JPH0242431B2 - - Google Patents

Info

Publication number
JPH0242431B2
JPH0242431B2 JP58079731A JP7973183A JPH0242431B2 JP H0242431 B2 JPH0242431 B2 JP H0242431B2 JP 58079731 A JP58079731 A JP 58079731A JP 7973183 A JP7973183 A JP 7973183A JP H0242431 B2 JPH0242431 B2 JP H0242431B2
Authority
JP
Japan
Prior art keywords
moisture
sensitive
film
humidity
sensitive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58079731A
Other languages
Japanese (ja)
Other versions
JPS59204750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58079731A priority Critical patent/JPS59204750A/en
Priority to US06/604,386 priority patent/US4515653A/en
Priority to GB08410880A priority patent/GB2138952B/en
Priority to DE19843416124 priority patent/DE3416124A1/en
Publication of JPS59204750A publication Critical patent/JPS59204750A/en
Publication of JPH0242431B2 publication Critical patent/JPH0242431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は高分子膜から成る感湿膜を有し、雰囲
気中の湿度の変化をインピーダンスの変化により
検出する感湿素子の製造方法に関するものであ
り、特に感湿膜の微細加工法に関するものであ
る。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a method for manufacturing a moisture-sensitive element that has a moisture-sensitive film made of a polymer film and detects changes in humidity in an atmosphere by changes in impedance. In particular, it relates to microfabrication methods for moisture-sensitive membranes.

<従来技術> 雰囲気中の湿度に感応してインピーダンスが変
化する感湿素子としては、従来より酸化鉄
(Fe2O3又はFe3O4)、酸化錫(SnO2)などの金属
酸化物の焼結体或は金属酸化膜を用いたもの、
吸湿性樹脂或は高分子膜などに炭素などの導電性
粒子または繊維を分散させたもの、塩化リチウ
ム(LiCl)などの電解質塩を用いたもの及び親
水性高分子膜或は高分子電解質を用いたものなど
が知られている。このうち、金属酸化物を用いた
感湿素子は一般に広い感湿範囲を有するが、素子
の抵抗値は相対湿度の値に対応して指数関数的に
変化する。また、吸湿性樹脂などに導電性粒子或
は繊維等を分散させた感湿素子は、高湿度雰囲気
中では急峻は抵抗変化を生じる反面低湿度雰囲気
中では感度がなく、広範な湿度領域の検知には利
用することができない。さらに、塩化リチウムな
どの電解質塩を用いた感湿素子は検出し得る湿度
領域が狭く、特に高湿度雰囲気中に長時間素子を
放置すると電解質塩が溶出又は希釈されるために
感湿特性が著しく劣化するなどの理由で、高湿雰
囲気の測定には利用することができない。一方、
親水性高分子膜或は高分子電解質を用いたもの
は、製造方法が簡単で再現性・互換性に優れる、
感湿範囲が広い、抵抗変化が大きく感度が大き
い、感湿応答速度も速いなどの利点から注目され
ており一部実用化もなされている。
<Prior art> Moisture sensing elements whose impedance changes in response to atmospheric humidity have traditionally been made using metal oxides such as iron oxide (Fe 2 O 3 or Fe 3 O 4 ) and tin oxide (SnO 2 ). Those using sintered bodies or metal oxide films,
Those using conductive particles or fibers such as carbon dispersed in hygroscopic resin or polymer membrane, those using electrolyte salt such as lithium chloride (LiCl), and those using hydrophilic polymer membrane or polymer electrolyte. What happened is known. Among these, humidity sensing elements using metal oxides generally have a wide humidity sensing range, but the resistance value of the element changes exponentially in response to the value of relative humidity. In addition, a moisture-sensing element made of conductive particles or fibers dispersed in a hygroscopic resin or the like exhibits a steep resistance change in a high-humidity atmosphere, but lacks sensitivity in a low-humidity atmosphere, making it difficult to detect a wide range of humidity. cannot be used. Furthermore, humidity sensing elements that use electrolyte salts such as lithium chloride have a narrow detectable humidity range, and especially if the element is left in a high humidity atmosphere for a long time, the electrolyte salts will be eluted or diluted, resulting in significant humidity sensitivity. For reasons such as deterioration, it cannot be used for measurements in high humidity atmospheres. on the other hand,
Products using hydrophilic polymer membranes or polymer electrolytes are easy to manufacture and have excellent reproducibility and compatibility.
It has attracted attention because of its advantages such as a wide humidity sensing range, large resistance change and high sensitivity, and fast humidity response speed, and some have even been put into practical use.

