JPS61149447A - Manufacture of fiber reinforced metallic composite body - Google Patents

Manufacture of fiber reinforced metallic composite body

Info

Publication number
JPS61149447A
JPS61149447A JP27070384A JP27070384A JPS61149447A JP S61149447 A JPS61149447 A JP S61149447A JP 27070384 A JP27070384 A JP 27070384A JP 27070384 A JP27070384 A JP 27070384A JP S61149447 A JPS61149447 A JP S61149447A
Authority
JP
Japan
Prior art keywords
fibers
particles
inorg
fiber
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27070384A
Other languages
Japanese (ja)
Inventor
Tatsuyoshi Aisaka
逢坂 達吉
Naoto Kanbara
蒲原 尚登
Mikiro Morita
森田 幹郎
Hisami Ochiai
落合 久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27070384A priority Critical patent/JPS61149447A/en
Publication of JPS61149447A publication Critical patent/JPS61149447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain a homogeneous fiber reinforced metallic composite body by stirring inorg. fibers and inorg. particles having a smaller average particle size than the diameter of the fibers to separate the fibers and by mixing the fibers with metallic particles. CONSTITUTION:When metallic particles are mixed with inorg. fibers to manufacture a fiber reinforced metallic composite body (FRM), the inorg. fibers are separated beforehand by stirring the fibers and inorg. particles having a smaller average particle size than the diameter of the fibers. Since the inorg. fibers are well separated, they are uniformly mixed with metallic particles in a relatively short period in the following stage without scratching the fibers.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は繊維強化金属被合体(以下、FRMと略す。)
の製造方法に係シ、特に均質fLFRMを得ることので
きる製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a fiber reinforced metal covering (hereinafter abbreviated as FRM).
The present invention relates to a manufacturing method, and particularly to a manufacturing method capable of obtaining a homogeneous fLFRM.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年無機質繊維としてアルミナ、炭素、シリカシリエン
カ−バイト、ボロンなどの各繊維を用い、これと金属と
を一体化したFRMが開発され、多くの産業分野で使用
され始めつつある。
In recent years, FRMs have been developed in which inorganic fibers such as alumina, carbon, silica siliene carbide, and boron fibers are integrated with metal, and are beginning to be used in many industrial fields.

その中でも粉末冶金的手法で製造するFRMは他の方法
、例えば溶浸法や拡散接合法など、に比べ利点が多い、
すなわち、 (2)溶浸法に比べると、製造中の強化繊維の損傷が少
ない。
Among them, FRM manufactured using powder metallurgy has many advantages compared to other methods such as infiltration and diffusion bonding.
That is, (2) compared to the infiltration method, there is less damage to the reinforcing fibers during production.

(3)拡散接合法に比べ、簡単な製造工程ですみコスト
が低く、量産が可能である。
(3) Compared to the diffusion bonding method, the manufacturing process is simple, the cost is low, and mass production is possible.

等々である。etc.

しかしながら、粉末冶金にょるFRMにも均質なものが
得にくいと言う問題点を有している。これは原料として
用いる繊維が長円柱形、金属粉末が塊状でめシ、しかも
それぞれの密度が異なるため。
However, FRM using powder metallurgy also has the problem that it is difficult to obtain a homogeneous FRM. This is because the fibers used as raw materials are long cylindrical, the metal powder is lumpy, and each has a different density.

原材料をV型ミキサーや混合ミルなどで混合するとき繊
維が十分に開繊せず、均一に金属粉末の間に分散しない
ことに起因していた。しかも均一化するため混合を長時
間性なうことは、繊維が傷付き強化繊維としての価値が
低下するなどの欠点も有していた。
This was caused by the fact that the fibers were not opened sufficiently when the raw materials were mixed using a V-type mixer or a mixing mill, and were not uniformly dispersed among the metal powders. Moreover, requiring long mixing times to achieve uniformity also has the disadvantage of damaging the fibers and reducing their value as reinforcing fibers.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、均質なF
RMを得ることのできる製造方法を提供することを目的
とする。
The present invention has been made in consideration of the above points, and the present invention has been made in consideration of the above points.
It is an object of the present invention to provide a manufacturing method capable of obtaining RM.

