JPH0611892B2 - Fiber reinforced metal composite - Google Patents

Fiber reinforced metal composite

Info

Publication number
JPH0611892B2
JPH0611892B2 JP63275510A JP27551088A JPH0611892B2 JP H0611892 B2 JPH0611892 B2 JP H0611892B2 JP 63275510 A JP63275510 A JP 63275510A JP 27551088 A JP27551088 A JP 27551088A JP H0611892 B2 JPH0611892 B2 JP H0611892B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
metal composite
reinforced metal
agglomerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63275510A
Other languages
Japanese (ja)
Other versions
JPH02122032A (en
Inventor
明正 大丸
徹 太田
秀行 藤代
政夫 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63275510A priority Critical patent/JPH0611892B2/en
Priority to EP89310860A priority patent/EP0365365B1/en
Priority to DE68922572T priority patent/DE68922572T2/en
Priority to CA002001137A priority patent/CA2001137C/en
Priority to US07/425,729 priority patent/US5168014A/en
Publication of JPH02122032A publication Critical patent/JPH02122032A/en
Publication of JPH0611892B2 publication Critical patent/JPH0611892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 A.発明の目的 (1)産業上の利用分野 本発明は繊維強化金属複合材、特に、セラミック繊維を
強化材とする複合材の改良に関する。
Detailed Description of the Invention A. OBJECT OF THE INVENTION (1) Field of Industrial Application The present invention relates to an improvement of a fiber-reinforced metal composite material, particularly a composite material having a ceramic fiber as a reinforcing material.

(2)従来の技術 従来、この種複合材において、その耐摩耗性の向上を図
る場合には、一般にセラミック繊維の繊維体積率(V
f)を高めることが行われている。
(2) Conventional Technology Conventionally, in order to improve the wear resistance of this type of composite material, generally, the fiber volume ratio (V
f) is being increased.

(3)発明が解決しようとする課題 しかしながら前記のように繊維体積率を高めるといって
も、溶湯の充填性を考慮したとき自ずと限界があり、ま
たセラミック繊維の増量に伴い複合材の製造コストを上
昇させることにもなる。
(3) Problems to be Solved by the Invention However, even though the fiber volume ratio is increased as described above, there is a limit when considering the filling property of the molten metal, and the production cost of the composite material increases with the increase in the amount of ceramic fibers. Will also increase.

本発明は前記に鑑み、通常、セラミック繊維の開繊過程
で除去される、セラミック繊維が凝集している部分を利
用することにより、耐摩耗性を向上させた、比較的製造
コストの安い前記複合材を提供することを目的とする。
In view of the above, the present invention generally improves the abrasion resistance by utilizing the portion where the ceramic fibers are aggregated, which is removed in the process of opening the ceramic fibers. The purpose is to provide wood.

B.発明の構成 (1)課題を解決するための手段 本発明は、強化材がセラミック繊維よりなる繊維強化金
属複合材であって、前記強化材はセラミック繊維がばら
けている分散部と、セラミック繊維が凝集して略球形を
なすと共に前記分散部に点在する複数の凝集部とを有
し、各凝集部の直径は100μm以下であり、また前記
強化材における前記凝集部の含有量は0.2〜5.0体積%
であることを特徴とする。
B. Structure of the Invention (1) Means for Solving the Problems The present invention is a fiber-reinforced metal composite material in which a reinforcing material is a ceramic fiber, and the reinforcing material is a dispersion portion in which the ceramic fiber is dispersed, and a ceramic fiber. Have a plurality of agglomerates scattered in the dispersion part while forming a substantially spherical shape by aggregating, the diameter of each agglomerate is 100 μm or less, and the content of the agglomerates in the reinforcement is 0. 2-5.0% by volume
Is characterized in that.

(2)作用 強化部において、凝集部の直径および含有量を前記のよ
うに特定すると、分散部による強化に加えて、繊維量の
多い凝集部による粒子分散的強化が得られるので、複合
材の耐摩耗性および強度を向上させることができる。
(2) Action In the reinforced portion, if the diameter and content of the agglomerated portion are specified as described above, in addition to strengthening by the dispersed portion, particle-dispersive strengthening by the agglomerated portion with a large amount of fiber is obtained, Abrasion resistance and strength can be improved.