ところでこれらの感湿膜の形成方法としては、
通常、デイツピング、スピンコーテイング等の方
法が採られているが、これらの方法では直接のパ
ターン形成はできない。また、湿式エツチングの
方法については、高分子感湿膜は、通常、架橋・
重合或いは熱処理等の方法によつて耐水性及び耐
溶剤性が確立されているため、適当なエツチング
液がない。従つて従来は、リード接続部など感湿
膜の不要な部分をハンダごての熱で溶かして除去
したり或いは予めテープを貼り付け、感湿膜をコ
ーテイングした後テープと共に感湿膜を部分的に
剥離するなどの単純な方法でパターンを形成して
いた。このため、熱による感湿膜の変質や境界部
での感湿膜の浮き上り等の問題が発生し、またパ
ターン寸法も非常に大きなものしか形成すること
ができない。さらに精度及び再現性が非常に悪い
など多くの問題があり、このような方法によつて
は、1mm以下のパターン寸法を実現することはき
わめて困難であつた。尚、直接パターン形成を行
なう方法としてスクリーン印刷法があるが、印刷
用には高粘度溶液を必要とし、高分子材料の高粘
度溶液は粘度変化し易く、バラツキの原因とな
る。また、不純物の混入が多い、精度・再現性が
悪く微細化に限界があるなど多くの問題があり、
このため、スクリーン印刷法は高分子感湿膜のコ
ーテイング法としてはあまり使用されていない。
By the way, the method for forming these moisture-sensitive films is as follows.
Usually, methods such as dipping and spin coating are used, but these methods cannot directly form a pattern. In addition, regarding the wet etching method, polymer moisture-sensitive membranes are usually cross-linked and
Since water resistance and solvent resistance are established through methods such as polymerization or heat treatment, there is no suitable etching solution. Therefore, in the past, unnecessary parts of the moisture-sensitive film such as lead connections were removed by melting them with the heat of a soldering iron, or tape was pasted in advance, and after the moisture-sensitive film was coated, the moisture-sensitive film was partially removed with the tape. Patterns were formed using simple methods such as peeling it off. This causes problems such as deterioration of the moisture-sensitive film due to heat and lifting of the moisture-sensitive film at the boundary, and only very large patterns can be formed. Furthermore, there are many problems such as very poor accuracy and reproducibility, and it is extremely difficult to realize a pattern size of 1 mm or less using this method. Screen printing is a method for directly forming a pattern, but it requires a high viscosity solution for printing, and high viscosity solutions of polymeric materials tend to change in viscosity, causing variations. In addition, there are many problems such as high contamination of impurities, poor accuracy and reproducibility, and limits to miniaturization.
For this reason, the screen printing method is not often used as a coating method for polymeric moisture-sensitive films.

以上のように、従来法では高分子感湿膜の微細
加工を行なうことは、非常に困難であり、高分子
感湿膜を用いて微細パターンを形成した感湿素子
は、未だ報告されていなかつた。
As mentioned above, it is extremely difficult to perform microfabrication of polymeric moisture-sensitive films using conventional methods, and no moisture-sensitive elements in which fine patterns are formed using polymeric moisture-sensitive films have yet been reported. Ta.

一方、近年素子の小型化及び複合化が進み、
FET(電界効果トランジスタ)のゲート部に感湿
材料を付着したFET湿度センサーも開発されつ
つある。従つて、感湿膜をより微細に加工する技
術はますますその必要度を増している。
On the other hand, in recent years, elements have become smaller and more complex,
FET (field effect transistor) humidity sensors that have a moisture-sensitive material attached to their gate are also being developed. Therefore, there is an increasing need for techniques for finely processing moisture-sensitive membranes.

<発明の目的> 本発明は上記現状に鑑み、高分子感湿材料を精
度よく、再現性よく、かつ任意の形状に微細加工
する技術を利用して、感湿膜を微細加工した感湿
素子の製造方法を提供することを目的とするもの
である。
<Purpose of the Invention> In view of the above-mentioned current situation, the present invention provides a moisture-sensitive element in which a moisture-sensitive film is micro-processed using technology for micro-processing a polymeric moisture-sensitive material into an arbitrary shape with high precision and reproducibility. The purpose of this invention is to provide a method for manufacturing.