〔発明の概要〕[Summary of the invention]

本発明は、無機質繊維とこの繊維径より小さい平均粒径
を有する無機質粒子を加えて攪拌して開繊処理した後に
金属粒子とを混合し、焼結一体化することを特徴とする
繊維強化金属被合体の製造方法である。
The present invention is a fiber-reinforced metal characterized in that inorganic fibers and inorganic particles having an average particle size smaller than the fiber diameter are added, stirred, and opened, and then metal particles are mixed and sintered to integrate the inorganic fibers. This is a method for manufacturing a subject.

すなわち、FRMを構成する主成分たる金属粒子と無機
質繊維とを混合する前に事前に、無機質繊維の繊維径よ
シ小さい平均粒径を有する無機質粒子を加えて攪拌する
開繊処理を施すことにより、無機質繊維が十分に開繊さ
れ、後工程での金属粒子と無機質繊維との混合が均一に
行なわれる。さらに無機質繊維が十分に開繊されている
ため、金属粒子との混合は比較的短時間ですみ繊維に傷
等の発生するおそれがない。
That is, before mixing the metal particles, which are the main components constituting the FRM, and the inorganic fibers, an opening treatment is performed in which inorganic particles having an average particle diameter smaller than the fiber diameter of the inorganic fibers are added and stirred. , the inorganic fibers are sufficiently opened, and the metal particles and inorganic fibers are uniformly mixed in the subsequent process. Furthermore, since the inorganic fibers are sufficiently opened, mixing with the metal particles takes only a relatively short time and there is no risk of damage to the fibers.

本発明における開繊処理においては、繊維間に繊維径よ
り小さい平均粒径をもつ無機質粒子がはいりこみ、開繊
を容易にしていると考えられる。
In the fiber opening process of the present invention, it is thought that inorganic particles having an average particle size smaller than the fiber diameter are inserted between the fibers to facilitate fiber opening.

平均粒径が大きいと金属粒子との混合とかわるところが
なく、開繊容易の効果が得られない。
If the average particle size is large, there is no difference from mixing with metal particles, and the effect of facilitating fiber opening cannot be obtained.

無機質微粒子としては大きく分けて導電性を有する金属
微粒子と絶縁体微粒子が挙げられる。
Inorganic fine particles can be broadly classified into metal fine particles having conductivity and insulating fine particles.

金属微粒子は導電性奢肩しているので無機質繊維と混合
するとからまりの原因となっている繊維表面の静電気を
放電する。従って繊維間のからまシは弱くな)、開繊す
ることが容易となる。この後金属粒子と混合すればほと
んど均一に分散した混合物が得られ、ざらに焼結一体化
すれば、空孔空だき等が少なく均質でかつ充てん率の高
いFRMが得られることになる。
Fine metal particles are electrically conductive and, when mixed with inorganic fibers, discharge static electricity on the surface of the fibers that causes tangles. Therefore, the entanglement between the fibers is weak), making it easier to open the fibers. If it is then mixed with metal particles, a nearly uniformly dispersed mixture will be obtained, and if it is roughly sintered and integrated, a homogeneous FRM with few pores and the like and a high filling rate will be obtained.

ここで、発明に使用される。金属微粒子としては、S 
i* Fe mFiin *Nig @ Z r *A
1等の金属微粒子や合金微粒子がある。平均粒径は繊維
径の1/3以下程贋が好ましい。また添加量としては1
強化繊維の0.1チ(体積比)以上は必要である。
Here, it is used in the invention. As metal fine particles, S
i* Fe mFiin *Nig @ Z r *A
There are first grade metal particles and alloy particles. The average particle diameter is preferably 1/3 or less of the fiber diameter. Also, the amount added is 1
0.1 inch (volume ratio) or more of reinforcing fibers is required.

