JPH0242891B2 - - Google Patents

Info

Publication number
JPH0242891B2
JPH0242891B2 JP55110828A JP11082880A JPH0242891B2 JP H0242891 B2 JPH0242891 B2 JP H0242891B2 JP 55110828 A JP55110828 A JP 55110828A JP 11082880 A JP11082880 A JP 11082880A JP H0242891 B2 JPH0242891 B2 JP H0242891B2
Authority
JP
Japan
Prior art keywords
less
steel
hot
strength
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55110828A
Other languages
Japanese (ja)
Other versions
JPS5735673A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11082880A priority Critical patent/JPS5735673A/en
Publication of JPS5735673A publication Critical patent/JPS5735673A/en
Publication of JPH0242891B2 publication Critical patent/JPH0242891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は深絞り性の優れた高強度溶融亜鉛メツ
キ鋼板に関するものである。 〔従来の技術〕 近年自動車の安全性、車体重量軽減、素材使用
量削減などを目的として高強度冷延鋼板が広く使
われるようになつてきた。これら、高強度冷延鋼
板はその使用目的からして普通鋼が使用されてい
たときより薄い板厚で使用されることが多いため
腐食に対する状況は普通鋼以上に深刻である。 かかる状況で耐食性、加工性の優れた高強度冷
延鋼板が大量生産方式で製造されることが要望さ
れている。 塩害のような厳しい腐食に対しては金属メツキ
中でもそれ自体耐食性に優れ、かつ厚メツキが出
来る溶融亜溶メツキ材が良く、しかもメツキライ
ンとしては対自動車という用途を考えるならばラ
イン内焼鉛炉を有して高い生産性が発揮できる連
続溶融メツキラインでの製造でなければならない
すなわち、強度が高く、加工性、とメツキ密着性
の優れた溶融亜鉛メツキ鋼板が連続溶融メツキラ
インで製造されることが期待されていた。 〔発明が解決しようとする課題〕 しかしながら強度、加工性およびメツキ密着性
という特性に対する要因の影響は一般に相反して
おり、これら特性値を調和よく満たす鋼板は、ほ
とんど皆無であつた。すなわち強度が増すほど一
般に加工性が劣化する上に、ライン内焼鉛炉を持
つメツキラインでは短時間焼鈍となるため再結晶
が充分でなく、引張試験における全伸び(以下全
伸びと呼ぶ)ランクフオード値(以下r値と呼
ぶ)が劣化する。 また、メツキ密着性については、一般に高強度
鋼板になるほど鋼中に添加する元素の種類および
量が増し、このことがメツキ密着性にとつて有害
であるため高強度とメツキ密着性という両特性値
もまた本来両立しがたいものである。 このような状況に鑑み、本発明者等は、Ti添
加鋼についてPとの併添により強度、加工性及び
メツキ密着性のいずれの特性をも満足する溶融亜
鉛メツキ鋼板を得ることができることを知見して
いる。 本発明ではこれを更に発展せしめて、Tiに代
えてNb添加について鋭意検討した結果、Nb添加
鋼においても上述の3特性を同時に満足できるこ
とを発見し、これに基づいて本発明を完成せしめ
た。 〔課題を解決するための手段〕 すなわち本発明は、C0.02%以下、Si0.05〜0.5
%,Mn0.6〜2%,P0.01〜0.1%,N0.01%以下,
の他NbをNb/(C+N)の原子濃度比で0.8〜
2含み、残部実質的に鉄からなるとともに、固溶
炭素を実質的に含まぬ鋼の表面に溶融亜鉛メツキ
が被覆されている深絞り性の優れた高強度溶融亜
鉛メツキ鋼板である。更に、本発明はこのNbの
一部をTiで代替することができ、この場合、
Nb、Tiの含有量は、 〔Nb+93/48(全Ti―酸化物、硫化物としての Ti)〕/(C+N)の原子濃度比で0.8〜2とする
ものであつて、しかもP0.04〜0.1%のときには
Nb/(Nb+Ti)の重量比で0.2以上、P0.01〜
0.04%未満のときにはNb/(Nb+Ti)の重量比
で0.5以上とするものである。 〔作用〕 次に本発明の成分限定理由を述べる。 CはNbあるいは更にTiで全て固着しなければ
高いr値を発揮しない。従つて量が多ければそれ
だけ高価なNb,Tiを多量に添加せねばならず、
生成する炭化物は強度上昇に寄与するもののコス
ト的に不利であるばかりか、この多量に生成する
炭化物が結晶粒の成長を阻害してr値を低下す
る。このためCは0.02%を上限とする。 Siは引張特性の上昇寄与率は大きく、0.05%以
上含有せしめる必要がある。しかしながら後述す
る実施例の比較例でも示すように、Siを過剰に含
有せしめるとメツキ密着性が劣化するので、Si含
有量の上限を0.5%とする。 Mn,Pは上述の通りSiを0.5%以下としたこと
による強度不足を補うために含有せしめるもので
あり、Mn0.6〜2%,P0.01〜0.1%であれば、深
絞り成形および溶融亜鉛メツキ密着性の維持もし
くは向上の状態で必要な強度上昇を計ることがで
きる。尚Mnの上限はこれ以上では焼鈍後の冷却
時、組織がアシキユラー化してr値が劣化するの
で2.0%とし、下限は0.6%以下では必要な強度上
昇が得られないためである。またPは0.01〜0.1
%の範囲であれば深絞り性が良好な状態で強度上
昇とともに溶融亜鉛メツキ密着性もさらに向上す
るが、0.1%越ではかえつて劣化する。 Nbは鋼中のC及びNを固定するために必要で
あり、このためにはNb/(C+N)の原子濃度
比で0.8以上含有せしめる必要がある。なお、Nb
の必要量を低減するために、Nは0.01%以下とす
ることが望ましい。しかしながら、この原子濃度
比が余り高くなるとコストアツプとなるばかり
か、却つて硬質化し、延性の劣化をまねくので、
2以下とする。このNbはTiに比べてメツキ密着
性に対する悪影響が少ない。すなわちTi単独添
加鋼をゼンジミアー型のような連続溶融メツキラ
インで処理すると、還元が不十分となつて不メツ
キが多発する危険があるが、Nb添加鋼の場合に
はこの不メツキが発生しにくい。またTiはメツ
キ後に合金化処理時の合金化温度を大巾に下げる
という問題があるが、Nbの場合には合金化温度
にほとんど影響を与えず、合金化処理性の点でも
Nbの方が優れているといえる。 本発明は上述のNbの一部をTiに代替すること
ができる。このTiへの一部代替においては、P
含有量との関係が問題となり、後述の実施例に示
すように、P0.04〜0.1%の場合にはNb/(Nb+
Ti)の重量比が0.2以上とし、P0.01〜0.04%未満
の場合にはNb/(Nb+Ti)の重量比が0.5以上
とする必要がある。この範囲を外れた場合にはメ
ツキ密着性が劣化する。 尚、TiをNbの一部代替として含有せしめる場
合 {Nb+93/48(全Ti―酸化物、硫化物としての Ti)}で表わされるNb当量について、Nb当量/
(C+N)の重量比を0.8以上とする必要がある。
しかしながらこの比が余り高くなるとコストアツ
プとなるばかりか、却つて硬質化し、延性の劣化
をまねくので、2以下とする。 尚、脱酸剤としてAl0.05%の含有は許容され、
またO0.015%以下、S0.05%以下とするのが望ま
しい。 〔実施例〕 次に、本発明1及び本発明2を比較例と共に示
す。 第1表に示す化学成分組成を有する鋼塊を通常
