JPH0765147B2 - Amorphous magnetic alloy - Google Patents

Amorphous magnetic alloy

Info

Publication number
JPH0765147B2
JPH0765147B2 JP1059927A JP5992789A JPH0765147B2 JP H0765147 B2 JPH0765147 B2 JP H0765147B2 JP 1059927 A JP1059927 A JP 1059927A JP 5992789 A JP5992789 A JP 5992789A JP H0765147 B2 JPH0765147 B2 JP H0765147B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
magnetic alloy
ribbon
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1059927A
Other languages
Japanese (ja)
Other versions
JPH0243348A (en
Inventor
博 榊間
三男 里見
治文 先納
栄一 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1059927A priority Critical patent/JPH0765147B2/en
Publication of JPH0243348A publication Critical patent/JPH0243348A/en
Publication of JPH0765147B2 publication Critical patent/JPH0765147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、製造が容易で、かつ機械的特性が良好なる非
晶質磁性合金に関する。さらに本発明は磁歪が小さく、
磁気特性に優れた磁気ヘッド用もしくはトランス用の磁
性合金に関する。
TECHNICAL FIELD The present invention relates to an amorphous magnetic alloy which is easy to manufacture and has good mechanical properties. Further, the present invention has a small magnetostriction,
The present invention relates to a magnetic alloy having excellent magnetic properties for a magnetic head or a transformer.

従来の技術 近年超急冷技術の進歩により種々の非晶質磁性合金が得
られるようになった。歴史的にはガン法もしくはピスト
ンアンビル法及びスプラットクェンチング法等によりFe
−P−C,Co−P−B,Ni−Bなどの非晶質合金が得られた
という報告があり、またP,C,Bと遷移金属の組合せによ
り非晶質合金が得られる事が知られている。このうち、
Pは蒸気圧が高く、組成ずれが生ずる問題や公害上の問
題があり、一方Cは溶解中に遷移金属中に固溶させるの
が困難であるばかりでなく、分離析出するなど製造上の
問題点が多い。その為、現在Bが最も有効な元素である
事が知られている。
2. Description of the Related Art In recent years, various amorphous magnetic alloys have come to be obtained due to the progress of ultraquenching technology. Historically, Fe by the gun method or piston anvil method and splat quenching method, etc.
It has been reported that amorphous alloys such as -P-C, Co-P-B, and Ni-B have been obtained, and that amorphous alloys can be obtained by combining P, C, B and transition metals. Are known. this house,
P has a high vapor pressure and causes problems such as compositional deviation and pollution problems. On the other hand, C is not only difficult to form a solid solution in the transition metal during melting, but also a manufacturing problem such as separation and precipitation. There are many points. Therefore, it is currently known that B is the most effective element.

非晶質磁性合金の作製法は、現在では前述のような方法
にかわって両ロール法や片ロール法が主流となって来て
いる。これは以前の方法が不安定形の非晶質薄片しか得
られないのに対し、これらの方法を用いることにより一
定幅,一定厚みのリボン形状の非晶質磁性合金を容易に
得ることができるので工業上の利点が大きい為である。
As a method for producing an amorphous magnetic alloy, at present, a double roll method or a single roll method has become mainstream in place of the above-mentioned method. This is because while the previous method can only obtain unstable amorphous flakes, it is possible to easily obtain a ribbon-shaped amorphous magnetic alloy with a constant width and a constant thickness by using these methods. This is because it has great industrial advantages.

更に量産性を考慮すると片ロール法が優れており、実用
上は片ロール法により合金薄帯(リボン)が得られる事
が望ましい。
Further, considering the mass productivity, the one-roll method is superior, and it is desirable in practice to obtain an alloy ribbon (ribbon) by the one-roll method.

ところが、遷移金属とホウ素の組合せより成る組成を有
する非晶質磁性合金は両ロール法では比較的容易に1cm
幅ぐらいのものが得られているが、片ロール法ではせい
ぜい幅が1〜2mmぐらいのものしか得られていない。こ
れ以上の幅のものを得ようとすると片ロール法では冷却
が十分でなくなるため、ロールから凝固したリボンが離
れ巻き取られる際もリボンの温度が400〜800℃ほどもあ
るため、得られたリボンが酸化し変色する。また、この
ようにして得られた非晶質磁性合金は、本来非晶質合金
がもつ180゜折り曲げに耐える機械的特性を有せず、極
めて脆いものであった。この非晶質磁性合金は機械的特
性が劣るのみならず、磁気特性もまた好ましくないもの
であった。従って、(Fe−Co−Ni)−B系の特性良好な
る非晶質磁性合金を片ロール法で幅広のリボン形状とし
て得る事は極めて困難な事であった。
However, an amorphous magnetic alloy having a composition consisting of a combination of transition metal and boron is relatively easy to be 1 cm by both roll methods.
Although widths of about 1 to 2 mm are obtained at most by the single roll method. If you try to obtain a wider width than this, the single roll method will not provide sufficient cooling, so even when the solidified ribbon is separated from the roll and taken up, the ribbon temperature is as high as 400 to 800 ° C. The ribbon oxidizes and discolors. Further, the amorphous magnetic alloy obtained in this manner was extremely brittle because it did not have the mechanical properties of the amorphous alloy that can withstand 180 ° bending. This amorphous magnetic alloy was not only inferior in mechanical properties but also in magnetic properties. Therefore, it has been extremely difficult to obtain an amorphous magnetic alloy of the (Fe-Co-Ni) -B type having good characteristics by the single roll method in the form of a wide ribbon.

