JPH01154861A - Production of gear - Google Patents

Production of gear

Info

Publication number
JPH01154861A
JPH01154861A JP31427487A JP31427487A JPH01154861A JP H01154861 A JPH01154861 A JP H01154861A JP 31427487 A JP31427487 A JP 31427487A JP 31427487 A JP31427487 A JP 31427487A JP H01154861 A JPH01154861 A JP H01154861A
Authority
JP
Japan
Prior art keywords
gear
metal
mold
composite material
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31427487A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Motoji Tsubota
基司 坪田
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31427487A priority Critical patent/JPH01154861A/en
Publication of JPH01154861A publication Critical patent/JPH01154861A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gear having light wt., high strength and high wear resistance by continuously changing concn. of reinforcing material in matrix metal from center part of the gear toward teeth part in a mold by rotation of the mold for centrifugal casting having gear shaped cavity. CONSTITUTION:The reinforcing material 21 of alumina grains (density about 4) having two kinds of grain sizes, such as 20mum and 3mum average grain size, respectively is added in molten aluminum alloy (sp. gr. about 2.8) 22 as the matrix. Then, this mixing material is sufficiently stirred to obtain the molten metal 23 as composite material. Successively, the molten metal 23 is held at 700-800 deg.C and poured into the metallic mold 24 having teeth type grooves at the inner circumferential face, preheating at 440-550 deg.C and rotating at about 2000rpm. After holding for the specific time, at the time, when the grains 21 sufficiently coagulate near the teeth part of the gear, the metallic mold 24 is rapidly cooled and the molten metal 23 is solidified and separated from the mold. In this result, the gear forming of the metal based composite material part 25 having high alumina containing ratio at outer circumferential part of the gear, the metal based composite material part 26 having relatively low alumina containing ratio at inner side and the metal material part 27 containing scarcely the alumina at center part, respectively, is obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は繊維、粒子等で強化した金属基複合材料を一部
に用いて軽量かつ耐摩耗性にすぐれた歯車を製造する方
法に係り、特に耐熱強度等に優れた歯車の製造を可能と
する歯車の製造方法に関する。
[Detailed description of the invention] [Objective of the invention] (Industrial application field) The present invention manufactures a gear that is lightweight and has excellent wear resistance by partially using a metal matrix composite material reinforced with fibers, particles, etc. In particular, the present invention relates to a method for manufacturing gears that makes it possible to manufacture gears with excellent heat resistance and strength.

(従来の技術) 産業用ロボットや工作機械等では高速性および動作の正
確性が要求されるため、歯車の小型化、動力損失の減少
(伝達効率の向上)、振動及び騒音の減少等が図られて
いる。近年、このような歯車の材料として軽量、高強度
、高剛性かつ耐摩耗性に優れた金属基複合材料が注目さ
れている。
(Conventional technology) Industrial robots and machine tools require high speed and precision of movement, so it is important to make gears smaller, reduce power loss (improve transmission efficiency), and reduce vibration and noise. It is being In recent years, metal matrix composite materials, which are lightweight, have high strength, high rigidity, and excellent wear resistance, have attracted attention as materials for such gears.

例えばアルミニウム(A、lり、マグネシウム(Mg)
等の合金をセラミクス繊維や粒子で強化した金属基複合
材料は、鉄系材料に比べて軽量かつ高強度であり、この
ような金属基複合材料で形成した歯車は回転慣性モーメ
ントが小さく、耐摩耗性にも優れている。したがって、
歯車の摩耗が軽減され、動力損失の減少、即ち伝達効率
の向上等の利点がある。
For example, aluminum (A), magnesium (Mg)
Metal matrix composite materials made by reinforcing alloys such as ceramic fibers and particles with ceramic fibers and particles are lighter and stronger than iron-based materials, and gears made of such metal matrix composite materials have a small rotational moment of inertia and are highly wear resistant. It is also excellent in sex. therefore,
There are advantages such as reduced gear wear, reduced power loss, and improved transmission efficiency.