の方法で分塊圧延し、熱延(仕上温度:900℃)
を行なつたのち、680℃の温度で巻取り、3.2mmt
の熱延コイルを得た。得られた各コイルを酸洗い
後0.8mmtまで冷延し、ついでにこれをゼンジマ
ータイプの溶融亜鉛メツキラインにて780℃の温
度で焼鈍を施して本発明1、本発明2及び比較例
を得た。なお、 鋼番1〜6は0.3%Si―1.0%Mn―0.015%P 鋼番7〜8は0.3%Si―1.0%Mn―0.05%P 鋼番9〜12は1.0%Si―0.2%Mn―0.015%P でそれぞれNbおよびTi量を変えたものである。 そして、第1表の鋼番1〜12についての、引張
特性、深絞り性、メツキ密着性を第2表に示す。
[Industrial Application Field] The present invention relates to a high-strength hot-dip galvanized steel sheet with excellent deep drawability. [Prior Art] In recent years, high-strength cold-rolled steel sheets have come into widespread use for the purpose of improving automobile safety, reducing vehicle weight, and reducing the amount of material used. Because these high-strength cold-rolled steel sheets are often used in thinner sheets than ordinary steel due to their intended use, the corrosion situation is more serious than that of ordinary steel. Under such circumstances, there is a demand for mass production of high-strength cold-rolled steel sheets with excellent corrosion resistance and workability. For severe corrosion such as salt damage, molten laminated plating material, which itself has excellent corrosion resistance even among metal plating and can be plated thickly, is good, and if the plating line is intended for use with automobiles, an in-line firing lead furnace is recommended. In other words, it is expected that hot-dip galvanized steel sheets with high strength, workability, and plating adhesion will be manufactured on a continuous hot-dip plating line that can achieve high productivity. It had been. [Problems to be Solved by the Invention] However, the effects of factors on the properties of strength, workability, and plating adhesion are generally contradictory, and there have been almost no steel sheets that harmoniously satisfy these property values. In other words, as the strength increases, the workability generally deteriorates, and in the Metsuki line, which has an in-line sintering lead furnace, recrystallization is not sufficient because the annealing is performed for a short time, and the total elongation (hereinafter referred to as total elongation) in the tensile test is low. value (hereinafter referred to as r value) deteriorates. Regarding plating adhesion, generally speaking, the higher the strength of the steel sheet, the greater the types and amounts of elements added to the steel, and this is harmful to plating adhesion, so both characteristic values of high strength and plating adhesion are are also inherently incompatible. In view of this situation, the present inventors have discovered that by adding P to Ti-added steel, it is possible to obtain a hot-dip galvanized steel sheet that satisfies all properties of strength, workability, and plating adhesion. are doing. In the present invention, we have further developed this idea and, as a result of intensive study on the addition of Nb instead of Ti, we have discovered that Nb-added steel can also satisfy the above three properties at the same time, and based on this, we have completed the present invention. [Means for Solving the Problems] That is, the present invention provides C0.02% or less, Si0.05 to 0.5
%, Mn0.6~2%, P0.01~0.1%, N0.01% or less,
The atomic concentration ratio of Nb/(C+N) for other Nb is 0.8~
This is a high-strength hot-dip galvanized steel sheet with excellent deep drawability, in which the surface of the steel is coated with hot-dip galvanizing, and the remaining part is substantially iron, and the surface of the steel is substantially free of solid solute carbon. Furthermore, in the present invention, part of this Nb can be replaced with Ti, and in this case,
