JPH02421B2 - - Google Patents

Info

Publication number
JPH02421B2
JPH02421B2 JP2879581A JP2879581A JPH02421B2 JP H02421 B2 JPH02421 B2 JP H02421B2 JP 2879581 A JP2879581 A JP 2879581A JP 2879581 A JP2879581 A JP 2879581A JP H02421 B2 JPH02421 B2 JP H02421B2
Authority
JP
Japan
Prior art keywords
stirring
fibers
casting
molten metal
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2879581A
Other languages
Japanese (ja)
Other versions
JPS57143456A (en
Inventor
Yosuke Takahashi
Katsumi Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP2879581A priority Critical patent/JPS57143456A/en
Publication of JPS57143456A publication Critical patent/JPS57143456A/en
Publication of JPH02421B2 publication Critical patent/JPH02421B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルミニウム合金に複合化繊維を含
有する鋳造用アルミニウム基複合材の製造方法に
関する。 従来、繊維強化した複合材料としては、プラス
チツクにおいてガラス繊維等を複合化させる
FRPが一般化されているが、金属系との複合化
(FRM)においても、強度増加、特に高温強度の
増加、弾性率を高めて剛性の向上、クリープ抵抗
の向上、耐摩耗性の向上、耐熱性の向上、減衰能
の向上、軽量化等の期待が大きく、最近、特に脚
光をあびてきている。 しかし、実際には繊維、又はこれら粒子と金属
との濡れ性等が悪く、容易に金属系との混合化が
図れず困難であつて、現状ではサンドイツチ方式
の複合材が実用化されようとしているに過ぎず、
今だ金属溶湯と繊維とを完全に混合する、所謂通
常の鋳造法による成形方法に実施可能なまでの複
合材は無く、また実験段階に過ぎない。 そこで本発明は上述従来の事情に鑑みて、鋳造
法に適応するアルミニウム基複合材を実用化すべ
く、鋳造用アルミニウム合金溶湯と、炭素繊維、
カオウール繊維(イソライト工業株式会社の商品
名)等、種々の繊維との混合実験を行つた結果、
上記合金溶湯と、上記各種繊維との完全混合均一
分散化(複合化)を図り得たものであつた、その
目的とするところは、上記合金溶湯に上記各種繊
維を混合した実用化に供し得る鋳造用アルミニウ
ム基複合材の製造方法を提供することにある。 本発明に係る鋳造用アルミニウム基複合材の製
造方法は、多段羽根を相互に段違いとなるように
すると共に撹拌軸に交差するように配置された複
数本の撹拌軸を有し且つ前記撹拌羽根の回転軌跡
に沿つた内壁形状としたルツボ内に鋳造用アルミ
ニウム合金溶湯100重量部を満たし、隣接相互間
で異なる回転数となるよう前記撹拌軸を同一方向
に回転させ乍ら鋳造用アルミニウム合金溶湯を20
〜50分間に亘つて撹拌しつつ溶融点から750゜乃至
800℃迄昇温させると共に、この昇温中の10〜30
分間に複合化繊維3〜30重量部を注入しつつ撹拌
混合して鋳造用アルミニウム基複合材を得るもの
である。 ここで、上記鋳造用アルミニウム合金として
は、砂型、金型、低圧鋳造及びダイカスト鋳造
等、一般的に使用されている鋳造性(特に流動
性)に優れて、しかも鋳造される製品がある程度
強度の高いものが用いられる。 又、上記複合化繊維としては、ガラス繊維、ア
ルミナ繊維、炭素繊維、炭化珪素繊維、チタン酸
カリウム繊維やタングステン、ボロン等の金属繊
維、或はカオウール繊維(イソライト工業株式会
社の商品名で主成分はAl2O3、SiO2)等、その他
一般に市販されているものが用いられる。 上記鋳造用アルミニウム合金中、実験にはAl
−Si−(Cu)系合金を供試合金とした。 尚、上記供試合金成分は下記の表−1に示す。
The present invention relates to a method for producing an aluminum matrix composite material for casting, which contains composite fibers in an aluminum alloy. Conventionally, fiber-reinforced composite materials include composite materials such as glass fibers in plastics.
FRP has become popular, but composites with metals (FRM) can also be used to increase strength, especially high-temperature strength, increase elastic modulus to improve rigidity, improve creep resistance, improve wear resistance, It has been attracting a lot of attention recently, as it has high expectations for improved heat resistance, improved damping ability, and lighter weight. However, in reality, the wettability of fibers or these particles with metals is poor, making it difficult to mix them with metal systems.Currently, sandwich-based composite materials are on the verge of being put into practical use. It is nothing more than
As yet, there is no composite material that can be molded using the so-called normal casting method, in which molten metal and fibers are completely mixed, and it is only at the experimental stage. Therefore, in view of the above-mentioned conventional circumstances, the present invention aims to put into practical use an aluminum matrix composite material suitable for casting methods, using a molten aluminum alloy for casting, carbon fibers,
As a result of mixing experiments with various fibers such as Kao wool fiber (trade name of Isolite Industries Co., Ltd.),
The molten alloy and the various fibers were completely mixed and dispersed (composite), and the purpose was to put the various fibers into practical use by mixing the molten alloy with the various fibers. An object of the present invention is to provide a method for manufacturing an aluminum matrix composite material for casting. The method for manufacturing an aluminum matrix composite material for casting according to the present invention has a plurality of stirring shafts arranged to intersect with the stirring shaft, in which the multistage blades are arranged at different stages, and the stirring shaft is arranged to intersect with the stirring shaft. 100 parts by weight of molten aluminum alloy for casting is filled in a crucible whose inner wall has a shape that follows a rotation locus, and the molten aluminum alloy for casting is poured while rotating the stirring shaft in the same direction so that adjacent rotation speeds are different. 20
750° from the melting point while stirring for ~50 minutes.
While raising the temperature to 800℃,
An aluminum matrix composite material for casting is obtained by stirring and mixing while injecting 3 to 30 parts by weight of composite fibers per minute. Here, the above-mentioned aluminum alloy for casting has excellent castability (particularly fluidity) and is generally used in sand molds, metal molds, low pressure casting, die casting, etc., and the cast product has a certain degree of strength. A high-priced one is used. The above-mentioned composite fibers include glass fibers, alumina fibers, carbon fibers, silicon carbide fibers, potassium titanate fibers, metal fibers such as tungsten and boron, or kao wool fibers (trade name of Isolite Industries Co., Ltd. whose main component is , Al 2 O 3 , SiO 2 ), and other commonly commercially available materials can be used. Among the aluminum alloys for casting mentioned above, Al was used in the experiment.
-Si- (Cu) based alloy was used as the test metal. In addition, the above-mentioned test gold components are shown in Table 1 below.