また、(Fe−Co−Ni)−B系を改良した(Fe−Co−Ni)
−Zr系,(Fe−Co−Ni)−Zr−B系などが発表されてお
り、これらの材料は従来の(Fe−Co−Ni)−B系に比べ
容易に片ロール法によって幅広の非晶質リボンを得るこ
とができる。しかしながら、これらのZrを含む合金系は
極めて酸化されやすいため、空気中で母合金を溶解し片
ロール法より超急冷し、非晶質合金化するのは極めて困
難である。
In addition, (Fe-Co-Ni) -B system is improved (Fe-Co-Ni)
-Zr system, (Fe-Co-Ni) -Zr-B system, etc. have been announced, and these materials are more easily processed by the single roll method than the conventional (Fe-Co-Ni) -B system. A crystalline ribbon can be obtained. However, since these Zr-containing alloy systems are extremely susceptible to oxidation, it is extremely difficult to melt the mother alloy in air and rapidly quench it by the single roll method to form an amorphous alloy.

更にコスト上はFeを主成分とする合金の方が望ましいも
のの、従来のFe−BやFe−Si−Bは磁歪定数が約30×10
-6と大きく、合金にストレスが加わると大幅に特性が劣
化する問題点がある。従ってFe系で磁歪の小さい非晶質
合金がない為、コスト高にはなるものの磁歪の小さいCo
系の非晶質合金が磁気ヘッドや高性能トランスに用いら
れていた。
Further, in terms of cost, an alloy containing Fe as a main component is preferable, but conventional Fe-B and Fe-Si-B have a magnetostriction constant of about 30 × 10.
It is as large as -6, and there is a problem that the characteristics are significantly deteriorated when stress is applied to the alloy. Therefore, since there is no Fe-based amorphous alloy with small magnetostriction, the cost is high, but Co with small magnetostriction is used.
Amorphous alloys were used for magnetic heads and high-performance transformers.

発明が解決しようとする課題 本発明はかかる問題を解決するものであり、製造を容易
にして、かつ特性良好なるFe系の非晶質磁性合金を提供
するものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention solves such a problem, and provides an Fe-based amorphous magnetic alloy which is easy to manufacture and has good characteristics.

課題を解決するための手段 本発明においては(Fe−Co−Ni)−B系にNbとCuを添加
する事により上記の問題を解決する。
Means for Solving the Problems In the present invention, the above problems are solved by adding Nb and Cu to the (Fe—Co—Ni) —B system.

作 用 Nbの添加により片ロール法でも極めて容易に幅広の合金
薄帯(リボン)が得られ、かつCuを同時に添加する事に
よりFe系でも極めて磁歪の小さい磁気特性に優れた磁性
合金が得られる。
A wide alloy ribbon (ribbon) can be obtained very easily by the single roll method by adding Nb, and a magnetic alloy with extremely small magnetostriction and excellent magnetic properties can be obtained by adding Cu at the same time. .

本発明者らは種々の添加物効果を検討した結果、この
(Fe−Co−Ni)−B系に対しNbの添加が極めて効果的
で、片ロール法でも極めて容易に幅広の非晶質磁性合金
リボンが得られる事を発見した。本発明はこれに基づく
ものである。
As a result of examining the effects of various additives, the present inventors have found that the addition of Nb is extremely effective for this (Fe-Co-Ni) -B system, and the single-roll method makes it very easy to obtain a wide amorphous magnetic field. It was discovered that an alloy ribbon could be obtained. The present invention is based on this.

まずNbの添加について説明すると、実験の結果、非晶質
化しやすい組成範囲は次の領域で与えられる合金である
事がわかった。
First, the addition of Nb will be described. As a result of experiments, it was found that the composition range in which amorphization is likely to occur is an alloy given in the following region.