上限の添加量は合金系によって異なる。即ち、マトリッ
クス金属と固溶する場合は特に制限はないが、それと反
応して脆弱な金属間化合物を生成する場合は、固溶限以
内が望ましい。
The upper limit of addition amount varies depending on the alloy system. That is, there is no particular restriction when it forms a solid solution with the matrix metal, but when it reacts with the matrix metal to form a brittle intermetallic compound, it is desirable that it be within the solid solubility limit.

また、絶縁体微粒子を用いた場合、即ち、粒子の粒径が
小ざくなると重fめたりの表面積が大きくなり、その表
面に蓄えられる静電エネルギーは重力の103〜104
倍にも達する。そこで強化繊維として用いたい無機質繊
維と混合すると、小さな無機質粒子は繊維の表面に付着
する。
In addition, when insulating fine particles are used, that is, as the particle size becomes smaller, the surface area of the particles increases, and the electrostatic energy stored on the surface is 103 to 104 of the gravity.
It reaches twice as much. Therefore, when mixed with inorganic fibers to be used as reinforcing fibers, small inorganic particles adhere to the surface of the fibers.

この時、繊維間に働いていた静電エネルギーによる吸引
力は粒子によって中和されるので、繊維間のからまりは
弱くなり、開繊することが容易となる。この後金属粒子
と混合すればほとんど均一に分散した混合物が得られ、
ざらに焼結一体化すれば均質な繊維強化金属被合体が得
られることになる。
At this time, the attraction force due to electrostatic energy that was acting between the fibers is neutralized by the particles, so the entanglement between the fibers becomes weaker, making it easier to open the fibers. After this, when mixed with metal particles, an almost uniformly dispersed mixture is obtained.
If they are roughly sintered and integrated, a homogeneous fiber-reinforced metal composite will be obtained.

ここで本発明に使用される絶縁体微粒子としては、Mg
O,AJ203.5i02 、SiC,Fe20s 1
z02 、’rio2 、si 3N4BN、C,A7
N等のセラミック粒子がある。粒径は繊維径の1/10
以下程Kが好ましい。その添加量としては、強化繊維の
0.1チ(体!jI上し)以上mは必要であるが、複合
体で破壊の起点とならないためには少ない方が望ましく
、4%(体積比)を起えない方が良い。
Here, the insulator fine particles used in the present invention include Mg
O, AJ203.5i02, SiC, Fe20s 1
z02,'rio2,si 3N4BN,C,A7
There are ceramic particles such as N. Particle size is 1/10 of fiber diameter
The following K is preferable. As for the amount added, it is necessary to add at least 0.1 m of reinforcing fiber (body! It's better not to wake up.

さらに本発明で使用される無機繊維としてはSiC,S
i2N4.B4C,BeO,B、C,Al2O3等のセ
ラミック繊維やそのウィスカがおり、これらと複合化さ
れる金属としては、Be 、Mg *Zn 、AA! 
、Ti 、Cu 、Ni 、Fe 、Go 、Cu 。
Furthermore, the inorganic fibers used in the present invention include SiC, S
i2N4. There are ceramic fibers such as B4C, BeO, B, C, and Al2O3 and their whiskers, and metals that are composited with these include Be, Mg *Zn, AA!
, Ti, Cu, Ni, Fe, Go, Cu.

Agなどの金属やそれらの合金がある。There are metals such as Ag and their alloys.

また、本発明のごとく無機質繊維と金属粒子とを混合す
る際には、繊維の損傷を低減し、充分な均一性を得るた
め、少なくともその内壁がゴム弾性を有する物質からな
る容器中でその混合を行なうことが好ましい。
In addition, when mixing inorganic fibers and metal particles as in the present invention, in order to reduce damage to the fibers and obtain sufficient uniformity, it is preferable to mix the mixture in a container whose inner wall is made of a material having at least rubber elasticity. It is preferable to do this.