【表】 又、上記複合化繊維中、実験には炭素繊維、炭
化珪素繊維、カウオール繊維を選び供試繊維とし
た。 尚、上記供試繊維の物性値は下記の表−2に示
す。
[Table] Also, among the above composite fibers, carbon fiber, silicon carbide fiber, and cowall fiber were selected as test fibers for the experiment. The physical properties of the above sample fibers are shown in Table 2 below.

【表】 次に本発明方法実施の為の装置の一例について
詳述する。 第1図、第2図に示したように、上述鋳造用ア
ルミニウム合金を収容し加熱するルツボ手段1
と、夫々に撹拌羽根4…を付設した複数本の撹拌
軸3,3′,3″…からなり、複合化繊維の投入さ
れた上記鋳造用アルミニウム合金溶湯aに剪断力
を与えるべく撹拌可能にルツボ1a内に駆動回転
可能に配装される撹拌混合手段2と、溶湯a中へ
のエアー巻き込み防止手段5と、上記溶湯a中に
複合化繊維bを押し込みする繊維注入手段6とか
らなつて、上記ルツボ手段1におけるルツボ1a
の内壁面1bは、上記各撹拌軸3,3′,3″…に
おける撹拌羽根4…先端の回転軌跡に沿つた形状
として構成したものである。 ここでルツボ手段は、炉1c内に受台1dを介
してルツボ1aを配設してある。このルツボ1a
自体は黒鉛又は鋳鉄製とすれば十分であり、又、
その内壁面1bは、単なる円形や楕円形よりも上
記撹拌混合手段2における各撹拌軸3,3′,
3″の撹拌羽根4先端の回転軌跡に沿つた形状、
つまりその曲率よりも僅かに大きい曲率をもつた
凹面に形成してある。従つて、図示例の如く複数
本の撹拌軸3,3′,3″を一列に配置した場合
は、第2図に示したように少なくとも内壁面全体
は平面略変形ひようたん形状等に形成して各撹拌
軸3,3′,3″間の左右(ルツボ内壁面側)に淀
み部ができないようにして、上記鋳造用アルミニ
ウム合金溶湯aに複合化繊維bが均一に混合され
るようになつている。 又、上記撹拌混合手段2は、少なくとも2本以
上の撹拌軸3…を具備するが、図示例のように3
本とする時は、上記ルツボ手段1の炉1c上に架
設された支持手段7の中心と、その左右両側に
夫々回転可能に主軸8と副軸8′,8″を支持し、
該各軸8,8′,8″に夫々撹拌軸3,3′,3″を
連結して平行にルツボ1a内の底壁近傍まで垂設
してあつて、上記主軸8は図示しない駆動源とし
ての自動変速モータに接続され、該主軸8と両副
軸8′,8″と歯車伝達機構9で連動連結して、上
記主軸8が図示の矢印c方向へ駆動回転されるこ
とで、これと同一方向へ各副軸8′,8″は夫々矢
印c′,c″で示したように回転するようにして、各
撹拌軸3,3′,3″の軸方向へ同一高さに2枚な
いし4枚付設した撹拌羽根4…相互が上下方向へ
変位した噛み合い駆動回転されることで、繊維の
注入された鋳造用アルミニウム合金溶湯aに剪断
力を働かせ、繊維を細かく均一に分散複合化でき
るようになつている。 又、上記両副軸8′,8″の回転数は主軸のそれ
とは異なるように上記歯車伝達機構9のギヤ比を
予め設定して設け、又投入する繊維の種類や、投
入%によつて粘性の異なる場合、自由に回転数を
変えることができるようにしてある。 ここで各種混合化繊維bの混合される溶湯a
は、その繊維bが固形のままの状態であつて、し
かも撹拌羽根4…自体は600゜〜800℃前後のアル
ミニウム合金溶湯にさらされるので、上記撹拌羽
根4…を鉄製とすると、上記溶湯aによる浸食以
外にも固形繊維そのものによる摩耗損傷が激し
く、実験の結果では1〜2回の混合駆動で使用不
能となる。そこで撹拌軸3,3′,3″及び撹拌羽
根4…をセラミツクス製、例えばSi3N4製、
Al2O3製、高純SiC製、α−Al2O3・TiO2等とし
て高温時の耐摩耗性を図つている。 又、上記エアー巻き込み防止手段5は、ルツボ
1a内をポンプ等で吸引して、内部全体を真空に
保持するようにするか、又は図示例のように溶湯
a表面の全体又は部分的を溶湯蓋5aで覆う等し
て形成される。 つまり、溶湯撹拌中に溶湯表面の湯のおどりが
激しく、それによつて溶湯中へのエアーの巻き込
みも激しくなつて撹拌後金型に流し込んで鋳造さ
れた製品に鋳巣が生じるから、このようなことの
ないよう上記エアー巻き込み防止手段は設けられ
る。 上記溶融蓋5aはセラミツク製又は鋳鉄製何れ
でも良いが、溶湯の保温性、耐濡れ性においては
セラミツク製のほうが優れる。 又、上記繊維注入手段6としては、上部一側に
ホツパー6aを付設した繊維投入用ストーク6b
と、繊維押し込み用ピストン6cとから形成され
ている。 上記ストーク6bはセラミツク製が望ましく、
又、上記ピストン6cは鋳鉄製が用いられる。溶
湯にaに繊維を投入する時、溶湯表面に投入する
だけでは溶湯aとの濡れ性の悪い繊維、あるいは
カサ比重の軽い繊維は溶湯表面に浮いてしまつて
溶湯中に混合されない。その為に上述繊維注入手
段6により繊維bを直接溶湯中に少しずつ押し込
み、ストーク6bのすぐ下の撹拌羽根4にて溶湯
中に繊維を拡散させるようにしたものである。 尚、混合化繊維bは、ホツパー6aからストー
ク6b中に入れ、然る後、自動又は手動にてピス
トン6cを押し下げ下降させて繊維bを溶湯aに
押し込む様にする。 前記炉1cとしては、シリコニツト炉、又は重
油、ガス炉等が用いられる。 而して本発明方法は、上述構成とした装置を用
いて鋳造用アルミニウム基複合材を製造するもの
で、溶湯aと複合化繊維bの撹拌混合条件は第3
図に例示した標準作業工程表を基準として繊維の
種類及び繊維の混合量によつて任意に決定され
る。尚、複合化繊維bの混合量は、3重量部以下
では強度、剛性、クリープ、耐摩耗性及び耐熱性
といつた複合材としての特性が得られず、又、30
重量部以上では撹拌混合が困難となることから、
3〜30重量部の範囲を対象とする。 ここで、標準作業工程について説明する。 これによれば、630℃から750゜乃至800℃迄昇温
させつつ撹拌し、この途中で溶湯中に複合化繊維
を投入(注入)するものであるが、昇温中とする
理由は、複合化後の溶湯の流動性を鋳造可能な溶
湯の流動性を維持する為には最終的に750゜乃至
800℃としなければならないが、初めからこの温
度に保持する必要はなく、撹拌混合は繊維の添加
に伴なう溶湯の温度低下を防ぐ為に昇温雰囲気中
に行なうべきであることから、最終目標を750゜乃
至800℃として昇温させつつ撹拌混合を行なうこ
とで作業の効率化を図るものである。尚、温度を
これ以上高温としても特に有効ではない。 昇温中、繊維未投入の状態で5分間の撹拌の
後、10〜30分間で繊維を投入しつつ混合撹拌する
が、この混合撹拌時間は後述の実施例を含む実験
により得られた値であつて、10分未満では充分な
複合化ができず、30分間以上としてもより以上の
効果が無いことによる。又、撹拌条件は、主軸の
回転数と副軸の回転数に差を持たせ、この撹拌の
差によつて溶湯に剪断力を働かせて繊維と溶湯と
の濡れ性を改善して複合化を促進させる為に、主
軸に対して副軸を略2〜3倍の回転数を目標と
し、主軸の回転数を200〜400rpm、副軸の回転数
を500〜1000rpmとすることで良好な結果が得ら
れることが実験により確かめられたものである。
即ち、これ未満では複合化が不充分であり、これ
以上としても特に効果的でないことによる。 繊維混合撹拌後(投入後)の撹拌条件は、繊維
が重力偏析で溶湯表面に浮上、あるいは溶湯底へ
沈まない程度に撹拌すれば良く、15分程度で充分
である。尚、15分以上に長く撹拌保持しても問題
はない。 従つて、上記全工程は20〜50分間で終了でき
る。 次に、複合化繊維を、カオウール繊維、炭素繊
維、炭化珪素繊維とした各々の実施例を説明す
る。 第1実施例 カオウール繊維を3重量%添加した場合、鋳造
用アルミニウム合金溶湯aとの濡れ性は悪く、混
合され難いので繊維混合撹拌条件は25分間を要
し、撹拌の為の回転数も主軸8を400rpm、副軸
8′,8″を1000rpmまで速める必要があつた。
尚、混合された後の溶湯鋳造性はおおむね良好で
溶湯温度は750℃でも鋳造(金型鋳造)すること
ができた。 第2実施例 炭素繊維を10重量%添加した場合鋳造用アルミ
ニウム合金溶湯との濡れ性は良好であり、繊維混
合撹拌条件も繊維投入量が少ない時(5重量%前
後)は溶湯温度は630℃、回転数は主軸で
200rpm、副軸で500rpmで充分混合できたが、繊
維投入量を多くすれば(例えば10重量%前後)
徐々に溶湯の粘性も高まり、溶湯温度も750℃前
後まで昇温させ、回転数も主軸で400rpm、副軸
1000rpm迄速くすることによつて混合させること
ができた。この時の撹拌混合に要した時間は25分
であつた。 尚、溶湯温度は800℃まで昇温して鋳造するこ
とができた。 第3実施例 炭化珪素繊維を6重量%添加した場、鋳造用ア
ルミニウム合金溶湯との濡れ性はますます良好
で、繊維混合撹拌条件も溶湯温度690℃、回転数
は主軸が300rpm、副軸750rpm、時間20分で混合
させることができた。 尚、鋳造温度は800℃で行なつた。 以上のように、繊維の種類、混合量によつて、