<実施例> 有機高分子材料は主たる元素がC、H、Oから
成り、これらが長く鎖状又は環状に連なつた構造
であるため、これを酸素中で高温に上げるか又は
酸素プラズマ中にさらすと分解・酸化が起こり、
反応生成物としてCO2及びH2Oができる。一般に
用いられているフオトレジストにおいて、レジス
ト除去工程でこの分解・酸化を利用することは知
られているが、本発明はこれを感湿膜に応用した
ものである。即ち、高分子材料から成る感湿膜の
微細加工に際して、酸素プラズマエツチングが非
常に有効であり、良好な微細パターンを作製し得
ることが見い出された。
<Example> Organic polymer materials mainly consist of C, H, and O, and have a structure in which these elements are connected in a long chain or ring shape. Exposure causes decomposition and oxidation,
CO 2 and H 2 O are formed as reaction products. It is known that in commonly used photoresists, this decomposition and oxidation is utilized in the resist removal process, and the present invention applies this to a moisture-sensitive film. That is, it has been found that oxygen plasma etching is very effective in microfabrication of a moisture-sensitive film made of a polymeric material, and can produce good micropatterns.

第1図A,B,C,Dは本発明の1実施例であ
る感湿素子の製造方法を説明する工程図である。
第1図Aに示す如く、ガラス、アルミナ等の絶縁
体又はシリコン等の半導体から成る基板1上にイ
ンピーダンスを検出するための電極を層設し、更
に高分子材料の溶液をデイツピング法又はスピン
コーテイング法等によつて基板1の電極形成面上
にコーテイングして薄膜2とする、電極として
は、金、白金等の如く酸素プラズマ中でも酸化さ
れない貴金属類が望ましい。また薄膜2を構成す
る高分子材料としては、セルロース、ポリアミ
ド、ポリアクリル酸塩、ポリスチレンスルホン酸
塩、ポリビニルアルコールその他が用いられ、こ
れらを水または多価アルコール等の溶媒に適度の
濃度に溶解した後、この溶液をコーテイングして
その膜厚を5μm程度とする。尚、薄膜2は単層
膜以外に多層膜とすることもでき、高分子材料の
混合体あるいは添加剤によつて共重合化したもの
等を原材料として使用することもできる。基板1
上にコーテイングされた薄膜2は熱処理によつて
緻密化され、密着強度及び感湿特性の改良された
感湿膜2′となる。本実施例では薄膜2の材料と
してポリビニルアルコールを使用し、これを基板
1上に形成した後、150℃乃至250℃の範囲の温度
で10分間乃至30分間熱処理する。この熱処理によ
り得られる感湿膜2′は湿度対インピーダンス変
化の特性において直線性が改善され、検出精度が
向上するとともに素子としての動作特性の安定性
及び再現性を図ることができる。熱処理温度を
250℃以上に昇温するとポリビニルアルコールの
分解が著しくなるため、上限は250℃とし、180℃
乃至200℃程度で熱処理することが望ましい。
FIGS. 1A, B, C, and D are process diagrams illustrating a method for manufacturing a moisture-sensitive element according to an embodiment of the present invention.
As shown in FIG. 1A, electrodes for detecting impedance are layered on a substrate 1 made of an insulator such as glass or alumina or a semiconductor such as silicon, and a solution of a polymer material is further applied by dipping or spin coating. The electrode, which is coated on the electrode forming surface of the substrate 1 to form the thin film 2 by a method or the like, is preferably a noble metal such as gold or platinum that is not oxidized even in oxygen plasma. In addition, cellulose, polyamide, polyacrylate, polystyrene sulfonate, polyvinyl alcohol, etc. are used as the polymer material constituting the thin film 2, and these are dissolved in a solvent such as water or polyhydric alcohol at an appropriate concentration. Afterwards, this solution is coated to a film thickness of about 5 μm. The thin film 2 can be a multilayer film other than a single layer film, and a mixture of polymeric materials or a material copolymerized with additives can also be used as the raw material. Board 1
The thin film 2 coated on top is densified by heat treatment, resulting in a moisture-sensitive film 2' with improved adhesion strength and moisture-sensitive properties. In this embodiment, polyvinyl alcohol is used as the material for the thin film 2, and after it is formed on the substrate 1, it is heat-treated at a temperature in the range of 150° C. to 250° C. for 10 minutes to 30 minutes. The moisture sensitive film 2' obtained by this heat treatment has improved linearity in the characteristics of humidity vs. impedance change, improves detection accuracy, and improves the stability and reproducibility of the operating characteristics as an element. heat treatment temperature
Polyvinyl alcohol decomposes significantly when the temperature rises above 250℃, so the upper limit is 250℃ and 180℃.
It is desirable to perform heat treatment at a temperature of about 200°C.

