JPS6274052A - Fe-co soft magnetic material - Google Patents

Fe-co soft magnetic material

Info

Publication number
JPS6274052A
JPS6274052A JP60215832A JP21583285A JPS6274052A JP S6274052 A JPS6274052 A JP S6274052A JP 60215832 A JP60215832 A JP 60215832A JP 21583285 A JP21583285 A JP 21583285A JP S6274052 A JPS6274052 A JP S6274052A
Authority
JP
Japan
Prior art keywords
alloy
magnetic material
soft magnetic
flux density
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60215832A
Other languages
Japanese (ja)
Inventor
Shinichiro Yahagi
慎一郎 矢萩
Takanobu Saitou
斉藤 貴伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60215832A priority Critical patent/JPS6274052A/en
Publication of JPS6274052A publication Critical patent/JPS6274052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To carry out foil formation without deteriorating saturation magnetic flux density by forming an Fe-Co alloy with a specific composition into foil by a melt-rapid-cooling method. CONSTITUTION:The Fe-Co alloy consisting of, by weight, 35-50% Co and the balance essentially Fe is melted and this molten alloy is rapid-cooled by a single-roll method, etc., to be formed into foil. In the above alloy composition, one or more elements among Si, Al, Cr, V, Nb, Ti, Mo and W are incorporated by <=10% in total, if necessary. In this way, a soft magnetic material capable of forming into sheet-like state without causing practical deterioration in saturation magnetic flux density and having improved characteristics such as electrical resistivity, etc., can be provided. This magnetic material can be used in various fields such as magnetic heads, iron cores for small-sized relay, diaphragms, for telephone set, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は軟質磁性材料に係り、より詳細には、Fe−C
o系で薄板状として使用できるFe−Co系軟質磁性材
料に関する。 (従来の技術及び問題点) 軟質磁性材料としては種々のものがあり、その磁気特性
に応じた用途に供されている。 一般的に、軟質磁性材料として必要な磁気特性としては
、使用部品に応じて水準は異なるが、■磁束密度Bが高
いこと ■透磁率μが高いこと ■保磁力Heが小さいこと ■電気抵抗率ρが高いこと が要求される。 従来、上記要件を満たすうえで有望な軟質磁性材料とし
てFe−Co合金が知られている。この合金は第1図に
示すようにCoが35〜50%前後含有するときに飽和
磁束密度(Bs)が最大を示す材料であるが、電気抵抗
率が低いという難点があるものの、特に製造上問題があ
り、殊に冷間加工性が著しく悪いため、薄板にするのが
非常に困難であるという欠点がある。したがって、リレ
ー鉄心、電話器振動板等々にはほんの一部しか実用化さ
れていない。このため、通常の製造法で加工性を一部改
善したパーメンジュール(49%Fe−49%Co−2
%V)の使用が試みられているが。 これとて薄板化がむずかしく、事実上冷間圧延で薄帯化
された例はほとんど見当たらない。 (発明の目的) 本発明の目的は、上記従来のFe−Co系軟質磁性材料
の欠点を解消し、飽和磁束密度を実質的に低下させずに
薄板状に加工でき、更に要すれば電気抵抗率の向上も可
能なFe−Co系軟質磁性材料を提供することにある。 (発明の構成) 上記目的を達成するため、本発明に係るFe−Co系軟
質磁性材料は、Coを35〜50%含み、必要に応じて
これに特定の第3元素を比較的少量で添加したFe−C
o系合金からなり、これを非晶質薄帯を製造する溶湯急
冷法と同様の方法により薄帯化したものであって、この
ような溶湯急冷法により結晶粒が微細化されて脆性が改
善され、薄帯化された軟質磁性材料が得られる。 本発明におけるCoは、F e −Co系において最大
の飽和磁束密度(Bs)を示す35〜50%の範囲で含
有させるが、第〕−図に示すように、この範囲でCOを
含有するF e−Co合金は電気抵抗率(ρ)が低いの
で、Bsを余り低下させずに電気抵抗率を向上させる目
的で以下に示す第3元素を必要に応じて添加することが
できる。 すなわち、第3元素としてはSi、Al1. Cr、V
、Nb、Ti、Mo、W及びZrのうちの1種又は2種
以上を合計で10%以下添加する。10%を超えて多量
に添加するとBsの低下が著しくなるので好ましくない
。なお、これらの元素のうち、VはBsを低下させずに
ρを著しく向丘させる効果があり、また脆性を改善する
効果もあり、1−〜4%が好適範囲である。また、Si
、 A Q 、 Cr、Nb、Ti、Mo、W及びZr
はいずれもρを著しく向上させることができる元素で、
特にSl、AM、Crはρを向上させる効果が顕著であ
り、また特にTi、Nb、Crは耐食性も改善できる元
素であるので磁気ヘッド等に使用する場合に添加が有効
である。 上記組成のF e −Co系合金は、片ロール法、双ロ
ール法等々として知られる溶湯急冷法によって容易に薄
帯化することが可能である。 (実施例) 第1表に示す組成のFe−Co系合金を高周波誘導炉で
溶解し、石英管に吸い上げて溶湯急冷用の母材とした。 次いでAr雰囲気中において片ロール法により薄帯化し
、厚さ約20〜50μm、幅約10mmのa?iFを得
ることができた。これらの薄帯に真空中で900’CX
4時間の焼鈍を施した後。 直流磁気特性及び電気抵抗率を測定すると共に耐食性試
験(塩水噴霧試験)を行い、また曲げ試験も行った。以
上の結果を第1表に示す。
(Industrial Application Field) The present invention relates to soft magnetic materials, more specifically Fe-C