ここで用いるゴム状物質はシリコンゴムやSBHなどの
合成ゴムや硬さと調整した天然ゴムなどゴム弾性を有し
ていれば有効でめる。
The rubber-like substance used here is effective if it has rubber elasticity, such as synthetic rubber such as silicone rubber or SBH, or natural rubber whose hardness has been adjusted.

またこのような混合は、ゴム弾性を有する袋状の容器中
に原料をいれ、外部から3次元的に振動圧力を加え、情
動的な運動を加えることによシかくはんしてもよい。
Further, such mixing may be carried out by placing the raw materials in a bag-like container having rubber elasticity, and stirring the raw materials by applying vibrational pressure three-dimensionally from the outside and applying emotional motion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、無機質繊維と金属
粒子とが十分均一に混合されるため、均質な繊維強化金
属被合体を得ることができる。
As explained above, according to the present invention, inorganic fibers and metal particles are mixed sufficiently uniformly, so that a homogeneous fiber-reinforced metal composite can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について述べる (実施例−1) 平均径0.5μm1アスペクト比約50のSICのウィ
スカと平均径0.0125μmのSiO2の粉末を用意
し、(ウィスカに対して1wt%)V型ミキサーで1時
間の開繊処理を実施し、その後、粒径44μm以下のア
ルミニウム粉末を添加しさらに2時間の混合処理を施し
たこれを金型内に入れ真空中にて580℃300 Ic
g/adにて15分間の加熱及び加圧することによ、6
 stcウィスカ強化アルミニウム複合体を得た。これ
らから試験片を切り出し曲げ試験と硬さ測定を実施した
Examples of the present invention will be described below (Example-1) SIC whiskers with an average diameter of 0.5 μm and an aspect ratio of about 50 and SiO2 powder with an average diameter of 0.0125 μm were prepared. The fibers were opened in a mold mixer for 1 hour, and then aluminum powder with a particle size of 44 μm or less was added and mixed for 2 hours. This was then placed in a mold and heated at 580°C at 300 Ic in a vacuum.
6 g/ad by heating and pressurizing for 15 minutes.
An stc whisker reinforced aluminum composite was obtained. Test pieces were cut out from these and subjected to bending tests and hardness measurements.

第1表にその結果を示す。Table 1 shows the results.

(実施例−2) 平均径0,5μm1アスペクト比約50のStCのウィ
スカと平均径0.1μmのA/の微粒子を用意し、(ウ
ィスカに対して1チ、体積比)アルゴンガスを充てんし
たV型ミキサーで1時間の開繊処理を実施し、その後s
 # 325以下のアルミニウム粒子を添加しさらに2
時間の混合処理を施した。これを金型内に入れ、真空中
にて560  ℃300 kLi/cldにて15分間
の加熱及び加圧することによりSICクイスカ強化アル
ミニウム複合体を得た。
(Example-2) StC whiskers with an average diameter of 0.5 μm and an aspect ratio of about 50 and A/ fine particles with an average diameter of 0.1 μm were prepared and filled with argon gas (1 inch per whisker, volume ratio). Perform fiber opening treatment for 1 hour with a V-type mixer, then s
# Add aluminum particles of 325 or less and further 2
A time mixing treatment was performed. This was placed in a mold and heated and pressurized at 560° C. and 300 kLi/cld for 15 minutes in a vacuum to obtain a SIC Cuisca reinforced aluminum composite.

一方比較例としてMの微粒子添加以外は同一の原料をV
Wミキサーで3時間の混合処理後実施例と同一の条件で
複合化したものを得た。
On the other hand, as a comparative example, the same raw materials were used except for the addition of M fine particles.
After mixing with a W mixer for 3 hours, a composite was obtained under the same conditions as in the example.

これらから試験片を切り出し曲げ試験と硬さ測定を実施
した。第1表にその結果を示す。
Test pieces were cut out from these and subjected to bending tests and hardness measurements. Table 1 shows the results.

第1表から明らかなように、本発明の実施例による複合
体は比較例に比べ曲げ強さも大きく、且つ硬さの標準偏
差が小さく均質なFRMであることが判る。
As is clear from Table 1, the composites according to the examples of the present invention have greater bending strength than the comparative examples, and are homogeneous FRMs with a small standard deviation of hardness.

