zr system, (Fe-Go-Ni
) -Zr-B system, etc. have been announced, and these materials can be used to easily obtain a wide amorphous ribbon by a single roll method compared to the conventional (Fe-Go-Ni)-B system. However, since these Zr-containing alloy systems are extremely susceptible to oxidation, it is extremely difficult to melt the mother alloy in air and ultra-quench it using a single roll method to form an amorphous alloy.

更にコスト上はFeを主成分とする合金の方が望ましい
ものの、従来のFe −BやFe−8i−Bは磁歪定数
が約3o×10−6と大きく1合金てストレスが加わる
と大幅に特性が劣化する問題点がある。従ってFe系で
磁層の小さい非晶質合金がない為、コスト高にはなるも
のの磁歪の小さいGo系の非晶質合金が磁気ヘッドや高
性能トランスに用いられていた。
Furthermore, although alloys containing Fe as the main component are preferable from a cost perspective, conventional Fe-B and Fe-8i-B have a large magnetostriction constant of approximately 30 x 10-6, and when stress is applied to the alloy, the characteristics deteriorate significantly. There is a problem of deterioration. Therefore, since there is no Fe-based amorphous alloy with a small magnetic layer, Go-based amorphous alloys with low magnetostriction have been used for magnetic heads and high-performance transformers, although they are expensive.

発明が解決しようとする課題 本発明はかかる問題を解決するものであり、製造を容易
にして、かつ特性良好なるFe系の非晶質磁性合金を提
供するものである。
Problems to be Solved by the Invention The present invention aims to solve these problems, and provides an Fe-based amorphous magnetic alloy that is easy to manufacture and has good properties.

課題を解決するだめの手段 本発明においては(Fe−Go−Ni)−B系にNbと
Cuを添加する事によυ上記の問題を解決する。
Means for Solving the Problems In the present invention, the above problems are solved by adding Nb and Cu to the (Fe-Go-Ni)-B system.

作用 Nbの添加によ多片ロール法でも極めて容易に幅広の合
金薄帯(リボン)が得られ、かつCuを同時に添加する
事によIBFe系でも極めて磁歪の小さい磁気特性に優
れた磁性合金が得られる。
By adding Nb, a wide alloy ribbon can be obtained very easily even with the multi-piece roll method, and by adding Cu at the same time, a magnetic alloy with extremely low magnetostriction and excellent magnetic properties can be obtained even in the IBFe system. can get.

本発明者らは種々の添加物効果を検討した結果。The present inventors have investigated the effects of various additives.

この(Fe−Go −Ni ) −B系に対しNbの添
加が翫めて効果的で、片ロール法でも極めて容易に幅広
の非晶質磁性合金リボンが得られる事を発見した。
It has been discovered that the addition of Nb to this (Fe-Go-Ni)-B system is extremely effective, and that a wide amorphous magnetic alloy ribbon can be obtained extremely easily even with a single roll method.

本発明はこれに基づくものである。The present invention is based on this.

まずNbの添加について説明すると、実検の結果、非晶
質化しやすい組成範囲は次の領域で与えられる合金であ
る事がわかった。
First, to explain the addition of Nb, as a result of actual tests, it was found that the composition range in which amorphous formation is likely to occur is within the following range of alloys.

(Fe −Go−Ni ) 1LNbbB0ただし、a
、b、cは原子蟹を示し、 a+b+C=1 ooという条件下において。
(Fe-Go-Ni) 1LNbbB0 However, a
, b, and c represent atomic crabs under the condition that a+b+C=1 oo.

6.7 6o≦a≦95 2≦b≦30 o(c≦30 特に、幅が41以上、厚みが40μm以上の非晶質リボ
ンを容易に得ようとする場合は。
6.7 6o≦a≦95 2≦b≦30 o(c≦30) Especially when trying to easily obtain an amorphous ribbon having a width of 41 or more and a thickness of 40 μm or more.

6≦b≦3゜ となるようにすればよい。又、非晶質合金が磁性を有す
る為の条件及び空気中で非晶質合金を作製しようとする
場合、酸化させない為には。
It is sufficient that 6≦b≦3°. Also, the conditions for an amorphous alloy to have magnetism, and the conditions for preventing oxidation when attempting to produce an amorphous alloy in air.