次に第1図Bに示す如く、感湿膜2′上に例え
ばフオトレジスト等のレジスト3をパターン形成
した後、この状態で圧力0.4Torr、高周波出力
150Wの酸素プラズマ中に10分間乃至20分間さら
し、感湿膜2′をエツチング加工する。この際、
レジスト3も同時にエツチングされるが、レジス
ト3の膜厚を充分に厚くしておけばレジスト3の
付着していない部分の感湿膜2′が無くなつても
レジスト3はまだ残存している。従つて酸素プラ
ズマエツチングにより、第1図Cに示す如く、感
湿膜2′はレジスト3のパターンに即して微細エ
ツチング成形されることとなる。感湿膜2′上に
残存するレジスト3は剥離液または塩化メチレン
等適当な溶剤を用いて除去する。以上により第1
図Dに示す如くパターン化された感湿膜2′を有
する感湿素子が作製される。
Next, as shown in FIG. 1B, after forming a pattern of a resist 3 such as a photoresist on the moisture sensitive film 2', in this state a pressure of 0.4 Torr and a high frequency output are applied.
The moisture sensitive film 2' is etched by exposing it to 150 W oxygen plasma for 10 to 20 minutes. On this occasion,
The resist 3 is also etched at the same time, but if the film thickness of the resist 3 is made sufficiently thick, the resist 3 will still remain even if the moisture sensitive film 2' in the area to which the resist 3 is not attached is gone. Therefore, by oxygen plasma etching, the moisture sensitive film 2' is formed by fine etching in accordance with the pattern of the resist 3, as shown in FIG. 1C. The resist 3 remaining on the moisture sensitive film 2' is removed using a stripping solution or a suitable solvent such as methylene chloride. Based on the above, the first
A moisture sensitive element having a patterned moisture sensitive film 2' as shown in Figure D is fabricated.

レジストとしては、通常一般に用いられるフオ
トレジストの他、酢酸ビニルポリマーなどの高分
子材を印刷法で形成したもの、金属の蒸着膜、金
属板のマスク、ドライフイルムレジスト等を用い
てもよく、その膜厚は感湿膜2′と同程度または
これより厚くする。尚、酸素プラズマによるエツ
チング条件については、基板温度の上昇による感
湿膜の変質に注意する必要がある。例えば、高周
波出力はできるだけ小さくし、ガスはArとO2
はN2とO2などの混合ガスを使用するよりも酸素
100%の方がエツチング時間を短縮でき基板温度
の上昇も小さくすることができる。第1図Dの感
湿素子は必要に応じて素子単体または複数の素子
群毎に基板1を分割して使用に供する。
As a resist, in addition to the commonly used photoresist, a polymer material such as vinyl acetate polymer formed by a printing method, a metal vapor deposition film, a metal plate mask, a dry film resist, etc. may be used. The film thickness is made to be approximately the same as or thicker than the moisture sensitive film 2'. Regarding the etching conditions using oxygen plasma, it is necessary to pay attention to deterioration of the moisture-sensitive film due to an increase in substrate temperature. For example, the radio frequency output should be as small as possible and the gas should be oxygen rather than using a mixture of gases such as Ar and O 2 or N 2 and O 2 .
100% can shorten the etching time and reduce the rise in substrate temperature. The moisture sensitive element shown in FIG. 1D is used by dividing the substrate 1 into individual elements or groups of elements as required.

以上により感湿素子が作製される。電極を検出
回路に接続することにより周囲湿度に対応した感
湿膜のインピーダンス変化を検出することがで
き、これによつて湿度が求められる。上記製造方
法により得られた感湿素子の1例を第2図に要部
断面斜視図で示す。ガラス基板1上に櫛歯状の電
極が層設され、その上に感湿膜2′が堆積されて
いる。感湿膜2′上には保護膜4が被覆され、ま
た櫛歯状電極はその一端縁が延設されてリード線
5で検出回路に電気的に接続されている。この感
湿素子は単体で使用するものであり、パターン化
された感湿膜2′ごとに基板1を分割して作製し
たものである。感湿膜2′は配列ピツチ及び幅を
1mm以下の微小パターンに形成することが可能で
あり、従つて、得られる感湿素子は非常に小さい
形状のものとすることができる。
Through the above steps, a moisture-sensitive element is manufactured. By connecting the electrodes to a detection circuit, it is possible to detect changes in impedance of the moisture-sensitive membrane in response to ambient humidity, thereby determining humidity. An example of a moisture-sensitive element obtained by the above manufacturing method is shown in FIG. 2 as a cross-sectional perspective view of a main part. A comb-shaped electrode is layered on a glass substrate 1, and a moisture-sensitive film 2' is deposited thereon. A protective film 4 is coated on the moisture sensitive film 2', and one end of the comb-like electrode is extended and electrically connected to a detection circuit by a lead wire 5. This moisture-sensitive element is used alone and is manufactured by dividing the substrate 1 into each patterned moisture-sensitive film 2'. The moisture-sensitive film 2' can be formed into a minute pattern with an arrangement pitch and width of 1 mm or less, and therefore, the resulting moisture-sensitive element can be formed into a very small shape.