前述の範囲内で混合撹拌条件は微妙に異なる。 尚、成形鋳造法は、実験した金型鋳造以外の砂
型鋳造、あるいはダイカスト鋳造、溶湯鍜造何れ
でも可能である。 乗述第1、第2、第3各実施例の夫々の混合撹
拌複合状態を顕微鏡写真にて観察した。その結果
を写真1,2,3に夫々示すが、何れの繊維も良
く複合化されている。写真1は第1実施例を、写
真2は第2実施例を、写真3は第3実施例を夫々
示したもので、各写真中黒線が繊維である。 次に第1、第2、第3実施例にて述べた各種繊
維を複合化後の硬さを測定した結果を下記の表−
3に示す。
[Table] Next, an example of an apparatus for carrying out the method of the present invention will be described in detail. As shown in FIGS. 1 and 2, crucible means 1 for accommodating and heating the above-mentioned aluminum alloy for casting.
and a plurality of stirring shafts 3, 3', 3'', each having a stirring blade 4 attached thereto, and capable of stirring in order to apply shear force to the above-mentioned molten aluminum alloy for casting a into which the composite fibers have been introduced. It consists of a stirring and mixing means 2 rotatably arranged in the crucible 1a, a means 5 for preventing air from being entrained into the molten metal a, and a fiber injection means 6 for pushing the composite fibers b into the molten metal a. , a crucible 1a in the crucible means 1
The inner wall surface 1b of the stirring shaft 3, 3', 3'', etc. has a shape that follows the rotation locus of the tips of the stirring blades 4. A crucible 1a is disposed through the crucible 1d.
It is sufficient that the material itself is made of graphite or cast iron, and
The inner wall surface 1b of each stirring shaft 3, 3',
Shape that follows the rotation trajectory of the 3″ stirring blade 4 tip,
In other words, it is formed into a concave surface with a curvature slightly larger than that curvature. Therefore, when a plurality of stirring shafts 3, 3', 3'' are arranged in a line as shown in the illustrated example, at least the entire inner wall surface is formed into a substantially deformed gourd shape, etc., as shown in FIG. to prevent stagnation from forming on the left and right sides (on the crucible inner wall side) between the stirring shafts 3, 3', and 3'', so that the composite fibers b are uniformly mixed into the molten aluminum alloy for casting a. It's summery. Further, the stirring and mixing means 2 is equipped with at least two or more stirring shafts 3, but as in the illustrated example, there are three
When used as a book, a main shaft 8 and sub-shafts 8', 8'' are rotatably supported at the center of the support means 7 installed on the furnace 1c of the crucible means 1, and on both left and right sides thereof, respectively.
Stirring shafts 3, 3', 3" are connected to the respective shafts 8, 8', 8" and are suspended in parallel to the vicinity of the bottom wall inside the crucible 1a, and the main shaft 8 is connected to a drive source (not shown). The main shaft 8 and both sub-shafts 8', 8'' are interlocked and connected by a gear transmission mechanism 9, and the main shaft 8 is driven and rotated in the direction of the arrow c shown in the figure. The subshafts 8' and 8'' rotate in the same direction as shown by arrows c' and c'', respectively, and the stirring shafts 3, 3', and 3'' rotate at the same height in the axial direction. Stirring blades 4 equipped with one or four blades...They are meshed with each other and rotated vertically to apply shearing force to the molten aluminum alloy for casting a into which fibers have been injected, thereby finely and uniformly dispersing the fibers into a compound. I'm starting to be able to do it. Furthermore, the rotational speed of the two sub-shafts 8', 8'' is set by setting the gear ratio of the gear transmission mechanism 9 in advance so as to be different from that of the main shaft, and also depends on the type of fiber to be input and the input percentage. When the viscosity is different, the rotation speed can be changed freely.Here, the molten metal a into which the various mixed fibers b are mixed
Since the fiber b remains solid and the stirring blade 4 itself is exposed to the molten aluminum alloy at a temperature of around 600° to 800°C, if the stirring blade 4 is made of iron, the molten metal a In addition to erosion caused by the solid fibers, the solid fibers themselves are subject to severe abrasion damage, and experimental results show that they become unusable after one or two mixing drives. Therefore, the stirring shafts 3, 3', 3'' and the stirring blades 4... are made of ceramics, for example, Si 3 N 4 ,