しかし、金属基複合材料の多くは、金属材料に比べて摩
擦係数が大きく、熱伝導率も悪いので、運転中の歯部温
度上昇による歯車の熱膨張で回転精度が低下するという
欠点がある。さらに、振動減衰性も悪いので運転時の振
動が残存し易くなり、それだけ、騒音が大きくなること
が予測される。
However, many metal matrix composite materials have a larger coefficient of friction and poorer thermal conductivity than metal materials, so they have the disadvantage that rotational precision decreases due to thermal expansion of gears due to increased tooth temperature during operation. Furthermore, since the vibration damping properties are poor, vibrations during operation tend to remain, and it is predicted that the noise will increase accordingly.

このような欠点を改善するために、発明者らは第3図に
示すように、歯車aの歯部とベースの歯付根部近傍のみ
を高強度、高剛性、耐摩耗性にすぐれた金属基複合材料
すで形成し、他のベース部を熱伝導率、振動減衰性等に
すぐれた金属材料Cで形成した歯車を提案した。
In order to improve these drawbacks, the inventors fabricated a metal base with high strength, high rigidity, and excellent wear resistance only in the vicinity of the teeth of gear a and the root of the teeth of the base, as shown in Fig. 3. We proposed a gear that is made of a composite material and the other base part is made of a metal material C that has excellent thermal conductivity and vibration damping properties.

このような部分的に金属基複合材料を配した従来の製造
方法を第4図(a)〜(h)を用いて説明する。
A conventional manufacturing method in which such a metal matrix composite material is partially arranged will be explained using FIGS. 4(a) to 4(h).

まず、所定量の1181粒子等のセラミクス強化材1を
秤量後、これに必要に応じて水等の溶媒やバインダーを
加え、撹拌機2で十分攪拌し、混合粉3を得る(第4図
(a))。次いで、円柱状の中子4を有する金型5の中
に混合粉3を入れ、円筒状の上バンチ6と下バンチ7で
上下方向から圧縮成形しく同図(b))、離型すること
により中空状の予備成形体8を得る(同図(C))、予
備成形体8は十分乾燥優、溶浸用金型9に挿入しく同図
(d))、ヒータ10により300〜600℃に予熱し
た後(同図(e))。溶融マトリクス金属11を金型1
2内に注湯しく同図(f))、ピストン13で溶湯11
を加圧することにより予備成形体8中に溶融マトリクス
金j111を含浸させ、複合部14を形成させる(同図
(Q))。その後さらにピストン13を押し下げ、予備
成形体8中に完全にマトリクス金属11を含浸させ、凝
固後、金型12から取り出して切断し、外周側が金属基
複合材料部15、内側が金属材料部16の歯車素材17
を得(同図(h))、その後、機械加工により歯切り加
工を行う。
First, after weighing a predetermined amount of ceramic reinforcing material 1 such as 1181 particles, a solvent such as water or a binder is added to it as needed, and the mixture is thoroughly stirred with a stirrer 2 to obtain a mixed powder 3 (see Fig. 4). a)). Next, the mixed powder 3 is put into a mold 5 having a cylindrical core 4, and is compression-molded from above and below using a cylindrical upper bunch 6 and a lower bunch 7 (FIG. 2(b)), and then released from the mold. A hollow preformed body 8 is obtained (Figure (C)). The preformed body 8 is thoroughly dried and inserted into an infiltration mold 9 (Figure (D)). ((e) in the same figure). Molten matrix metal 11 into mold 1
The piston 13 pours the molten metal into the molten metal 11 (see figure (f)).
By applying pressure, the preformed body 8 is impregnated with molten matrix gold j111 to form a composite part 14 ((Q) in the same figure). Thereafter, the piston 13 is further pushed down to completely impregnate the matrix metal 11 into the preform 8, and after solidification, it is taken out from the mold 12 and cut. Gear material 17
((h) in the same figure), and then gear cutting is performed by machining.