たゞし、前記含有量が0.2体積%を下回ると、このよう
な含有量達成のためには開繊処理を長時間に亘って行わ
なければならないので、セラミック繊維の接損量が増し
てその繊維強化能が減退し、延いては複合材の強度低下
を招来する。前記含有量が5.0体積%を上回ると、凝集
部とマトリックスよりなる強化部分の脱落量が増し、そ
の高硬度な強化部分による砥粒的作用によって複合材の
耐摩耗性が低下する。一方、前記直径が100μmを上
回ると、凝集部による粒子分散的強化が減退するため複
合材の強度が低下する。
However, if the content is less than 0.2% by volume, the fiber-spreading process must be carried out for a long time in order to achieve such content, so that the contact loss of the ceramic fiber increases. The fiber-reinforcing ability of the composite material is diminished, and the strength of the composite material is reduced. If the content exceeds 5.0% by volume, the amount of the strengthened portion composed of the agglomerated portion and the matrix will fall off, and the abrasion resistance of the composite material will be deteriorated by the abrasive effect of the highly hardened strengthened portion. On the other hand, when the diameter exceeds 100 μm, the strength of the composite material is lowered because the particle dispersive strengthening due to the agglomerated portion is reduced.

さらに、セラミック繊維に対する開繊処理を凝集部が残
留している状態で停止し得るので、その処理能率の向上
を図ると共に処理コストを節減し、またセラミック繊維
の増量による強化ではないから繊維コストの上昇を招く
ことがなく、これにより複合部材の製造コストを比較的
安くすることができる。
Furthermore, since the fiber-spreading process for the ceramic fibers can be stopped in the state where the agglomerated portion remains, the processing efficiency is improved and the processing cost is reduced, and the fiber cost is not reinforced by increasing the amount of the ceramic fibers. As a result, the manufacturing cost of the composite member can be made relatively low without causing an increase.

(3)実施例 強化材を構成するセラミック繊維として炭化ケイ素ウイ
スカ(東海カーボン社製、商品名、東カマックス)を用
い、それらをミキサに投入して開繊処理を行った。その
とき、処理時間を調節することによって、開繊されて炭
化ケイ素ウイスカがばらけている分散部と、未開繊状
態、したがって炭化ケイ素ウイスカが凝集した状態にあ
って略球形をなすと共に分散部に点在する複数の凝集部
とを有する8種類の強化材を得た。これら強化材におけ
る凝集部の含有量はそれぞれ0.1,0.2,0.5,1.0,
2.5,4.0,5.0,6.0体積%であった。各凝集部の直
径は略80μmであり、またその繊維体積率Vf1は3
0%であった。こゝで、繊維体積率Vf1とは、略球形
の凝集部の体積に対する炭化ケイ素ウイスカ自体が占め
る割合を意味する。また比較のため、凝集部を全て除去
した強化材も調製した。
(3) Example Silicon carbide whiskers (manufactured by Tokai Carbon Co., Ltd., trade name, Tokamax) were used as the ceramic fibers constituting the reinforcing material, and they were put into a mixer for the fiber opening treatment. At that time, by adjusting the treatment time, a dispersion part in which the silicon carbide whiskers are spread and separated and a non-opened state, that is, the silicon carbide whiskers are in an agglomerated state, form a substantially spherical shape and become a dispersion part. Eight types of reinforcing material having a plurality of scattered agglomerates were obtained. The content of the agglomerated part in these reinforcements is 0.1, 0.2, 0.5, 1.0, respectively.
It was 2.5, 4.0, 5.0, and 6.0 volume%. The diameter of each agglomerate is approximately 80 μm, and the fiber volume ratio Vf1 is 3
It was 0%. Here, the fiber volume ratio Vf1 means the ratio of the silicon carbide whiskers themselves to the volume of the substantially spherical agglomerates. For comparison, a reinforcing material was also prepared in which all agglomerated parts were removed.

各強化材を、それらに真空成形法を適用して円板状に成
形した。各円板状強化材の寸法は直径86mm、厚さ25
mmであり、また分散部の繊維体積率Vf2は15%であ
った。したがって、Vf1=30%であるからVf1>
Vf2となる。
Each reinforcing material was formed into a disk shape by applying a vacuum forming method to them. The size of each disc-shaped reinforcement is 86 mm in diameter and 25 in thickness.
mm, and the fiber volume ratio Vf2 of the dispersed portion was 15%. Therefore, since Vf1 = 30%, Vf1>
It becomes Vf2.

軽合金マトリックスとしてアルミニウム合金(JIS
AC4C相当材)を用意し、各強化材の予熱処理700
℃にて20分間加熱、金型温度320℃、湯温750
℃、加圧力800kg/cm2の条件の下で加圧鋳造を行い
9種類の複合材(I)〜(IX)を得た。
Aluminum alloy as a light alloy matrix (JIS
Prepare AC4C equivalent material) and preheat 700
20 minutes at ℃, mold temperature 320 ℃, hot water temperature 750
Pressure-casting was performed under the conditions of a temperature of 800 ° C. and a pressure of 800 kg / cm 2 to obtain 9 kinds of composite materials (I) to (IX).