The content of Nb and Ti is such that the atomic concentration ratio of [Nb+93/48 (total Ti - Ti as oxide, sulfide)]/(C+N) is 0.8 to 2, and P0.04 to 2. When it is 0.1%
Nb/(Nb+Ti) weight ratio of 0.2 or more, P0.01~
When it is less than 0.04%, the weight ratio of Nb/(Nb+Ti) shall be 0.5 or more. [Operation] Next, the reason for limiting the ingredients of the present invention will be described. C does not exhibit a high r value unless it is completely fixed with Nb or even Ti. Therefore, the larger the amount, the more expensive Nb and Ti must be added.
Although the carbides produced contribute to an increase in strength, they are not only disadvantageous in terms of cost, but also the carbides produced in large amounts inhibit the growth of crystal grains and lower the r value. Therefore, the upper limit of C is 0.02%. Si has a large contribution to the increase in tensile properties and needs to be contained at 0.05% or more. However, as will be shown in the comparative examples of the examples described below, if excessive Si is contained, plating adhesion deteriorates, so the upper limit of the Si content is set to 0.5%. As mentioned above, Mn and P are included to compensate for the lack of strength due to Si being 0.5% or less, and if Mn is 0.6 to 2% and P is 0.01 to 0.1%, deep drawing and melting are possible. The required increase in strength can be measured while maintaining or improving zinc plating adhesion. The upper limit of Mn is set at 2.0% because when it is cooled after annealing, the structure becomes axial and the r value deteriorates, and the lower limit is set at 2.0% because the necessary increase in strength cannot be obtained when it is below 0.6%. Also, P is 0.01~0.1
If it is within the range of 0.1%, deep drawability will be good, strength will increase, and adhesion to hot-dip galvanizing will further improve, but if it exceeds 0.1%, it will actually deteriorate. Nb is necessary to fix C and N in steel, and for this purpose it is necessary to contain it in an atomic concentration ratio of Nb/(C+N) of 0.8 or more. In addition, Nb
In order to reduce the required amount of N, it is desirable that N be 0.01% or less. However, if this atomic concentration ratio becomes too high, not only will the cost increase, but it will also become harder, leading to a decrease in ductility.
2 or less. This Nb has less negative effect on plating adhesion than Ti. In other words, if steel with only Ti added is treated with a continuous melt plating line such as the Sendzimier type, there is a risk that the reduction will be insufficient and many defects will occur, but in the case of Nb-added steel, such defects are less likely to occur. In addition, Ti has the problem of significantly lowering the alloying temperature during alloying treatment after plating, but in the case of Nb, it has almost no effect on the alloying temperature, and it also improves alloying processability.
It can be said that Nb is superior. In the present invention, part of the above-mentioned Nb can be replaced with Ti. In this partial substitution to Ti, P
The relationship with the content becomes an issue, and as shown in the examples below, in the case of P0.04 to 0.1%, Nb/(Nb+
