JPH01156448A - Magnesium-type composite material - Google Patents

Magnesium-type composite material

Info

Publication number
JPH01156448A
JPH01156448A JP62313142A JP31314287A JPH01156448A JP H01156448 A JPH01156448 A JP H01156448A JP 62313142 A JP62313142 A JP 62313142A JP 31314287 A JP31314287 A JP 31314287A JP H01156448 A JPH01156448 A JP H01156448A
Authority
JP
Japan
Prior art keywords
magnesium
powder
composite material
alloy
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62313142A
Other languages
Japanese (ja)
Other versions
JPH0438832B2 (en
Inventor
Eiji Horikoshi
堀越 英二
Tsutomu Iikawa
勤 飯川
Takehiko Sato
武彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62313142A priority Critical patent/JPH01156448A/en
Priority to KR1019880016512A priority patent/KR910009872B1/en
Priority to EP88311738A priority patent/EP0323067B1/en
Priority to US07/282,506 priority patent/US4941918A/en
Priority to DE88311738T priority patent/DE3885259T2/en
Priority to ES88311738T priority patent/ES2045150T3/en
Priority to EP92103613A priority patent/EP0488996B1/en
Priority to DE3855052T priority patent/DE3855052T2/en
Publication of JPH01156448A publication Critical patent/JPH01156448A/en
Publication of JPH0438832B2 publication Critical patent/JPH0438832B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain an Mg-B composite material having low density and high Young's modulus by mixing the powder, whisker, short fiber, etc., of B with the powder of Mg or Mg alloy in a specific ratio and subjecting the resulting powder mixture to press compacting and sintering by a powder metallurgical method. CONSTITUTION:The powder, whisker, or short fiber of B of 0.1-100mu grain size is added by 2-30vol.% to the powder of Mg, Mg-Al alloy, Mg-Al-Zn alloy, etc., and B is uniformly dispersed in the powder of Mg alloy as a matrix. The resulting powder mixture is press-compacted and then sintered, e.g., at 550-650 deg.C in an Ar atmosphere. By this method, the lightweight and high- strength composite material having low density and high Young's modulus and suitable for arm head material for magnetic disk unit can be obtained.

Description

【発明の詳細な説明】 〔概 要〕 マグネシウム系複合材料に関し、 軽量高強度金属材料としてのマグネシウム又はマグネシ
ウム合金のヤング率を向上することを目的とし、 マグネシウム又はマグネシウム合金マトリックス中にホ
ウ素を分散して成る複合材料として構成する。
[Detailed Description of the Invention] [Summary] Regarding magnesium-based composite materials, with the aim of improving the Young's modulus of magnesium or magnesium alloys as lightweight, high-strength metal materials, boron is dispersed in a magnesium or magnesium alloy matrix. It is constructed as a composite material consisting of:

[産業上の利用分野] 本発明はマグネシウム系複合材料に係り、より詳しくは
軽量高強度金属材料としてボロンで強化したマグネシウ
ム系複合材料に関する。
[Industrial Application Field] The present invention relates to a magnesium-based composite material, and more particularly to a magnesium-based composite material reinforced with boron as a lightweight, high-strength metal material.

〔従来の技術と発明が解決しようとする問題点]マグネ
シウム合金は、軽量高強度な金属材料として注目されて
おり、航空・宇宙機器および電子機器に用いられている
[Prior Art and Problems to be Solved by the Invention] Magnesium alloys are attracting attention as lightweight, high-strength metal materials, and are used in aerospace equipment and electronic equipment.