(発明が解決しようとする問題点) しかし、セラミクス繊維や粒子等を含有した金属基複合
材料の熱膨張率は、マトリクスの金属材料に比べて著し
く小さいため、第4図の方法で製造した歯車では、冷却
時、熱処理時または運転時に発生する熱応力により、第
3図に示すように、金属基複合材料部すと金属材料部C
の界面にクラックdが生じ、この部分で剥離するという
問題がある。
(Problem to be Solved by the Invention) However, the coefficient of thermal expansion of the metal matrix composite material containing ceramic fibers, particles, etc. is significantly smaller than that of the metal material of the matrix, so the gear manufactured by the method shown in Fig. 4 As shown in Fig. 3, due to thermal stress generated during cooling, heat treatment, or operation, the metal matrix composite material part and the metal material part C
There is a problem that a crack d occurs at the interface of the film and peeling occurs at this part.

そこで金属基複合材料部すと金属材料部Cの界面に発生
する熱応力を低減させる方法として、径方向に沿って強
化材の濃度を連続的に変えることが有効と考えられる。
Therefore, as a method for reducing the thermal stress generated at the interface between the metal matrix composite material part and the metal material part C, it is considered effective to continuously change the concentration of the reinforcing material along the radial direction.

ところが、予備成形体8を用いる前記の方法では、その
ような強化材分布を得ることが殆ど不可能である。また
、強化材による予備成形体は脆く、強度も低いので、歯
車の歯の形状の予備成形体を成形することも困難である
だけでなく、複合時の溶浸圧力により、潰れたり、破損
することも多々あり、歩留りも低い。
However, with the method described above using the preform 8, it is almost impossible to obtain such a reinforcement distribution. In addition, preforms made of reinforcing materials are brittle and have low strength, so it is not only difficult to form preforms in the shape of gear teeth, but also can be crushed or damaged by the infiltration pressure during compounding. This is often the case, and the yield is low.

本発明はこのような事情に鑑みてなされたもので、軽量
かつ高強度で、高耐摩耗性を有するとともに、放熱性が
良く、耐熱性、耐熱衝撃性等にすぐれた歯車を歩留り良
く、低コストで製造する方法を提供することを目的とす
る。
The present invention was made in view of these circumstances, and provides a gear that is lightweight, has high strength, has high wear resistance, has good heat dissipation, and has excellent heat resistance, thermal shock resistance, etc., with a high yield and low cost. The purpose is to provide a method of manufacturing at low cost.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、マト
リクス金属としての軽金属溶湯に繊維、ウィスカまたは
粒子状の強化材を添加し、これを鋳型に注入して歯車の
歯部とその近傍部分を前記マトリクス金属と強化材との
複合材料で形成するとともに、その歯車のベース部をマ
トリクス金属のみで形成する歯車の製造方法において、
鋳型として歯車形状のキャビティを有する遠心鋳造用鋳
型を用い、その鋳型を回転させて遠心力場をつくること
により、歯車中心部から歯部に向って前記強化材の濃度
を連続的に変化させることを特徴とする。
(Means and effects for solving the problems) The present invention adds fibers, whiskers, or particulate reinforcing material to a molten light metal as a matrix metal, and injects this into a mold to improve the quality of the teeth of a gear and its vicinity. In a method for manufacturing a gear, the gear part is formed of a composite material of the matrix metal and the reinforcing material, and the base part of the gear is formed only of the matrix metal,
A centrifugal casting mold having a gear-shaped cavity is used as the mold, and by rotating the mold and creating a centrifugal force field, the concentration of the reinforcing material is continuously changed from the center of the gear toward the teeth. It is characterized by