The weight ratio of Nb/(Nb+Ti) needs to be 0.2 or more, and when P is less than 0.01% to 0.04%, the weight ratio of Nb/(Nb+Ti) needs to be 0.5 or more. Outside this range, plating adhesion deteriorates. In addition, when Ti is included as a partial substitute for Nb, the Nb equivalent expressed as {Nb + 93/48 (total Ti - Ti as oxide, sulfide)} is Nb equivalent /
The weight ratio of (C+N) needs to be 0.8 or more.
However, if this ratio is too high, not only will the cost increase, but it will also become harder, leading to deterioration of ductility, so it is set to 2 or less. In addition, the content of Al0.05% as a deoxidizing agent is allowed.
It is also desirable that O be 0.015% or less and S be 0.05% or less. [Example] Next, present invention 1 and present invention 2 will be shown together with comparative examples. A steel ingot having the chemical composition shown in Table 1 is bloomed by the usual method and hot rolled (finishing temperature: 900℃).
After that, it is rolled up at a temperature of 680℃ and is 3.2mm thick.
A hot rolled coil was obtained. After pickling, each of the obtained coils was cold rolled to 0.8 mmt, and then annealed at a temperature of 780°C on a Sendzimer type hot-dip galvanizing line to obtain Invention 1, Invention 2, and Comparative Examples. . In addition, steel numbers 1 to 6 are 0.3%Si-1.0%Mn-0.015%P, steel numbers 7 to 8 are 0.3%Si-1.0%Mn-0.05%P, steel numbers 9 to 12 are 1.0%Si-0.2%Mn- The amounts of Nb and Ti were changed at 0.015%P. Table 2 shows the tensile properties, deep drawability, and plating adhesion of Steel Nos. 1 to 12 in Table 1.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 C0.02%以下、Si0.05〜0.5%,Mn0.6〜2%,
P0.01〜0.1%,N0.01%以下,の他NbをNb/
(C+N)の原子濃度比で0.8〜2含み、残部実質
的に鉄からなるとともに、固溶炭素を実質的に含
まぬ鋼の表面に溶融亜鉛メツキが被覆されている
ことを特徴とする深絞り性の優れた高強度溶融亜
鉛メツキ鋼板。 2 C0.02%以下、Si0.05〜0.5%,Mn0.6〜2%,
P0.01〜0.1%,N0.01以下,の他Nb及びTiを
〔Nb+93/48(全Ti―酸化物,硫化物としての Ti)〕/(C+N)の原子濃度比で0.8〜2であつ
て、かつP0.04〜0.1%の場合にはNb/(Nb+
Ti)の重量比で0.2以上、P0.01〜0.04%未満の場
合にはNb/(Nb+Ti)の重量比で0.5以上含み、
残部実質的に鉄からなるとともに、固溶炭素を実
質的に含まぬ鋼の表面に溶融亜鉛メツキが被覆さ
れていることを特徴とする深絞り性の優れた高強
度溶融亜鉛メツキ鋼板。
[Claims] 1 C0.02% or less, Si0.05-0.5%, Mn0.6-2%,
P0.01 to 0.1%, N0.01% or less, other Nb to Nb/
Deep drawing characterized by having an atomic concentration ratio of (C+N) of 0.8 to 2, the remainder substantially consisting of iron, and the surface of the steel containing substantially no solid solution carbon coated with hot-dip galvanizing. High-strength hot-dip galvanized steel sheet with excellent properties. 2 C0.02% or less, Si0.05~0.5%, Mn0.6~2%,
P0.01~0.1%, N0.01 or less, and Nb and Ti at an atomic concentration ratio of [Nb+93/48 (total Ti - oxide, Ti as sulfide)]/(C+N) 0.8~2. and when P0.04~0.1%, Nb/(Nb+
If the weight ratio of Ti) is 0.2 or more, and the weight ratio of Nb/(Nb + Ti) is 0.5 or more, if P0.01 to less than 0.04%, the weight ratio of Nb/(Nb + Ti) is 0.5 or more,
A high-strength hot-dip galvanized steel sheet with excellent deep drawability, characterized in that the remainder substantially consists of iron and the surface of the steel is coated with hot-dip galvanized steel that does not substantially contain solute carbon.
JP11082880A 1980-08-11 1980-08-11 High strength galvanized steel plate with surperior deep drawability Granted JPS5735673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11082880A JPS5735673A (en) 1980-08-11 1980-08-11 High strength galvanized steel plate with surperior deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11082880A JPS5735673A (en) 1980-08-11 1980-08-11 High strength galvanized steel plate with surperior deep drawability