Made of Al 2 O 3 , high-purity SiC, α-Al 2 O 3 , TiO 2 , etc. for wear resistance at high temperatures. The air entrainment prevention means 5 may be configured to suck the inside of the crucible 1a with a pump or the like to maintain the entire interior in a vacuum, or as shown in the example, the entire or part of the surface of the molten metal a is covered with a molten metal lid. 5a. In other words, while the molten metal is being stirred, the molten metal on the surface of the molten metal dances violently, and as a result, air is also entrained into the molten metal, resulting in cavities in products that are cast by pouring into a mold after stirring. The above-mentioned air entrainment prevention means is provided to prevent this. The melting lid 5a may be made of ceramic or cast iron, but ceramic is better in terms of heat retention and wettability of the molten metal. The fiber injection means 6 includes a fiber injection stalk 6b having a hopper 6a attached to one side of the upper part.
and a fiber pushing piston 6c. The stalk 6b is preferably made of ceramic;
Further, the piston 6c is made of cast iron. When adding fibers to the molten metal a, if the fibers are only added to the surface of the molten metal, fibers that have poor wettability with the molten metal a or fibers with light bulk specific gravity will float on the surface of the molten metal and will not be mixed into the molten metal. For this purpose, the fibers b are directly pushed into the molten metal little by little by the fiber injection means 6 mentioned above, and the fibers are dispersed into the molten metal by the stirring blade 4 immediately below the stalk 6b. The mixed fibers b are put into the stalk 6b from the hopper 6a, and then the piston 6c is pushed down automatically or manually to force the fibers b into the molten metal a. As the furnace 1c, a silicone furnace, a heavy oil or gas furnace, or the like is used. According to the method of the present invention, an aluminum matrix composite material for casting is manufactured using the apparatus configured as described above, and the stirring and mixing conditions of the molten metal a and the composite fiber b are as follows.
It is arbitrarily determined based on the standard work flow chart illustrated in the figure, depending on the type of fiber and the amount of fiber mixed. If the amount of composite fiber b mixed is less than 3 parts by weight, properties as a composite material such as strength, rigidity, creep resistance, abrasion resistance, and heat resistance cannot be obtained;
If the amount exceeds 1 part by weight, stirring and mixing becomes difficult.
The target range is 3 to 30 parts by weight. Here, the standard work process will be explained. According to this, the temperature is raised from 630°C to 750° to 800°C while stirring, and composite fibers are injected into the molten metal during this process. In order to maintain the fluidity of the molten metal that can be cast, the final angle should be 750° or more.
The temperature must be 800℃, but it is not necessary to maintain this temperature from the beginning, and stirring and mixing should be done in an elevated temperature atmosphere to prevent the temperature of the molten metal from decreasing due to the addition of fibers. The aim is to improve work efficiency by stirring and mixing while raising the temperature to a target of 750° to 800°C. Note that it is not particularly effective to increase the temperature higher than this. While the temperature is rising, after stirring for 5 minutes without adding the fibers, mix and stir while adding the fibers for 10 to 30 minutes. This mixing and stirring time is the value obtained from experiments including the examples described below. In some cases, if the time is less than 10 