The present invention relates to a Fe--Co based soft magnetic material that can be used in the form of a thin plate. (Prior Art and Problems) There are various soft magnetic materials, and they are used for different purposes depending on their magnetic properties. In general, the magnetic properties required for a soft magnetic material vary depending on the parts used, but include: ■ High magnetic flux density B ■ High magnetic permeability μ ■ Low coercive force He ■ Electrical resistivity A high ρ is required. Conventionally, Fe--Co alloy has been known as a promising soft magnetic material that satisfies the above requirements. As shown in Figure 1, this alloy is a material that exhibits the maximum saturation magnetic flux density (Bs) when it contains approximately 35 to 50% Co, but although it has the disadvantage of low electrical resistivity, it is particularly difficult to manufacture. There are problems, particularly in that cold workability is extremely poor, making it very difficult to form into thin sheets. Therefore, only a few of them have been put to practical use, such as relay cores and telephone diaphragms. For this reason, permendur (49%Fe-49%Co-2
%V) has been attempted. It is difficult to make this into a thin sheet, and in fact there are almost no examples of it being made into a thin strip by cold rolling. (Objective of the Invention) The object of the present invention is to eliminate the drawbacks of the conventional Fe-Co-based soft magnetic materials mentioned above, to be able to process them into a thin plate shape without substantially reducing the saturation magnetic flux density, and, if necessary, to reduce the electrical resistance. The object of the present invention is to provide a Fe-Co-based soft magnetic material that can also improve the magnetic flux rate. (Structure of the Invention) In order to achieve the above object, the Fe-Co-based soft magnetic material according to the present invention contains 35 to 50% Co, and if necessary, a relatively small amount of a specific third element is added thereto. Fe-C
O-based alloy, which is made into a thin ribbon using a method similar to the molten metal quenching method used to produce amorphous ribbons, and this molten metal quenching method refines the crystal grains and improves brittleness. A soft magnetic material made into a thin ribbon is obtained. In the present invention, Co is contained in a range of 35 to 50% which shows the maximum saturation magnetic flux density (Bs) in the Fe-Co system, but as shown in Fig. Since the e-Co alloy has a low electrical resistivity (ρ), a third element shown below can be added as necessary in order to improve the electrical resistivity without significantly lowering Bs. That is, as the third element, Si, Al1. Cr, V
, Nb, Ti, Mo, W, and Zr in a total amount of 10% or less. Adding a large amount exceeding 10% is not preferable because the Bs decreases significantly. Among these elements, V has the effect of significantly increasing ρ without lowering Bs, and also has the effect of improving brittleness, and a preferable range is 1 to 4%. Also, Si
, A Q , Cr, Nb, Ti, Mo, W and Zr
are all elements that can significantly improve ρ,
In particular, Sl, AM, and Cr have a remarkable effect of improving ρ, and Ti, Nb, and Cr are elements that can also improve corrosion resistance, so their addition is effective when used in magnetic heads and the like. The Fe--Co alloy having the above composition can be easily formed into a thin ribbon by a molten metal quenching method known as a single roll method, a twin roll method, or the like. (Example) A Fe--Co alloy having the composition shown in Table 1 was melted in a high-frequency induction furnace and sucked up into a quartz tube to be used as a base material for rapidly cooling the molten metal. Next, it is made into a thin ribbon by a single roll method in an Ar atmosphere, and the a? I was able to obtain iF. These thin strips were subjected to 900'CX in vacuum.
After being annealed for 4 hours. In addition to measuring DC magnetic properties and electrical resistivity, a corrosion resistance test (salt spray test) was also conducted, and a bending test was also conducted. The above results are shown in Table 1.