即ち、物体に作用する遠心力Fは一般に、F=m−r・
ω2      ・・・・・・(1)m:物質の質量 r:中心からの距離 ω:角速度 で与えられる。したがって、例えばアルミナ(八ρ20
3)、炭化チタン(T i C) 、酸化ジルコニウム
(ZrO2)等のように、A、l! 、MO合金等より
も密度の大きいセラミクス成分を添加したAρ、MQ合
金溶揚湯遠心力を負荷した場合、セラミクス成分は外周
側である歯部およびその周辺に凝集する傾向を示し、歯
車の耐摩耗性は飛躍的に向上する。また、式(1)から
、同一物質でも粒径が大きく、質量の大きい物はど、大
ぎな遠心力を受けるので、必然的に大きい粒径の物は外
側に、小さい物はその内側に分布する。その結果、本発
明によれば外側のセラミクス含有率は高く、内側の含有
率は低くなる。よって、熱応力条件が厳しく、より連続
的に熱膨張率を変化させたい場合には、予め粒度分布が
異なるセラミクス繊維、粒子や、密度の異なるセラミク
ス成分を複合添加することが有効である。
That is, the centrifugal force F acting on an object is generally F=m−r・
ω2 (1) m: mass of substance r: distance from center ω: given by angular velocity. Therefore, for example, alumina (8ρ20
3), A, l!, such as titanium carbide (T i C), zirconium oxide (ZrO2), etc. , Aρ, MQ alloy containing a ceramic component with a higher density than that of the MO alloy, etc. When centrifugal force is applied to the melt, the ceramic component tends to aggregate on the outer peripheral side of the teeth and its surroundings, reducing the durability of the gear. Abrasion resistance is dramatically improved. Also, from equation (1), even if the same substance has a large particle size and a large mass, it will be subject to a large centrifugal force, so naturally, large particle size particles will be distributed on the outside, and small particles will be distributed on the inside. do. As a result, according to the present invention, the ceramic content on the outside is high and the content on the inside is low. Therefore, when thermal stress conditions are severe and it is desired to change the coefficient of thermal expansion more continuously, it is effective to add ceramic fibers or particles with different particle size distributions or ceramic components with different densities in advance in a composite manner.

(実施例1) 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
(Example 1) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

第1図(a)、(b)、(C)は歯車の製造工程を示し
ている。本実施例では、平均粒径が20μmのアルミナ
粒子(密度的4)と、平均粒径が3μ雇のアルミナ粒子
との2種類の粒径の強化材を、マトリクスとしてのへ1
合金に複合添加する。
FIGS. 1(a), (b), and (C) show the gear manufacturing process. In this example, reinforcing materials with two types of particle sizes, alumina particles with an average particle size of 20 μm (density 4) and alumina particles with an average particle size of 3 μm, were used as a matrix.
Composite addition to alloys.

まず、第1図(a)に示すように、上述の粒度分布をも
つアルミナ粒子21を、J l5A6061  /1合
金溶湯(比重的2.8)22中に添加し、機械的に十分
攪拌しアルミナ粒子を含有する複合材料の溶123を作
る。この溶湯23を700〜800℃に保持し、内周面
に歯形状の溝を有し、400〜550℃に予熱され、約
200Orpmで回転する金型24に注湯する。同図(
b)に示すように、完全注湯した状態で、数分間保持し
、アルミナ粒子21が歯車の歯部近傍に十分凝集した時
点で、金型24を急冷し、凝固後その金型24の回転を
停止させ、離型する。しかして、同図(C)に示すよう
に、歯車外周部にアルミナ含有率の高い金属基複合材料
部25が形成され、その内側にアルミナ含有率の比較的
低い金属基複合材料部26が形成され、中心部にアルミ
ナのほとんど含有されない金属材料部27が形成された
、中心孔28を有する歯車29が形成される。そして、
粒径の大きいアルミナ粒子は歯車29の外周部に集積す
る。
First, as shown in FIG. 1(a), alumina particles 21 having the above-mentioned particle size distribution are added to a molten Jl5A6061/1 alloy (specific gravity: 2.8) 22, and the alumina particles are thoroughly stirred mechanically. A composite material solution 123 containing particles is made. This molten metal 23 is maintained at 700 to 800°C and poured into a mold 24 having tooth-shaped grooves on its inner peripheral surface, preheated to 400 to 550°C, and rotating at about 200 rpm. Same figure (
As shown in b), the fully poured state is held for several minutes, and when the alumina particles 21 have sufficiently aggregated near the gear teeth, the mold 24 is rapidly cooled, and after solidification, the mold 24 is rotated. Stop and release from the mold. As shown in FIG. 2C, a metal matrix composite material part 25 with a high alumina content is formed on the outer periphery of the gear, and a metal matrix composite material part 26 with a relatively low alumina content is formed inside thereof. A gear 29 is formed having a center hole 28 in which a metal material portion 27 containing almost no alumina is formed in the center. and,
Alumina particles with a large particle size accumulate on the outer periphery of the gear 29.