minutes, sufficient compositing cannot be achieved, and if the time is 30 minutes or more, no further effect is obtained. In addition, the stirring conditions are such that there is a difference between the rotation speed of the main shaft and the rotation speed of the sub-shaft, and this difference in stirring applies a shearing force to the molten metal to improve the wettability of the fibers and the molten metal, thereby creating a composite. In order to accelerate the process, aim for the rotation speed of the counter shaft to be approximately 2 to 3 times that of the main shaft, and set the rotation speed of the main shaft to 200 to 400 rpm and the rotation speed of the counter shaft to 500 to 1000 rpm. This has been confirmed through experiments.
That is, if it is less than this, the compositing is insufficient, and if it is more than this, it is not particularly effective. The stirring conditions after mixing and stirring the fibers (after adding the fibers) should be such that the fibers do not rise to the surface of the molten metal or sink to the bottom of the molten metal due to gravity segregation, and about 15 minutes is sufficient. Note that there is no problem even if the mixture is stirred and maintained for a longer time than 15 minutes. Therefore, the entire process can be completed in 20 to 50 minutes. Next, examples will be described in which the composite fibers are made of Kaowool fiber, carbon fiber, and silicon carbide fiber. 1st Example When 3% by weight of Kaowool fiber is added, the wettability with the molten aluminum alloy for casting a is poor and mixing is difficult, so the fiber mixing and stirring conditions require 25 minutes, and the rotation speed for stirring is also limited to the main shaft. It was necessary to increase the speed of the 8's to 400 rpm and the subshafts 8' and 8'' to 1000 rpm.
The castability of the molten metal after mixing was generally good, and casting (mold casting) was possible even at a molten metal temperature of 750°C. 2nd Example When 10% by weight of carbon fiber is added, the wettability with the molten aluminum alloy for casting is good, and when the fiber mixing and stirring conditions are low (around 5% by weight), the molten metal temperature is 630°C. , the rotation speed is the spindle
Sufficient mixing was achieved at 200rpm and 500rpm on the countershaft, but if the amount of fiber input was increased (for example, around 10% by weight)
The viscosity of the molten metal gradually increases, and the temperature of the molten metal is raised to around 750℃, and the rotation speed is 400 rpm on the main shaft and 400 rpm on the sub shaft.
Mixing was possible by increasing the speed to 1000 rpm. The time required for stirring and mixing at this time was 25 minutes. The molten metal temperature could be raised to 800°C for casting. Third Example When 6% by weight of silicon carbide fibers were added, the wettability with the molten aluminum alloy for casting was even better, and the fiber mixing and stirring conditions were: molten metal temperature 690°C, rotation speed 300 rpm for the main shaft, 750 rpm for the sub shaft. , could be mixed in 20 minutes. The casting temperature was 800°C. As mentioned above, depending on the type of fiber and the amount of mixture,
Mixing and stirring conditions vary slightly within the above range. Note that the mold casting method may be sand mold casting, die casting, or molten metal casting other than the metal mold casting used in the experiment. The mixed and stirred composite states of each of the first, second, and third examples described above were observed using microscopic photographs. The results are shown in Photos 1, 2, and 3, and all fibers were well composited. Photo 1 shows the first example, Photo 2 shows the second example, and Photo 3 shows the third example, and the black lines in each photo are fibers. Next, the results of measuring the hardness after compositing the various fibers described in the first, second, and third examples are shown in the table below.
Shown in 3.