電子機器の分野では、磁気ディスク用の機構部品、特に
ヘッドアームとしてマグネシウム合金製ダイカスト品が
用いられることが多い。ヘッドアームとして用いる場合
に重要な材料特性は、振動減衰能のほか、(1)密度が
小さく 、(2)  強度、特にヤング率が大きいこと
である。マグネシウム合金は振動減衰能に優れているの
で、密度をあまり増加させずにヤング率を向上させれば
、ヘッドアームをさらに高速で動作させることができる
ので磁気ディスクをさらに高性能化することが可能とな
る。
In the field of electronic equipment, die-cast magnesium alloy products are often used as mechanical components for magnetic disks, especially head arms. Important material properties when used as a head arm include (1) low density, and (2) high strength, especially Young's modulus, in addition to vibration damping ability. Magnesium alloy has excellent vibration damping ability, so if Young's modulus is improved without significantly increasing the density, the head arm can operate at even higher speeds, making it possible to further improve the performance of the magnetic disk. becomes.

マグネシウム合金のヤング率を向上させる手段としては
、これまでジルコニウムや希土類元素などを微量に添加
して結晶粒の成長をおさえる手法がとられてきたが、得
られたヤング率の値は4500kg f / mm ”
程度とあまり太き(ない。
Up until now, the method of improving the Young's modulus of magnesium alloys has been to suppress the growth of crystal grains by adding small amounts of zirconium, rare earth elements, etc., but the obtained Young's modulus value was 4500 kg f / mm”
It's not very thick (not very thick).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決するために、マグネシウム
又はマグネシウム合金中にホウ素を分散して成ることを
特徴とするマグネシウム系複合材料を提供する。
In order to solve the above problems, the present invention provides a magnesium-based composite material characterized by dispersing boron in magnesium or a magnesium alloy.

マグネシウム又はその合金の密度をあまり増加せずにヤ
ング率を向上させる手段としては、密度(ρ)が小さく
、ヤング率+E)の大きな材料と複合化する手法が考え
られる。このような材料の例をマグネシウムと共にその
特性を下表に示す。この中でSi3N、 、 SiCな
どについては、Mgとの間に脆弱な化合物を生成するた
めに複合化は難しい。
As a means of improving the Young's modulus without significantly increasing the density of magnesium or its alloy, a method of compounding it with a material having a low density (ρ) and a high Young's modulus (+E) can be considered. Examples of such materials, along with magnesium, and their properties are shown in the table below. Among these, it is difficult to combine Si3N, SiC, etc. because they form fragile compounds with Mg.

そこで、本発明ではB(ホウ素)に着目し、これをマグ
ネシウム又はマグネシウム系合金マトリックス中に分散
させた複合材料によって、ヤング率の向上を図った。
Therefore, in the present invention, we focused on B (boron) and attempted to improve the Young's modulus by using a composite material in which B (boron) is dispersed in a magnesium or magnesium-based alloy matrix.

表 マトリックスとなるマグネシウム合金としては、特に限
定されないが、Mg−Al1系(特にAn 3〜12重
量%) 、Mg  Aj! −Zn (特に、Al:3
〜9重量%、Zn:0.1〜3.0重量%)などが用い
られる。
The magnesium alloy that forms the surface matrix is not particularly limited, but may include Mg-Al1 (especially An 3 to 12% by weight), Mg Aj! -Zn (especially Al:3
-9% by weight, Zn: 0.1-3.0% by weight), etc.

ホウ素は粉末のほか、ウィスカーや短繊維などでもよい
。ホウ素の添加量は複合材料に基づいて2〜30体積%
の範囲内が好ましい。ホウ素の添加量が少ないと強度(
ヤング率)向上の効果が小さく、またホウ素の添加量が
多すぎても成形性や均一分散性が劣り強度向上効果が得
られない。ホウ素の粒径等は0.1〜100μ程度が好
ましい。マグネシウム又はマグネシウム合金マトリック
ス中にホウ素を分散させる方法は、特に限定されず、例
えば鋳造法でもよいが、マトリックス中へのホウ素の分
散を良くし、最終製品形状に近い形で成形するためには
粉末冶金法によることが好ましい。
In addition to powder, boron may also be in the form of whiskers or short fibers. The amount of boron added is 2-30% by volume based on the composite material
It is preferably within the range of . If the amount of boron added is small, the strength (
The effect of improving Young's modulus is small, and even if the amount of boron added is too large, the moldability and uniform dispersibility are poor and the strength improvement effect cannot be obtained. The particle size of boron is preferably about 0.1 to 100 μm. The method for dispersing boron in the magnesium or magnesium alloy matrix is not particularly limited; for example, a casting method may be used, but in order to improve the dispersion of boron in the matrix and mold it into a shape close to the final product shape, powder Preferably, metallurgical methods are used.