このような実施例の方法によって製造した歯車29につ
いて歯先から中心側に向かうごッカース硬さ分布を調べ
たところ、第2図の曲線Aで示す結果が得られた。即ち
、歯先部ではビッカース硬さが高く、中心側に向って緩
かな傾斜をなして連続的に低下する。これはアルミナ粒
子の分布状態に基づくものと考えられる。金属基複合材
料の熱膨張率と硬とさは、強化材の含有率に対応して高
まることが知られており、その含有率が小さいほど、熱
膨張率および硬さはマトリクス全屈の値に近づく。よっ
て、前記の歯車29では熱膨張率が歯先側から中心側に
向って連続的に変化していることから、熱応力は非常に
小さいことが予想できる。
When the Gockers hardness distribution from the tip of the gear toward the center of the gear 29 manufactured by the method of this example was investigated, the results shown by curve A in FIG. 2 were obtained. That is, the Vickers hardness is high at the tip of the tooth, and decreases continuously with a gentle slope toward the center. This is considered to be based on the distribution state of alumina particles. It is known that the thermal expansion coefficient and hardness of metal matrix composite materials increase with the reinforcing material content, and the smaller the reinforcing material content, the lower the thermal expansion coefficient and hardness of the matrix. approach. Therefore, since the coefficient of thermal expansion of the gear 29 changes continuously from the tooth tip side toward the center side, it can be expected that the thermal stress is extremely small.

下記の第1表は耐熱衝撃性を調べるため、歯車を100
〜550℃の温度から焼入れだ場合のマトリクス・複合
材料部分の界面の割れ発生状況をI!察した結果を示し
たものである。本実施例により製造した歯車では、A6
061合金の溶体化処理温度である550℃から水冷し
ても、殆ど割れが発生しないことが確認できた。このこ
とから、本発明の方法により得られる歯車は、耐熱衝撃
性に極めて優れたものであることがわかる。
Table 1 below shows gears 100%
The occurrence of cracks at the interface of the matrix/composite material part when quenched from a temperature of ~550°C is shown below. The results are shown below. In the gear manufactured according to this example, A6
It was confirmed that almost no cracking occurred even when water-cooled from 550° C., which is the solution treatment temperature for 061 alloy. This shows that the gear obtained by the method of the present invention has extremely excellent thermal shock resistance.

(実施例2) 前述した実施例1と略同様の方法で、粒径が略20μm
の単一粒径のアルミナ粒子(密度的4)をマトリクス金
属としてへ6061合金に添加して、歯車を製造した。
(Example 2) A particle size of approximately 20 μm was obtained using substantially the same method as in Example 1 described above.
Alumina particles of a single particle size (density 4) were added to the 6061 alloy as a matrix metal to produce gears.

この方法の場合にも、歯先側にアルミナ粒子の含有率が
高い金属基複合材料が形成され、歯付根部にアルミナ含
有率が比較的低い金属基複合材料部が形成され、中心部
にアルミナが殆ど含有されない金属材料部が形成された
In the case of this method as well, a metal matrix composite material with a high alumina particle content is formed on the tooth tip side, a metal matrix composite material with a relatively low alumina content is formed on the tooth root, and alumina particles are formed in the center. A metal material portion containing almost no metal was formed.