【表】 上記表−3から、何れの繊維も複合しない状態
の金型流し込み品の硬さに比べてビツカース硬さ
は高くなつている。 特に炭化珪素繊維の場合、硬さの増加が著しく
なつている。 以上説明したように本発明に係る鋳造用アルミ
ニウム基複合材の製造方法によれば、鋳造用アル
ミニウム合金に、これと異なつた組成を有する複
合化繊維を均一に混合分散せしめ得て通常の鋳造
法により製品を成形できる優れた物性の複合材を
簡単な装置を用いて撹拌するのみで簡単、かつ容
易に得られる利点がある。 又、複合化繊維としては、ガラス繊維、アルミ
ナ繊維、炭素繊維、炭化珪素繊維、チタン酸カリ
ウム繊維やタングステン、ボロン等の金属繊維、
あるいはカオウール繊維(イソライト工業(株)の商
品名)等、一般的に市販されているものを用いる
ことができるので、安価に製造することができ
る。
[Table] From Table 3 above, the Vickers hardness is higher than the hardness of the mold-cast product without any fiber composite. Particularly in the case of silicon carbide fibers, the increase in hardness is remarkable. As explained above, according to the method for manufacturing an aluminum matrix composite material for casting according to the present invention, composite fibers having a composition different from that of the aluminum alloy for casting can be uniformly mixed and dispersed, thereby making it possible to uniformly mix and disperse composite fibers having a composition different from that of the aluminum alloy for casting. It has the advantage that a composite material with excellent physical properties that can be molded into a product can be obtained simply and easily by stirring using a simple device. Composite fibers include glass fibers, alumina fibers, carbon fibers, silicon carbide fibers, potassium titanate fibers, and metal fibers such as tungsten and boron.
Alternatively, it is possible to use commonly commercially available fibers such as Kaoh wool fiber (trade name of Isolite Kogyo Co., Ltd.), so that it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る鋳造用アルミニウム基複
合材の製造方法に適用される装置の一例を示した
縦断側面図、第2図は同装置に於けるルツボ手段
と撹拌混合手段の平面図、第3図は同方法におけ
る撹拌混合条件の標準作業工程表、第4図の写真
1、写真2、写真3は夫々鋳造用アルミニウム合
金にカオウール繊維3重量%添加した第1実施例
の複合材、鋳造用アルミニウム合金に炭素繊維10
重量%添加した第2実施例の複合材、鋳造用アル
ミニウム合金に炭化珪素繊維を6重量%添加した
第3実施例の複合材の各顕微鏡写真である。 1……ルツボ手段、2……撹拌混合手段、3,
3′,3″……撹拌軸、4……撹拌羽根、5……エ
アー巻き込み防止手段、6……繊維注入手段。
FIG. 1 is a vertical cross-sectional side view showing an example of an apparatus applied to the method for producing an aluminum matrix composite material for casting according to the present invention, and FIG. 2 is a plan view of a crucible means and stirring and mixing means in the same apparatus. Fig. 3 is a standard work flow chart of stirring and mixing conditions in the same method, and Photo 1, Photo 2, and Photo 3 in Fig. 4 are the composite of the first example in which 3% by weight of Kao Wool fiber was added to the aluminum alloy for casting, respectively; Carbon fiber 10 to aluminum alloy for casting
They are micrographs of a composite material of a second example in which 6% by weight of silicon carbide fibers were added to an aluminum alloy for casting, and a composite material of a third example in which 6% by weight of silicon carbide fibers were added to an aluminum alloy for casting. 1... Crucible means, 2... Stirring mixing means, 3,
3', 3''... Stirring shaft, 4... Stirring blade, 5... Air entrainment prevention means, 6... Fiber injection means.