2≦b≦20 である事が望ましい。2≦b≦20 It is desirable that

第1図にFe’80−JCNbX B20なる合金膜を
片ロール法により作製した際の、抗磁力HOと折シ曲げ
試験による脆化係数efに関する実験結果を示しだ。
FIG. 1 shows the experimental results regarding the coercive force HO and the embrittlement coefficient ef in the bending test when an alloy film of Fe'80-JCNbX B20 was produced by the single roll method.

6fは次式よシ求められるものである。6f is obtained from the following equation.

ただし、ここでtは試料の厚さ、rは折シ曲げ破壊が生
ずる最小曲率半径であp、180’完全曲げが可能の場
合はθf=1となる。
However, here, t is the thickness of the sample, r is the minimum radius of curvature at which bending failure occurs, p, and if complete bending of 180' is possible, θf=1.

図に示した結果よりNbの添加が合金薄帯の作製を容易
にするばかりか、磁気特性の改善にも効果がある事がわ
かる。
From the results shown in the figure, it can be seen that the addition of Nb not only facilitates the production of alloy ribbons, but also has the effect of improving magnetic properties.

周知のように従来のM (−Fe、 co、 Nl) 
100−CBC系合金ではC≧15(原子CX)でない
と非晶質化しテ〈り、又飽和磁化σ8はBの増加ととも
に減少する事が知られている。一方(M−Nb)Boo
−cc 系合金ではNbの添加によpBが15%以下でも非晶質
化するが、非磁性元素Nbの添加により飽和磁化σ8が
、同じB含有量では第2図に示したように従来のMlo
o−0B0系合金よりも低くなる。
As is well known, conventional M (-Fe, co, Nl)
It is known that a 100-CBC alloy becomes amorphous unless C≧15 (atomic CX), and that saturation magnetization σ8 decreases as B increases. On the other hand (M-Nb) Boo
-cc alloys become amorphous even when pB is less than 15% by adding Nb, but by adding the non-magnetic element Nb, the saturation magnetization σ8 is Mlo
It is lower than the o-0B0 alloy.

従ってσ8の高い値を必要とする場合には。Therefore, if a high value of σ8 is required.

cく1゜ とする事が望ましい。c ku1゜ It is desirable to do so.

さてFe −B系の磁歪定数λは約3X10’であるが
、これにNbを添加してFe−Nb−B系とする事によ
シλは約lX10’  と低下する。更に興味ある事に
はCuをNbと共に添加すると磁歪が極めて小さいFe
系の磁性合金が得られる事がわかった。ただしCuは多
量に添加すると合金を脆化させ、又非晶質化が困難とな
るので添加量を10に以下とする事が望ましい。
Now, the magnetostriction constant λ of the Fe-B system is about 3X10', but by adding Nb to it to form the Fe-Nb-B system, λ is reduced to about 1X10'. What is even more interesting is that when Cu is added together with Nb, Fe has extremely low magnetostriction.
It was found that a magnetic alloy of the system can be obtained. However, if a large amount of Cu is added, the alloy will become brittle and it will be difficult to make it amorphous, so it is desirable that the amount added be 10 or less.

実施例 Fe −B系合金にNbおよびNbとCuを添加した合
金薄帯を作製しその磁歪定数λを測定した。
Example Alloy ribbons were prepared by adding Nb and Nb and Cu to a Fe--B alloy, and their magnetostriction constants λ were measured.

結果を次表に示す。The results are shown in the table below.

表に示しだ結果よりわかるように、従来のFe −B−
(Si)系非晶質合金では得る事が不可能であった極め
て磁歪の小さい合金を得る事が本発明のFe−Nb−C
u−B系により可能となった事がわかる。
As can be seen from the results shown in the table, conventional Fe −B−
The Fe-Nb-C of the present invention can obtain an alloy with extremely low magnetostriction, which has been impossible to obtain with (Si)-based amorphous alloys.
It can be seen that this was made possible by the u-B system.

なおFe−Nb −Cu−B系に数原子蟹のCOもしく
はN1を添加してもやはり磁歪の小さいものが得られる
事がわかった。
It has been found that even when a few atoms of CO or N1 are added to the Fe--Nb--Cu--B system, a product with low magnetostriction can still be obtained.