この実施例の方法によって製造した歯車のごッカース硬
さ分布は第2図に曲線Bで示すように、実施例1の場合
よりは傾斜角度が大きいが、歯先側から中心側に向って
連続的に硬さが変化することが認められた。
As shown by curve B in Figure 2, the Gockers hardness distribution of the gear manufactured by the method of this example has a larger inclination angle than that of Example 1, but is continuous from the tooth tip side to the center side. It was observed that the hardness changed over time.

また、耐熱衝撃性については、下記の第2表に示すよう
に、550℃からの焼入れによって界面に一部割れが生
じたものの、それ以下の温度からの焼入れによっては界
面割れが生じないことが確認された。
Regarding thermal shock resistance, as shown in Table 2 below, although some cracks occurred at the interface due to quenching from 550°C, no interface cracks occurred when quenching from a temperature lower than that. confirmed.

したがって、この実施例においても、実施例1と略同様
の強度向上の効果が得られる。
Therefore, in this example as well, substantially the same strength improvement effect as in Example 1 can be obtained.

(従来例) 第3図に示す従来の方法により、平均粒径が20μ卯の
アルミナ粒子をマトリクス金属としてのA6061合金
に添加して歯車を製造した。
(Conventional Example) A gear was manufactured by adding alumina particles having an average particle size of 20 μm to A6061 alloy as a matrix metal by the conventional method shown in FIG.

この方法により製造した歯車では、マトリクス金属部分
と金属基複合材料部分との界面が明確なこと前記の通り
であった。
As mentioned above, in the gear manufactured by this method, the interface between the matrix metal part and the metal matrix composite material part was clear.

そして、この方法で製造した歯車のビッカース硬さ分布
を調べたところ、第2図に曲線Cで示すように、歯先部
から中心部に向かうある特定の距離位置(10〜120
mの位置)で硬さが極端に低下することが認められた。
When we investigated the Vickers hardness distribution of gears manufactured using this method, we found that, as shown by curve C in Figure 2, a certain distance position (10 to 120
It was observed that the hardness decreased extremely at the position (m).

即ち、金属基複合材料部分とマトリクス部分との間の熱
膨張率の差により、熱負荷を受けた場合の境界部での熱
応力が非常に大きいことがわかる。
That is, it can be seen that due to the difference in coefficient of thermal expansion between the metal matrix composite material part and the matrix part, the thermal stress at the boundary part when subjected to a thermal load is extremely large.

耐熱WJ撃性については、下記の第2表に示すように、
300’Cに、上の温度からの焼入れ時に全て界面割れ
が生じることが認められた。
Regarding heat resistance WJ impact resistance, as shown in Table 2 below,
It was observed that interfacial cracking occurred in all cases during quenching from a temperature above 300'C.

〔以下余白〕[Margin below]

第1表 △:界面に一部割れ有り ×:界面割れ有り 以上のように、前記実施例によれば歯部及び歯付根部近
傍が軽量、高強度で、耐摩耗性にすぐれた金属基複合材
料で形成され、他のベース部が熱伝導性、振動減衰性に
すぐれた金属材料で形成された高性能の歯車が製造でき
る。しかも、耐熱衝撃性が著しく改善され、Al1合金
に不可欠な熱処理時の金属基複合材料と金属材料界面の
割れ、剥離を完全に防止できる。
Table 1 △: Partial cracking at the interface ×: Cracking at the interface As described above, according to the above example, the tooth portion and the vicinity of the tooth root are lightweight, have high strength, and have a metal matrix composite with excellent wear resistance. It is possible to manufacture a high-performance gear in which the other base portion is made of a metal material with excellent thermal conductivity and vibration damping properties. Moreover, the thermal shock resistance is significantly improved, and cracking and peeling at the interface between the metal matrix composite material and the metal material during heat treatment, which is essential for Al1 alloys, can be completely prevented.