Claims (1)

【特許請求の範囲】 1 多段羽根を相互に段違いとなるようにすると
共に撹拌軸に交差するように配置された複数本の
撹拌軸を有し且つ前記撹拌羽根の回転軌跡に沿つ
た内壁形状としたルツボ内に鋳造用アルミニウム
合金溶湯100重量部を満たし、隣接相互間で異な
る回転数となるよう前記撹拌軸を同一方向に回転
させ乍ら鋳造用アルミニウム合金溶湯を20〜50分
間に亘つて撹拌しつつ溶融点から750℃乃至800℃
迄昇温させると共に、この昇温中の10〜30分間に
複合化繊維3〜30重量部を注入しつつ撹拌混合す
ること、を特徴とする鋳造用アルミニウム基複合
材の製造方法。 2 上記撹拌軸が主軸と2本の副軸とから成り、
上記複合化繊維の撹拌混合時の主軸の回転数が
200〜400rpmで副軸の回転数が500〜1000rpmで
あること、を特徴とする特許請求の範囲第1項に
記載の鋳造用アルミニウム基複合材の製造方法。
[Scope of Claims] 1. The multistage blades are arranged at different stages, and the stirring shaft has a plurality of stirring shafts arranged to intersect with the stirring shaft, and the inner wall shape is along the rotation locus of the stirring blade. Fill the crucible with 100 parts by weight of molten aluminum alloy for casting, and stir the molten aluminum alloy for casting for 20 to 50 minutes while rotating the stirring shaft in the same direction so that the rotation speed differs between adjacent crucibles. 750°C to 800°C from the melting point
1. A method for producing an aluminum matrix composite material for casting, which comprises raising the temperature to a temperature of 100 to 100°C, and stirring and mixing while injecting 3 to 30 parts by weight of composite fibers for 10 to 30 minutes during this temperature rise. 2 The above-mentioned stirring shaft consists of a main shaft and two sub-shafts,
The rotation speed of the main shaft during stirring and mixing of the above composite fibers is
2. The method for manufacturing an aluminum matrix composite material for casting according to claim 1, wherein the rotation speed of the counter shaft is 500 to 1000 rpm.
JP2879581A 1981-02-27 1981-02-27 Method and apparatus for manufacturing composite aluminum material Granted JPS57143456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2879581A JPS57143456A (en) 1981-02-27 1981-02-27 Method and apparatus for manufacturing composite aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2879581A JPS57143456A (en) 1981-02-27 1981-02-27 Method and apparatus for manufacturing composite aluminum material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60027937A Division JPS60244460A (en) 1985-02-15 1985-02-15 Apparatus for producing aluminum-base composite material for casting