<発明の効果> 以上詳説した如く本発明の感湿素子の製造方法
は、 感湿膜の微細加工及び感湿素子を非常に微小
化することができる。
<Effects of the Invention> As explained in detail above, the method for manufacturing a moisture-sensitive element of the present invention allows microfabrication of a moisture-sensitive film and miniaturization of a moisture-sensitive element.

1枚の基板上に微小素子を多数作製するウエ
ハー処理に適し、低コスト化ができる。
It is suitable for wafer processing in which a large number of microelements are manufactured on a single substrate, and costs can be reduced.

製作時における感湿膜剥離等の問題が解決さ
れ、素子製作の歩留り及び信頼性が向上する。
Problems such as moisture-sensitive film peeling during manufacturing are solved, and the yield and reliability of device manufacturing are improved.

等の非常に優れた技術的効果を奏する。It has excellent technical effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す感湿素子の製
造工程図である。第2図は第1図の製造工程を介
して得られた感湿素子の斜視図である。 1……基板、2……薄膜、2′……感湿膜、3
……レジスト。
FIG. 1 is a manufacturing process diagram of a moisture sensitive element showing one embodiment of the present invention. FIG. 2 is a perspective view of the moisture sensing element obtained through the manufacturing process of FIG. 1. 1...Substrate, 2...Thin film, 2'...Moisture sensitive film, 3
...Resist.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に形成された高分子薄膜を熱処理した
後、酸素プラズマエツチングでパターン加工する
ことにより感湿膜とすることを特徴とする感湿素
子の製造方法。
1. A method for manufacturing a moisture-sensitive element, which comprises heat-treating a thin polymer film formed on a substrate and then patterning it by oxygen plasma etching to form a moisture-sensitive film.
JP58079731A 1983-04-30 1983-05-07 Manufacture of moisture sensitive element Granted JPS59204750A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58079731A JPS59204750A (en) 1983-05-07 1983-05-07 Manufacture of moisture sensitive element
US06/604,386 US4515653A (en) 1983-04-30 1984-04-27 Method for production of a moisture sensor
GB08410880A GB2138952B (en) 1983-04-30 1984-04-27 Producing electrical moisture sensors
DE19843416124 DE3416124A1 (en) 1983-04-30 1984-04-30 HUMIDITY SENSOR AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079731A JPS59204750A (en) 1983-05-07 1983-05-07 Manufacture of moisture sensitive element

Publications (2)

Publication Number Publication Date
JPS59204750A JPS59204750A (en) 1984-11-20
JPH0242431B2 true JPH0242431B2 (en) 1990-09-21

Family

ID=13698348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079731A Granted JPS59204750A (en) 1983-04-30 1983-05-07 Manufacture of moisture sensitive element

Country Status (1)

Country Link
JP (1) JPS59204750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261691A (en) * 2007-04-11 2008-10-30 Alps Electric Co Ltd Condensate sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261691A (en) * 2007-04-11 2008-10-30 Alps Electric Co Ltd Condensate sensor

Also Published As

Publication number Publication date
JPS59204750A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
US4651121A (en) Moisture sensor and a method for the production of the same
US4305112A (en) Capacitance humidity sensing element
US4515653A (en) Method for production of a moisture sensor
US4482581A (en) Process for the production of a capacitive hygrometer
US4532016A (en) Capacitive hygrometer and its production process
JPS59202052A (en) Humidity sensitive element
CN1043987A (en) A kind of warm and humid difunctional sensitive film element and manufacture method thereof
JP2001004579A (en) Capacitance-type humidity sensitive element
JPH0242431B2 (en)
CN110568025A (en) humidity sensor based on candle ash nanoparticle layer and preparation method thereof
JPS5837907A (en) Method of producing anodic oxidized aluminum humidity sensitive film
JPS61181104A (en) Platinum temperature measuring resistor
JPH06148122A (en) Humidity detecting element
JP3047137B2 (en) Manufacturing method of humidity sensor
JPH0242430B2 (en)
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JP2021067690A (en) Inorganic humidity sensor device
JP2622589B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JP3084735B2 (en) Capacitive humidity sensor
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JPS6358249A (en) Humidity detecting element
JP2577045B2 (en) Microelectrode cell for electrochemical measurement and method for producing the same
JPS61117444A (en) Gas detecting element
JP3078587B2 (en) Humidity sensing element
JPH1090073A (en) Radiation sensor and manufacture thereof