さらに、従来方法と異なり、多大な時間を費す予備成形
体の成形工程が不要であり、しかも歯車形状に近いNe
ar−Net−3hapeの状態で鋳造が行なえるので
、平円盤から歯切り加工を行う従来方法に比べて製造コ
ストを著しく低減することができる。
Furthermore, unlike conventional methods, there is no need for the time-consuming process of forming a preform, and the Ne
Since casting can be performed in the state of ar-Net-3 hape, manufacturing costs can be significantly reduced compared to the conventional method in which gear cutting is performed from a flat disk.

(発明の効果) 以上のように、本発明によれば、軽量かつ高強度で、高
耐摩耗性を有し、かつ放熱性が良く、しかも耐熱性、耐
熱衝撃性にすぐれた歯車を歩留りよく、低コストで製造
することができるという効果が奏される。
(Effects of the Invention) As described above, according to the present invention, gears that are lightweight, have high strength, have high wear resistance, have good heat dissipation, and have excellent heat resistance and thermal shock resistance can be produced with high yield. This has the advantage that it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明に係る歯車の製造方法の
一実施例を工程順に示す図、第2図は前記実施例の方法
によって製造した歯車の硬さ特性を示すグラフ、第3図
は従来の方法により製造した歯車を示す図、第4図(a
)〜(h)は従来の方法を工程順に示す図である。 21・・・アルミナ粒子(強化材)、22・・・AfJ
合金溶湯(マトリクス金Wb> 、23・・・複合材料
の溶湯、24・・・金型(鋳型)、29・・・歯車。 (α)            (b)第1図 自元力゛らの距離(myn) 第2図 第3図
FIGS. 1(a) to (C) are diagrams showing an example of the gear manufacturing method according to the present invention in the order of steps, and FIG. 2 is a graph showing the hardness characteristics of the gear manufactured by the method of the example. Figure 3 shows a gear manufactured by the conventional method, Figure 4 (a
) to (h) are diagrams showing the conventional method in the order of steps. 21...Alumina particles (reinforcement material), 22...AfJ
Molten alloy (matrix gold Wb>, 23... Molten metal of composite material, 24... Mold (mold), 29... Gear. (α) (b) Distance between self-forces in Figure 1 ( myn) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、マトリクス金属としての軽金属溶湯に繊維、ウィス
カまたは粒子状の強化材を添加し、これを鋳型に注入し
て歯車の歯部とその近傍部分を前記マトリクス金属と強
化材との複合材料で形成するとともに、その歯車のベー
ス部をマトリクス金属のみで形成する歯車の製造方法に
おいて、鋳型として歯車形状のキャビティを有する遠心
鋳造用鋳型を用い、その鋳型を回転させて遠心力場をつ
くる、ことにより、歯車中心部から歯部に向つて前記強
化材の濃度を連続的に変化させることを特徴とする歯車
の製造方法。 2、強化材として、異なつた密度または粒度分布を有す
るものを用い、歯車外周側に密度または粒度の大きい強
化材を配置させる特許請求の範囲第1項記載の歯車の製
造方法。 3、マトリクス金属としてAl、Mg、Tiまたはこれ
らの合金を使用する特許請求の範囲第1項記載の歯車の
製造方法。 4、強化材としてTi、Zr、Al、Siの酸化物、窒
化物または炭化物の短繊維、ウィスカもしくは粒子を用
いる特許請求の範囲第1項記載の歯車の製造方法。
[Claims] 1. Fibers, whiskers, or particulate reinforcing material is added to a molten light metal as a matrix metal, and this is injected into a mold to form the toothed part of a gear and its vicinity by adding the matrix metal and the reinforcing material. In this manufacturing method, a centrifugal casting mold with a gear-shaped cavity is used as a mold, and the mold is rotated to generate a centrifugal force. A method for manufacturing a gear, characterized in that the concentration of the reinforcing material is continuously changed from the center of the gear toward the teeth. 2. The method for manufacturing a gear according to claim 1, wherein reinforcing materials having different densities or particle size distributions are used, and the reinforcing material with a large density or particle size is arranged on the outer circumferential side of the gear. 3. The method for manufacturing a gear according to claim 1, wherein Al, Mg, Ti or an alloy thereof is used as the matrix metal. 4. The method for manufacturing a gear according to claim 1, in which short fibers, whiskers, or particles of oxides, nitrides, or carbides of Ti, Zr, Al, and Si are used as reinforcing materials.
JP31427487A 1987-12-14 1987-12-14 Production of gear Pending JPH01154861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31427487A JPH01154861A (en) 1987-12-14 1987-12-14 Production of gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31427487A JPH01154861A (en) 1987-12-14 1987-12-14 Production of gear