以上説明したように本発明の製造方法は、上述した様に
無機質繊維の開繊処理として、無機質機1等が少なく均
質でかつ充てん率の高いF医が得られることになる。
As explained above, in the manufacturing method of the present invention, as described above, as the opening treatment of the inorganic fibers, F fibers which are homogeneous and have a high filling rate with a small amount of inorganic fibers etc. can be obtained.

(実施例−3) 実力例−2と同様の開繊処理を行なった平均径0.5μ
m1アスペクト比約50のStCのウィスカと粒径44
μm以下のアルミニウム粉末を用意し内容処理を行なっ
た。さらにシリコンゴム製へ2を装着した電動式かくは
ん機によってかくはん処理も同時に実施した。
(Example-3) Average diameter 0.5μ after the same fiber opening treatment as in Actual Example-2
StC whisker with m1 aspect ratio of about 50 and particle size of 44
Aluminum powder of µm or less was prepared and subjected to content processing. Furthermore, agitation processing was simultaneously performed using an electric stirrer equipped with a silicone rubber tube 2.

混合後、金型内に入れ真空中にて580℃、300に9
/Cdにて15分間の加熱及び刃口、圧することにより
SICウィスカ強化アルミニウム複合体を得た。
After mixing, put into a mold and heat at 580℃ and 300℃ in a vacuum.
A SIC whisker-reinforced aluminum composite was obtained by heating at /Cd for 15 minutes, cutting edge, and pressing.

一方比較例として、これらの原材料をV型ミキサーで2
時間の混合処理を施した後、実施例と同一の条件で複合
化したものを得た。
On the other hand, as a comparative example, these raw materials were mixed using a V-type mixer.
After a time mixing treatment, a composite was obtained under the same conditions as in the example.

これらから、試験片を切り出し曲げ試験と硬さ測定を実
施した。第2表にその結果を示す。
From these, test pieces were cut out and subjected to bending tests and hardness measurements. Table 2 shows the results.

以下余白 第2表から明らかなように1本発明の実施例による複合
体は比較例に比べ曲げ強さも大きく、且つ硬さの標準偏
差が小さく均質なFRMであることが判る。
As is clear from Table 2 below, it can be seen that the composites according to Examples of the present invention have greater bending strength than Comparative Examples, and are homogeneous FRMs with small standard deviations of hardness.

以上説明したように本発明の製造方法は、均質な繊維強
化複合体を得るのに適していると云える。
As explained above, it can be said that the manufacturing method of the present invention is suitable for obtaining a homogeneous fiber-reinforced composite.

代理人 弁理士 則 近 憲 佑 (ほか1名)Agent: Patent Attorney Noriyuki Chika (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)無機質繊維とこの繊維径より小さい平均粒径を有
する無機質微粒子を加えて攪拌して開繊処理した後に金
属粒子とを混合し、焼結一体化することを特徴とする繊
維強化金属複合体の製造方法。
(1) A fiber-reinforced metal composite characterized by adding inorganic fibers and inorganic fine particles having an average particle size smaller than the fiber diameter, stirring and opening the fibers, and then mixing with metal particles and sintering them into one piece. How the body is manufactured.
(2)前記無機質微粒子は金属微粒子であり、繊維径の
1/3以下の平均粒径を有することを特徴とする特許請
求の範囲第1項記載の繊維強化金属複合体の製造方法。
(2) The method for producing a fiber-reinforced metal composite according to claim 1, wherein the inorganic fine particles are metal fine particles and have an average particle size of 1/3 or less of the fiber diameter.
(3)前記無機質微粒子は絶縁体微粒子であり、繊維径
の1/10以下の平均粒径を有することを特徴とする特
許請求の範囲第1項記載の繊維強化金属被合体の製造方
法。
(3) The method for producing a fiber-reinforced metal composite according to claim 1, wherein the inorganic fine particles are insulating fine particles and have an average particle size of 1/10 or less of the fiber diameter.
JP27070384A 1984-12-24 1984-12-24 Manufacture of fiber reinforced metallic composite body Pending JPS61149447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27070384A JPS61149447A (en) 1984-12-24 1984-12-24 Manufacture of fiber reinforced metallic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27070384A JPS61149447A (en) 1984-12-24 1984-12-24 Manufacture of fiber reinforced metallic composite body