次いで各複合材(I)〜(IX)に熱処理としてT6処理
を施した。
Next, each of the composite materials (I) to (IX) was subjected to T6 treatment as heat treatment.

各複合材(I)〜(IX)からテストピースを切出し、そ
れらテストピースをチップとして、チップオンディスク
摩擦摩耗試験を行ったところ、第1図の結果を得た。
Test pieces were cut out from each of the composite materials (I) to (IX), and a chip-on-disk friction and wear test was conducted using the test pieces as chips, and the results shown in FIG. 1 were obtained.

試験条件は、ディスク鋳鉄製、面圧200kg/cm2、周
速1.0m/sec、オイル温度供給時100℃、オイル供
給速度44.6cc/min、摺動距離1000mである。
The test conditions are disk cast iron, surface pressure of 200 kg / cm 2 , peripheral speed of 1.0 m / sec, oil temperature of 100 ° C., oil supply speed of 44.6 cc / min, and sliding distance of 1000 m.

第1図から明らかなように、凝集部の含有量を0.2〜5.
0体積%に設定することによって優れた耐摩耗性を有す
る複合材(III)〜(VIII)を得ることができる。
As is clear from FIG. 1, the content of the agglomerated part is 0.2 to 5.
By setting the content to 0% by volume, the composite materials (III) to (VIII) having excellent wear resistance can be obtained.

また凝集部の含有量が0.5体積%であり、その繊維体積
率Vf1が20〜25%である複数の複合材を前記と同
様の方法で製造し、それら複合材における凝集部の直径
と複合材の引張強さとの関係を調べたところ、第2図の
結果を得た。
Further, a plurality of composite materials in which the content of the agglomerated portion is 0.5% by volume and the fiber volume ratio Vf1 is 20 to 25% are manufactured by the same method as described above, and the diameter of the agglomerated portion in the composite material is When the relationship with the tensile strength of the composite material was investigated, the results shown in FIG. 2 were obtained.

第2図から明らかなように、凝集部の直径が100μm
以下であれば複合材の引張強さを向上させることができ
る。
As is clear from FIG. 2, the diameter of the agglomeration part is 100 μm.
The following can improve the tensile strength of the composite material.

種々検討したところ、凝集部の繊維体積率Vf1は15
〜30%が適当である。この繊維体積率Vf1が15%
を下回ると、その値はマトリックスに分散する分散部の
繊維体積率Vf2に略等しくなるため、凝集部を用いる
利点が失われて、複合材の耐摩耗性が低下する。一方、
繊維体積率Vf1が30%を上回ると、凝集部に対する
溶湯の充填性が悪化して、マトリックスによるアンカ効
果が減少するため、その凝集部が脱落し易くなる。
As a result of various studies, the fiber volume ratio Vf1 of the agglomerated part was 15
-30% is suitable. This fiber volume ratio Vf1 is 15%
When the value is less than, the value becomes substantially equal to the fiber volume ratio Vf2 of the dispersion portion dispersed in the matrix, so that the advantage of using the aggregation portion is lost and the abrasion resistance of the composite material is reduced. on the other hand,
If the fiber volume ratio Vf1 exceeds 30%, the filling property of the molten metal into the agglomerated portion deteriorates, and the anchor effect of the matrix decreases, so that the agglomerated portion easily falls off.

なお、セラミック繊維としては、Si34ウイスカ、カ
ーボンウイスカ等の使用も可能である。
As the ceramic fiber, Si 3 N 4 whiskers, carbon whiskers, etc. can be used.