Publications (1)

Publication Number Publication Date
JPH01154861A true JPH01154861A (en) 1989-06-16

Family

ID=18051386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31427487A Pending JPH01154861A (en) 1987-12-14 1987-12-14 Production of gear

Country Status (1)

Country Link
JP (1) JPH01154861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136452A (en) * 1998-02-27 2000-10-24 The Regents Of The University Of California Centrifugal synthesis and processing of functionally graded materials
JP2010515582A (en) * 2007-01-11 2010-05-13 ザ ゲイツ コーポレイション Method for strengthening low melting point cast metal
CN101941064A (en) * 2010-08-25 2011-01-12 刘明强 Method for manufacturing metal-base compound bimetallic article by centrifugation
CN104399930A (en) * 2014-11-04 2015-03-11 昆明理工大学 Method for centrifugally casting vertical mill roller made of ceramic-metal honeycomb composite materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136452A (en) * 1998-02-27 2000-10-24 The Regents Of The University Of California Centrifugal synthesis and processing of functionally graded materials
JP2010515582A (en) * 2007-01-11 2010-05-13 ザ ゲイツ コーポレイション Method for strengthening low melting point cast metal
CN101941064A (en) * 2010-08-25 2011-01-12 刘明强 Method for manufacturing metal-base compound bimetallic article by centrifugation
CN104399930A (en) * 2014-11-04 2015-03-11 昆明理工大学 Method for centrifugally casting vertical mill roller made of ceramic-metal honeycomb composite materials

Similar Documents

Publication Publication Date Title
US4708104A (en) Reinforced pistons
US5620791A (en) Brake rotors and methods for making the same
US5980792A (en) Particulate field distributions in centrifugally cast composites
US5791397A (en) Processes for producing Mg-based composite materials
KR20010072863A (en) Method for producing brake disks consisting of ceramic parts with metal hubs
EP1017866B1 (en) Cast metal-matrix composite material and its use
JPH01154861A (en) Production of gear
JP3681354B2 (en) Metal matrix composite and piston using the same
JPH0636984B2 (en) Method for manufacturing partial composite member
JPH06218521A (en) Piston of internal combustion engine
EP2473750B1 (en) Brake drum with a friction liner
JP2508145B2 (en) Fiber Reinforced Metals for Manufacturing Composite Materials
JPH03149B2 (en)
Verma et al. Manufacturing of composites by squeeze casting
JPH10219378A (en) Stock for forged piston
JPH02421B2 (en)
WO1995008070A1 (en) Brake rotors and methods for making the same
JP3087913B2 (en) Particle-dispersed composite material and method for producing the same
JPH0611892B2 (en) Fiber reinforced metal composite
JPH02133162A (en) Alloy casting
JPH0635626B2 (en) Alumina fiber / alumina-silica fiber reinforced metal composite material
JPH0429630A (en) Lightweight disk rotor
Zantout The production and evaluation of squeeze cast A1-alloy matrix-short ceramic fibre composites
JPH0629473B2 (en) Sliding member
JPH0419430A (en) Light alloy disk rotor