【以下余白】[Left below]

第1表に示すとうり、いずれの試料(薄帯)も、180
°折り曲げが可能で脆性が改善されており、しかもBs
を余り低下させずにρを高めることも可能であることが
わかる。 (発明の効果) 以上説明したように、本発明によれば、Fe−Co系合
金、を薄帯化した軟質磁性材料を提供することができ、
しかも飽和磁束密度を実質的に低下させずに電気抵抗率
等の他の特性を向上させることも可能であるので、従来
使用されていなかった磁気ヘッド、小型リレー用鉄心、
小型モーター用鉄心、電話器振動板等々の分野での利用
が実現可能となると共に、部品の小型化も可能となる。
As shown in Table 1, all samples (thin strips) have 180
°It is bendable and has improved brittleness, and Bs
It can be seen that it is also possible to increase ρ without significantly reducing ρ. (Effects of the Invention) As explained above, according to the present invention, it is possible to provide a soft magnetic material in which a Fe-Co alloy is made into a thin ribbon.
Moreover, it is possible to improve other properties such as electrical resistivity without substantially reducing saturation magnetic flux density, so it is possible to improve other properties such as electrical resistivity without substantially reducing saturation magnetic flux density.
It becomes possible to use it in fields such as iron cores for small motors and telephone diaphragms, and it also becomes possible to miniaturize parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Co合金の室温における飽和磁束密度(
Bs)及び電気抵抗率(ρ)とCo含有量との関係を示
す図である。 特許出願人  大同特殊鋼株式会社 第1図 C,金層t(ス)
Figure 1 shows the saturation magnetic flux density (
Bs), electrical resistivity (ρ), and Co content. Patent applicant Daido Steel Co., Ltd. Figure 1 C, gold layer t (S)

Claims (1)