C.発明の効果 本発明によれば、セラミック繊維よりなる凝集部を利用
して優れた耐摩耗性および強度を有し、また比較的製造
コストの安い前記複合材を提供することができる。
C. EFFECTS OF THE INVENTION According to the present invention, it is possible to provide the above-mentioned composite material which has excellent wear resistance and strength by utilizing the agglomerated portion made of ceramic fibers and which is relatively low in manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は強化材における凝集部の含有量と複合材の摩耗
量との関係を示すグラフ、第2図は強化材における凝集
部の直径と複合材の引張強さとの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the content of the agglomerated part in the reinforcing material and the wear amount of the composite material, and FIG. 2 is a graph showing the relationship between the diameter of the agglomerated part in the reinforcing material and the tensile strength of the composite material. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市川 政夫 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (56)参考文献 特開 昭61−149447(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Ichikawa 1-4-1 Chuo, Wako-shi, Saitama Incorporated in Honda R & D Co., Ltd. (56) Reference JP-A-61-149447 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】強化材がセラミック繊維よりなる繊維強化
金属複合材であって、前記強化材はセラミック繊維がば
らけている分散部と、セラミック繊維が凝集して略球形
をなすと共に前記分散部に点在する複数の凝集部とを有
し、各凝集部の直径は100μm以下であり、また前記
強化材における前記凝集部の含有量は0.2〜5.0体積%
であることを特徴とする繊維強化金属複合材。
1. A reinforcing material is a fiber-reinforced metal composite material comprising ceramic fibers, wherein the reinforcing material has a dispersed portion in which the ceramic fibers are scattered, and the ceramic fibers are aggregated into a substantially spherical shape, and the dispersed portion. And a plurality of agglomerates scattered around, the diameter of each agglomerate is 100 μm or less, and the content of the agglomerates in the reinforcing material is 0.2 to 5.0% by volume.
A fiber-reinforced metal composite material.
【請求項2】各凝集部の繊維体積率Vf1は15〜30
%である、第(1)項記載の繊維強化金属複合材。
2. The fiber volume ratio Vf1 of each agglomerate is 15 to 30.
%, The fiber-reinforced metal composite material according to the item (1).
JP63275510A 1988-10-21 1988-10-31 Fiber reinforced metal composite Expired - Lifetime JPH0611892B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63275510A JPH0611892B2 (en) 1988-10-31 1988-10-31 Fiber reinforced metal composite
EP89310860A EP0365365B1 (en) 1988-10-21 1989-10-20 Silicon carbide-reinforced light alloy composite material
DE68922572T DE68922572T2 (en) 1988-10-21 1989-10-20 Composite material made of a light metal alloy reinforced with silicon carbide.
CA002001137A CA2001137C (en) 1988-10-21 1989-10-20 Silicon carbide-reinforced light alloy composite material
US07/425,729 US5168014A (en) 1988-10-21 1989-10-23 Silicon carbide-reinforced light alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275510A JPH0611892B2 (en) 1988-10-31 1988-10-31 Fiber reinforced metal composite

Publications (2)

Publication Number Publication Date
JPH02122032A JPH02122032A (en) 1990-05-09
JPH0611892B2 true JPH0611892B2 (en) 1994-02-16

Family

ID=17556485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275510A Expired - Lifetime JPH0611892B2 (en) 1988-10-21 1988-10-31 Fiber reinforced metal composite

Country Status (1)

Country Link
JP (1) JPH0611892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443623C (en) * 2007-02-14 2008-12-17 西安建筑科技大学 Preparing technique of gas carburizing carbonide silk net copper-based composite material
CN100453688C (en) * 2007-02-14 2009-01-21 西安建筑科技大学 Preparing technique of gas carburizing carbonide silk net metal-based composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149447A (en) * 1984-12-24 1986-07-08 Toshiba Corp Manufacture of fiber reinforced metallic composite body

Also Published As

Publication number Publication date
JPH02122032A (en) 1990-05-09

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US6939388B2 (en) Method for making materials having artificially dispersed nano-size phases and articles made therewith
US5325941A (en) Composite brake rotors and clutches
US3955324A (en) Agglomerates of metal-coated diamonds in a continuous synthetic resinous phase
US20070218320A1 (en) Metal matrix composites of aluminium, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
JP2002178130A (en) Hybrid metal matrix composition and method of manufacturing the same
JPS5970736A (en) Composite material and its production
JPH0611892B2 (en) Fiber reinforced metal composite
US7160503B2 (en) Metal matrix composites of aluminum, magnesium and titanium using silicon hexaboride, calcium hexaboride, silicon tetraboride, and calcium tetraboride
EP0814277B1 (en) Roller brake for two-wheeler
JPS62124244A (en) Brake rotor made of fiber-reinforced aluminum alloy and its production
JP2504199B2 (en) Method for producing fiber-reinforced metal composite material
JPH01154861A (en) Production of gear
JP2767504B2 (en) Friction material
JPH07151172A (en) Composite friction material
JP3571080B2 (en) Brake caliper
JP2982513B2 (en) Manufacturing method of metallic friction material
JPH02194134A (en) Metal matrix composite excellent in characteristic of low friction and wear resistance
JP3441392B2 (en) Method of manufacturing rotary friction member
JPH10137920A (en) Production of brake disk composite material for railway vehicle
JPS63149342A (en) Engaging member made of light alloy reinforced by dispersed ceramic and its production
JPH08284990A (en) Metallic friction material
KR930010044B1 (en) Method of manufacturing aluminium alloy
JPH0533295B2 (en)
JPH05106666A (en) Aluminum alloy-made brake drum