(Fe−Co−Ni)aNbbBc ただし、a,b,cは原子%を示し、 a+b+c=100という条件下において、 60≦a≦95 2≦b≦30 0<c≦30 特に、幅が4cm以上、厚みが40μm以上の非晶質リボン
を容易に得ようとする場合は、 6≦b≦30 となるようにすればよい。又、非晶質合金が磁性を有す
る為の条件及び空気中で非晶質合金を作製しようとする
場合、酸化させない為には、 2≦b≦20 である事が望ましい。
(Fe-Co-Ni) a Nb b B c where a, b, and c represent atomic%, and under the condition of a + b + c = 100, 60 ≦ a ≦ 95 2 ≦ b ≦ 30 0 <c ≦ 30 In particular, In order to easily obtain an amorphous ribbon having a width of 4 cm or more and a thickness of 40 μm or more, 6 ≦ b ≦ 30 should be satisfied. Further, it is desirable that 2 ≦ b ≦ 20 so that the amorphous alloy does not oxidize when it is produced under the condition that the amorphous alloy has magnetism and in the air.

第1図にFe80-xNbxB20なる合金膜を片ロール法により作
製した際の、抗磁力Hcと折り曲げ試験による脆化係数ef
に関する実験結果を示した。
Fig. 1 shows the coercive force Hc and the embrittlement coefficient e f in the bending test when an alloy film Fe 80-x Nb x B 20 was prepared by the one-roll method.
The experimental results for are shown.

efは次式より求められるものである。e f is obtained from the following equation.

ただし、ここでtは試料の厚さ、rは折り曲げ破壊が生
ずる最小曲率半径であり、180゜完全曲げが可能な場合
はef=1となる。
Here, t is the thickness of the sample, r is the minimum radius of curvature at which bending failure occurs, and e f = 1 when 180 ° perfect bending is possible.

図に示した結果よりNbの添加が合金薄帯の作製を容易に
するばかりか、磁気特性の改善にも効果がある事がわか
る。
From the results shown in the figure, it can be seen that addition of Nb not only facilitates the production of the alloy ribbon, but also has the effect of improving the magnetic properties.

周知のように従来のM(=Fe,Co,Ni)100-cBc系合金で
はc≧15(原子%)でないと非晶質化しにくく、又飽和
磁化σはBの増加とともに減少する事が知られてい
る。一方(M−Nb)100-cBc系合金ではNbの添加により
Bが15%以下でも非晶質化するが、非磁性元素Nbの添加
により飽和磁化σが、同じB含有量では第2図に示し
たように従来のM100-cBc系合金よりも低くなる。従っ
て、σの高い値を必要とする場合には、 c≦10 とする事が望ましい。
Known as the conventional M (= Fe, Co, Ni ) c ≧ 15 ( atomic%) not equal hardly amorphous at 100-c B c alloy, also the saturation magnetization sigma s decreases with increasing B Things are known. On the other hand (M-Nb) Although the 100-c B c based alloy amorphized B even more than 15% by the addition of Nb, the saturation magnetization sigma s by addition of a non-magnetic element Nb is first in the same B content As shown in Fig. 2, it is lower than the conventional M 100-c B c alloy. Therefore, when a high value of σ s is required, it is desirable that c ≦ 10.

さてFe−B系の磁歪定数λは約3×10-5であるが、これ
にNbを添加してFe−Nb−B系とする事によりλは約1×
10-5と低下する。更に興味ある事にはCuをNbと共に添加
すると磁歪が極めて小さいFe系の磁性合金が得られる事
がわかった。ただしCuは多量に添加すると合金が脆化さ
せ、又非晶質化が困難となるので添加量を10%以下とす
る事が望ましい。
The Fe—B system has a magnetostriction constant λ of about 3 × 10 −5 , but by adding Nb to this to form the Fe—Nb—B system, λ is about 1 ×.
It drops to 10 -5 . More interestingly, it was found that when Cu was added together with Nb, a Fe-based magnetic alloy with extremely small magnetostriction was obtained. However, if Cu is added in a large amount, the alloy becomes brittle, and it becomes difficult to make it amorphous. Therefore, it is desirable that the addition amount be 10% or less.

実施例 Fe−B系合金にNbおよびNbとCuを添加した合金薄帯を作
製しその磁歪定数λを測定した。結果を次表に示す。
Example An alloy ribbon was prepared by adding Nb and Nb and Cu to an Fe-B based alloy, and the magnetostriction constant λ was measured. The results are shown in the table below.