【特許請求の範囲】 1 重量割合で(以下、同じ)、Coが35〜50%を
含み、残部が実質的にFeからなる合金であって、溶湯
からの急冷により薄帯化されているものであることを特
徴とするFe−Co系軟質磁性材料。 2 Coが35〜50%を含み、更にSi、Al、Cr
、V、Nb、Ti、Mo、W及びZrのうちの1種又は
2種以上を合計で10%以下含み、残部が実質的にFe
からなる合金であって、溶湯からの急冷により薄帯化さ
れているものであることを特徴とするFe−Co系軟質
磁性材料。 3 前記合金はCoを35〜50%及びVを1〜4%含
み、残部が実質的にFeからなる特許請求の範囲第2項
記載のFe−Co系軟質磁性材料。
[Scope of Claims] 1. An alloy containing 35 to 50% Co by weight (the same applies hereinafter) and the remainder substantially consisting of Fe, which is formed into a thin ribbon by rapid cooling from a molten metal. An Fe-Co-based soft magnetic material characterized by: 2 Contains 35-50% of Co, and further contains Si, Al, Cr
, V, Nb, Ti, Mo, W, and Zr in a total of 10% or less, and the remainder is substantially Fe.
An Fe--Co based soft magnetic material, characterized in that it is an alloy consisting of a molten metal and formed into a thin ribbon by rapid cooling from a molten metal. 3. The Fe--Co based soft magnetic material according to claim 2, wherein the alloy contains 35 to 50% Co and 1 to 4% V, with the remainder being substantially Fe.
JP60215832A 1985-09-27 1985-09-27 Fe-co soft magnetic material Pending JPS6274052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215832A JPS6274052A (en) 1985-09-27 1985-09-27 Fe-co soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215832A JPS6274052A (en) 1985-09-27 1985-09-27 Fe-co soft magnetic material

Publications (1)

Publication Number Publication Date
JPS6274052A true JPS6274052A (en) 1987-04-04

Family

ID=16678999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215832A Pending JPS6274052A (en) 1985-09-27 1985-09-27 Fe-co soft magnetic material

Country Status (1)

Country Link
JP (1) JPS6274052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634036A (en) * 1986-06-23 1988-01-09 Nec Corp Fe-co-v alloy and its production
US20090101497A1 (en) * 2007-10-23 2009-04-23 Hon Hai Precision Industry Co., Ltd. Sputtering system carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181364A (en) * 1981-05-01 1982-11-08 Noboru Tsuya Soft magnetic quickly cooled thin strip having high magnetic flux density and its production
JPS6089548A (en) * 1983-10-19 1985-05-20 Seiko Epson Corp Iron-cobalt alloy
JPS6237909A (en) * 1985-08-13 1987-02-18 Hitachi Metals Ltd Winding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181364A (en) * 1981-05-01 1982-11-08 Noboru Tsuya Soft magnetic quickly cooled thin strip having high magnetic flux density and its production
JPS6089548A (en) * 1983-10-19 1985-05-20 Seiko Epson Corp Iron-cobalt alloy
JPS6237909A (en) * 1985-08-13 1987-02-18 Hitachi Metals Ltd Winding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634036A (en) * 1986-06-23 1988-01-09 Nec Corp Fe-co-v alloy and its production
US20090101497A1 (en) * 2007-10-23 2009-04-23 Hon Hai Precision Industry Co., Ltd. Sputtering system carrier

Similar Documents

Publication Publication Date Title
US4437912A (en) Amorphous magnetic alloys
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS61174349A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JPS6362579B2 (en)
JP2646277B2 (en) Ni-Fe-Cr soft magnetic alloy for iron core members
JPS6293342A (en) Soft magnetic material
JPS6274052A (en) Fe-co soft magnetic material
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPS6129105A (en) Magnetic alloy thin film
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPS58100412A (en) Manufacture of soft magnetic material
JPH01119642A (en) Soft magnetic material having high saturated magnetic flux density
JPH1081941A (en) Corrosion resistant soft magnetic iron-nickel-chromium alloy
JPS59207608A (en) High permeability magnetic thin film
JP3019705B2 (en) Heat treatment method of silicon steel sheet in magnetic field
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPH0310699B2 (en)
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JPH07166281A (en) Wear resistant magnetic alloy
JPH02133523A (en) Production of non-oriented electrical steel having excellent magnetic characteristics
KR920006607B1 (en) Method of making fe alloy for the soft magnetic materials
JPS6191340A (en) Wear-resistant high permeability alloy and its production and magnetic recording and reproducing head
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.