Publications (2)

Publication Number Publication Date
JPS5735673A JPS5735673A (en) 1982-02-26
JPH0242891B2 true JPH0242891B2 (en) 1990-09-26

Family

ID=14545680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11082880A Granted JPS5735673A (en) 1980-08-11 1980-08-11 High strength galvanized steel plate with surperior deep drawability

Country Status (1)

Country Link
JP (1) JPS5735673A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576894B2 (en) * 1988-12-15 1997-01-29 日新製鋼株式会社 Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122821A (en) * 1979-03-15 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with high workability
JPS5651532A (en) * 1979-10-03 1981-05-09 Nippon Kokan Kk <Nkk> Production of high-strength zinc hot dipped steel plate of superior workability
JPS5658927A (en) * 1979-10-19 1981-05-22 Nippon Kokan Kk <Nkk> Production of high tensile galvanized steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122821A (en) * 1979-03-15 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with high workability
JPS5651532A (en) * 1979-10-03 1981-05-09 Nippon Kokan Kk <Nkk> Production of high-strength zinc hot dipped steel plate of superior workability
JPS5658927A (en) * 1979-10-19 1981-05-22 Nippon Kokan Kk <Nkk> Production of high tensile galvanized steel plate

Also Published As

Publication number Publication date
JPS5735673A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
KR20080061853A (en) High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
TW200532032A (en) High strength cold rolled steel sheet and method for manufacturing the same
WO2017168991A1 (en) Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
KR100264258B1 (en) Cold rolled steel strip and hot dip coated cold rolled steel strip for use as building material and manufacturing method thereof
JP5388577B2 (en) Steel plate for galvanization excellent in workability and manufacturing method thereof
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
US9816163B2 (en) Cost-effective ferritic stainless steel
JPS645108B2 (en)
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP2864966B2 (en) Continuously annealed cold rolled steel sheet with excellent balance between deep drawability and deep draw resistance
JPH1088238A (en) Production of electrogalvanized steel sheet excellent in surface appearance and workability
JPH0242891B2 (en)
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP2002363692A (en) Cold rolled steel sheet having excellent workability and corrosion resistance
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
KR101149202B1 (en) Method for manufacturing hot-rolled steel sheet having excellent galvanized coating quality
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JP3671827B2 (en) High-tensile steel plate with excellent hot dipping properties
JPH0137468B2 (en)
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP3473039B2 (en) Manufacturing method of low strength deep drawn cold rolled steel sheet with excellent corrosion resistance