表に示した結果よりわかるように、従来のFe−B−(S
i)系 非晶質合金では得る事が不可能であった極めて
磁歪の小さい合金を得る事が本発明のFe−Nb−Cu−B系
により可能となった事がわかる。
As can be seen from the results shown in the table, conventional Fe-B- (S
It can be seen that the Fe-Nb-Cu-B system of the present invention makes it possible to obtain an alloy having an extremely small magnetostriction, which was impossible to obtain with the i) system amorphous alloy.

なおFe−Nb−Cu−B系に数原子%のCoもしくはNiは添加
してもやはり磁歪の小さいものが得られる事がわかっ
た。
It has been found that even if a few atomic% of Co or Ni is added to the Fe-Nb-Cu-B system, a material having a small magnetostriction can be obtained.

発明の効果 本発明によれば、製造が容易で、かつ磁歪定数の極めて
小さい磁気ヘッドやトランスに適した非晶質磁性合金を
得る事ができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain an amorphous magnetic alloy that is easy to manufacture and is suitable for a magnetic head or transformer having an extremely small magnetostriction constant.

【図面の簡単な説明】[Brief description of drawings]

第1図はFe80-xNbxB20の添加量xに対する抗磁力Hcと脆
化係数efの特性図、第2図はM(=Fe,Co,Ni)100-cBc
系と(M−Nb)100-cBc系合金の飽和磁化σとB含有
量との関係を示す。
Fig. 1 is a characteristic diagram of coercive force Hc and embrittlement coefficient e f with respect to the additive amount x of Fe 80-x Nb x B 20 , and Fig. 2 is M (= Fe, Co, Ni) 100-c B c
The relationship between the B content and the saturation magnetization σ s of the (M-Nb) 100-c B c system alloys is shown.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】式:MaTbBc (式中MはFe,Co,Niからなる群から選ばれる少なくとも
1種、TはNbを主成分とし、かつCuを合金全体の10原子
%以下含有する混合物、Bはホウ素;a,bおよびcは原子
%であり、かつそれらの和が100になるという条件下で
それぞれ60≦a≦95,2≦b≦20,0<c≦30)で示される
非晶質磁性合金。
1. A formula: MaTbBc (wherein M is at least one member selected from the group consisting of Fe, Co and Ni, T is a main component of Nb, and Cu is a mixture containing 10 atomic% or less of the whole alloy, B is boron; a, b and c are atomic%, and under the condition that the sum thereof is 100, 60 ≦ a ≦ 95, 2 ≦ b ≦ 20,0 <c ≦ 30) Crystalline magnetic alloy.
【請求項2】0<c≦10である特許請求の範囲第1項記
載の非晶質磁性合金。
2. The amorphous magnetic alloy according to claim 1, wherein 0 <c ≦ 10.
JP1059927A 1989-03-13 1989-03-13 Amorphous magnetic alloy Expired - Lifetime JPH0765147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059927A JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059927A JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55164978A Division JPS5789450A (en) 1980-11-21 1980-11-21 Amorphous magnetic alloy

Publications (2)

Publication Number Publication Date
JPH0243348A JPH0243348A (en) 1990-02-13
JPH0765147B2 true JPH0765147B2 (en) 1995-07-12

Family

ID=13127248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059927A Expired - Lifetime JPH0765147B2 (en) 1989-03-13 1989-03-13 Amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0765147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812569B2 (en) * 1991-03-18 1998-10-22 アルプス電気株式会社 Low frequency transformer

Also Published As

Publication number Publication date
JPH0243348A (en) 1990-02-13

Similar Documents

Publication Publication Date Title
EP0058269B1 (en) Amorphous metal alloy strip and method of making such strip
TWI512767B (en) Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof
JP2009108415A (en) Amorphous alloy composition
JPS6133900B2 (en)
JP3877893B2 (en) High permeability metal glass alloy for high frequency
US5622768A (en) Magnetic core
JPS6362579B2 (en)
JP2552274B2 (en) Glassy alloy with perminer characteristics
KR870002021B1 (en) Amorphous metals
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JPS6119701B2 (en)
JPS6212296B2 (en)
JPS5825449A (en) Amorphous magnetic alloy for magnetic head
JPH0765147B2 (en) Amorphous magnetic alloy
JPS59100254A (en) High saturation magnetization and low magnetostriction iron-boron solid solution alloy
JPS6037179B2 (en) amorphous magnetic alloy
JPH10324939A (en) Cobalt-base amorphous soft magnetic alloy
JP3749801B2 (en) Soft magnetic metallic glass alloy
JPH11131199A (en) Soft magnetic glass alloy
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
EP0095831A2 (en) Amorphous metals and articles made thereof
JPH0413420B2 (en)
JPH0525947B2 (en)
JPH0310052A (en) High permeability amorphous alloy having high corrosion resistance, high strength, and high wear resistance and improvement of magnetic property of same
JPH0310699B2 (en)