発明の効果 本発明によれば、製造が容易で、かつ磁歪定数の極めて
小さい磁気ヘッドやトランスに適した非晶質磁性合金を
得る事ができる。
Effects of the Invention According to the present invention, it is possible to obtain an amorphous magnetic alloy that is easy to manufacture and has an extremely small magnetostriction constant and is suitable for magnetic heads and transformers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ばFe8o−xNbxB2o  の添加量Xに対
する抗磁力Hcと脆化係数efの特性図、第2図はM 
(=Fe、Cu、Ni )1oo−oBo系と(M”)
too −cBc系合金の飽和磁化σ8とB含有量との
関係を示す。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 f 図 第 図
Figure 1 is a characteristic diagram of coercive force Hc and embrittlement coefficient ef with respect to the addition amount X of Fe8o-xNbxB2o, and Figure 2 is a characteristic diagram of M
(=Fe, Cu, Ni)1oo-oBo system and (M”)
The relationship between the saturation magnetization σ8 and B content of a too-cBc alloy is shown. Name of agent: Patent attorney Shigetaka Awano and one other person Figure f Figure

Claims (2)

【特許請求の範囲】[Claims] (1)式:MaTbBc (式中MはFe、Co、Niからなる群から選ばれる少
なくとも1種、TはNbを主成分とし、かつCuを10
原子%以下含有する混合物、Bはホウ素;a、bおよび
cは原子%であり、 かつそれらの和が100になるという条件下でそれぞれ
60≦a≦95、2≦b≦20、0<c≦30)で示さ
れる非晶質磁性合金。
(1) Formula: MaTbBc (where M is at least one member selected from the group consisting of Fe, Co, and Ni, T is Nb as a main component, and Cu is 10
A mixture containing atomic% or less, B is boron; a, b and c are atomic%, and under the condition that their sum is 100, 60≦a≦95, 2≦b≦20, 0<c, respectively. ≦30).
(2)0<c≦10である特許請求の範囲第1項記載の
非晶質磁性合金。
(2) The amorphous magnetic alloy according to claim 1, wherein 0<c≦10.
JP1059927A 1989-03-13 1989-03-13 Amorphous magnetic alloy Expired - Lifetime JPH0765147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059927A JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059927A JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55164978A Division JPS5789450A (en) 1980-11-21 1980-11-21 Amorphous magnetic alloy

Publications (2)

Publication Number Publication Date
JPH0243348A true JPH0243348A (en) 1990-02-13
JPH0765147B2 JPH0765147B2 (en) 1995-07-12

Family

ID=13127248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059927A Expired - Lifetime JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0765147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288803A (en) * 1991-03-18 1992-10-13 Alps Electric Co Ltd Low frequency transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288803A (en) * 1991-03-18 1992-10-13 Alps Electric Co Ltd Low frequency transformer

Also Published As

Publication number Publication date
JPH0765147B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US6471789B1 (en) Amorphous metal alloy strip
TWI512767B (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
US5622768A (en) Magnetic core
JP2552274B2 (en) Glassy alloy with perminer characteristics
KR870002021B1 (en) Amorphous metals
JPS6119701B2 (en)
JPH0243348A (en) Amorphous magnetic alloy
JPH01290744A (en) Fe-base soft-magnetic alloy
JP2994318B2 (en) Fe-based amorphous soft magnetic material and method for producing the same
US4501316A (en) Method of casting amorphous metals
US4938267A (en) Glassy metal alloys with perminvar characteristics
JP3749801B2 (en) Soft magnetic metallic glass alloy
JPS6043899B2 (en) High effective permeability non-quality alloy
JPH02500788A (en) Glassy alloy with nearly zero magnetostriction for high frequency use
DE3936519C2 (en) Layer of soft magnetic alloy
JPH0373612B2 (en)
JP2815926B2 (en) Magnetic core
JPH0413420B2 (en)
JPS6242981B2 (en)
JPS6044383B2 (en) Amorphous alloy for magnetic heads
JPH0310052A (en) High permeability amorphous alloy having high corrosion resistance, high strength, and high wear resistance and improvement of magnetic property of same
JPS6274052A (en) Fe-co soft magnetic material
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
JPS58185747A (en) Amorphous iron alloy for magnetic head
JPS61284546A (en) Amorphous alloy for magnetic head