Publications (2)

Publication Number Publication Date
JPS57143456A JPS57143456A (en) 1982-09-04
JPH02421B2 true JPH02421B2 (en) 1990-01-08

Family

ID=12258351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2879581A Granted JPS57143456A (en) 1981-02-27 1981-02-27 Method and apparatus for manufacturing composite aluminum material

Country Status (1)

Country Link
JP (1) JPS57143456A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185770U (en) * 1984-11-09 1986-06-05
US6106588A (en) * 1998-03-11 2000-08-22 Mc21 Incorporated Preparation of metal matrix composites under atmospheric pressure
US6491423B1 (en) 1998-03-11 2002-12-10 Mc21, Incorporated Apparatus for mixing particles into a liquid medium
CA3112949A1 (en) 2018-10-24 2020-04-30 Automotive Components Floby Ab System and mixing arrangement for preparing an aluminium melt

Also Published As

Publication number Publication date
JPS57143456A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
AU732289B2 (en) Particulate field distributions in centrifugally cast metal matrix composites
Naher et al. Development and assessment of a new quick quench stir caster design for the production of metal matrix composites
US4786467A (en) Process for preparation of composite materials containing nonmetallic particles in a metallic matrix, and composite materials made thereby
US5025849A (en) Centrifugal casting of composites
KR20000048914A (en) Apparatus and method for semi-solid material production
Baisane et al. Recent development and challenges in processing of ceramics reinforced Al matrix composite through stir casting process: A Review
US5167920A (en) Cast composite material
US20090011211A1 (en) Metal matrix composite bodies, and methods for making same
Peddavarapu et al. Dry sliding wear behaviour of AA6082-5% sic and AA6082-5% tib2 metal matrix composites
JPH02421B2 (en)
US4636355A (en) Method for manufacture of highly ductile material
Hashim The production of metal matrix composites using the stir casting technique
JPH0259028B2 (en)
Kumar et al. Experimental investigations on mechanical and tribological properties of extruded aluminium A356-Al2O3 stir cast MMC
JPH0431009B2 (en)
JP2711967B2 (en) Casting method for composite light metal materials
CN215998698U (en) Bottom casting device for preparing particle reinforced aluminum matrix composite
JPH01154861A (en) Production of gear
JPS62130234A (en) Method for homogeneously mixing al-pb alloy
JPH0368728A (en) Method and apparatus for producing al or al alloy composite
JPS6120025Y2 (en)
JP2864391B2 (en) Hypereutectic Al-Si alloy composite material and method for producing the same
Mer et al. Low speed centrifugal casting of functionally graded solid cast ingot by anomalous particle distribution
Thangaraju et al. Infuence of Pouring Temperature on Stir Casting of Al/SiC/Mg/Cu Composite
JPH044382B2 (en)