Publications (1)

Publication Number Publication Date
JPS61149447A true JPS61149447A (en) 1986-07-08

Family

ID=17489780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27070384A Pending JPS61149447A (en) 1984-12-24 1984-12-24 Manufacture of fiber reinforced metallic composite body

Country Status (1)

Country Link
JP (1) JPS61149447A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417831A (en) * 1987-07-14 1989-01-20 Ube Industries Production of fiber reinforced metallic pre-impregnated sheet
JPH01298143A (en) * 1988-05-27 1989-12-01 Ube Ind Ltd Production of fiber reinforced metal prepreg sheet
JPH02122032A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Fiber reinforced metallic composite material
US5506061A (en) * 1989-07-06 1996-04-09 Forskningscenter Riso Method for the preparation of metal matrix composite materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417831A (en) * 1987-07-14 1989-01-20 Ube Industries Production of fiber reinforced metallic pre-impregnated sheet
JPH01298143A (en) * 1988-05-27 1989-12-01 Ube Ind Ltd Production of fiber reinforced metal prepreg sheet
JPH02122032A (en) * 1988-10-31 1990-05-09 Honda Motor Co Ltd Fiber reinforced metallic composite material
US5506061A (en) * 1989-07-06 1996-04-09 Forskningscenter Riso Method for the preparation of metal matrix composite materials

Similar Documents

Publication Publication Date Title
US3066391A (en) Powder metallurgy processes and products
US4749545A (en) Preparation of composites
EP0483190B1 (en) Method for the preparation of metal matrix composite materials
JPS62156240A (en) Powder metallurgical production of copper-nickel-tin spinodal alloy
US3337337A (en) Method for producing fiber reinforced metallic composites
Patel et al. Effect of ultrasonic stirring on changes in microstructure and mechanical properties of cast insitu Al 5083 alloy composites containing 5wt.% and 10wt.% TiC particles
US5259435A (en) Lightweight and low thermal expansion composite material
JPS61149447A (en) Manufacture of fiber reinforced metallic composite body
Choo et al. Mechanical properties of NiAl–AlN–Al2O3 composites
Chaurasia et al. Activated sintering of tungsten heavy alloy
Tabie et al. Microstructure and mechanical properties of particle reinforced high-temperature titanium composites
Welsch et al. Deformation behavior of blended elemental ti-6ai-4v compacts
JPH0649581A (en) Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
徐欢 et al. Microstructure and Mechanical Properties of In-situ Synthesized TiC and TiB Reinforced Titanium Matrix Composites
Reynolds Jr et al. Amalgamation in the Ag3Sn− Hg system. I. I n situ observations
JPS6187837A (en) Production of fiber reinforced composite metallic material
JPH01156448A (en) Magnesium-type composite material
MUTUK et al. Effect of Powder Size on Titanium Mechanical Properties
JP4215897B2 (en) Method for producing high specific strength metal composite using short metal fibers
Moore et al. Preliminary Investigations on Alumina-Fiber Reinforced Ni 3 Al Matrix Composites
Lee et al. Fabrication of Al/Al2O3 particle reinforced metal matrix composite by sheath rolling of powder mixture
JPH0635627B2 (en) Method for producing aluminum borate whisker reinforced metal matrix composite material
JP2006016296A (en) Ceramic powder containing metal nanoparticle, its manufacturing method and method for manufacturing ceramic-metal-based nanocomposite
Lucas et al. A Novel Technique for Producing Fine Metal Fibers for Enhancing Mechanical Properties of Glass‐Matrix Composites