この場合、マグネシウム又はマグネシウム合金の粉末に
ホウ素の粉末又はウィスカーあるいは短繊維を適当量添
加して慣用の粉末冶金法でプレス成形、焼結すればよい
In this case, an appropriate amount of boron powder, whiskers, or short fibers may be added to magnesium or magnesium alloy powder, and the mixture may be press-molded and sintered using a conventional powder metallurgy method.

〔作 用〕[For production]

軽量高強度材料であるマグネシウム又はマグネシウム合
金にさらに高強度(ヤング率)かつ低密度のホウ素を複
合化することによって、軽量性を失なうことなく強度(
ヤング率)を高めることができる。
By compounding magnesium or magnesium alloy, which is a lightweight, high-strength material, with boron, which has high strength (Young's modulus) and low density, strength (
Young's modulus) can be increased.

〔実施例〕〔Example〕

貞よ 一200メツシュのMg粉末、−300メツシユのAl
粉末を混合して、Mg−9wtχAj2となる混合粉末
を作製した。これに−300メツシユのB粉末を混合し
て、5〜30ν0!%を含む混合粉末とした。1〜8t
/cfflの圧力でプレス成形した後、Ar雰囲気中、
550〜650°Cの温度で1hの焼結を行った。これ
らの焼結体について密度、ヤング率、引張強さを測定し
た結果を第1〜3図に示す。
Teiyoichi 200 mesh Mg powder, -300 mesh Al
The powders were mixed to produce a mixed powder of Mg-9wtχAj2. Mix -300 mesh of B powder to this and get 5 to 30 ν0! It was made into a mixed powder containing %. 1~8t
After press molding at a pressure of /cffl, in an Ar atmosphere,
Sintering was carried out for 1 h at a temperature of 550-650°C. The results of measuring the density, Young's modulus, and tensile strength of these sintered bodies are shown in FIGS. 1 to 3.

これらの図によれば、密度は最大でも1.84g/cc
と従来のへラドアーム用のマグネシウム合金材(AZ9
1すなわちA19%、Zn 1%のMg合金)と大差な
く、ヤング率は6300kgf / mm2と、従来材
の1.4倍まで向上している。また、引張強さも20k
gf/mm”と大きな値を示している。Bの添別置はヤ
ング率が従来材より大きくなる2〜30voe%の範囲
が好適であることが見られる。
According to these figures, the maximum density is 1.84g/cc
and magnesium alloy material (AZ9) for conventional helad arms.
1, that is, an Mg alloy with 19% A and 1% Zn), and the Young's modulus is 6300 kgf/mm2, which is 1.4 times higher than that of the conventional material. Also, the tensile strength is 20k.
gf/mm'', which is a large value. It can be seen that it is preferable for B to be added in a range of 2 to 30 voe%, where the Young's modulus is larger than that of conventional materials.

〔発明の効果] 本発明によれば、マグネシウム又はマグネシウム合金に
ホウ素を複合化することにより、材料の密度をあまり増
加させることなく、ヤング率等の強度を向上することが
できる。その結果、磁気ディスク装置のマームヘッドな
ど軽量高強度を要する部材に好適に使用でき、特に磁気
ディスク装置では高速化が可能である。
[Effects of the Invention] According to the present invention, by compounding magnesium or a magnesium alloy with boron, strength such as Young's modulus can be improved without significantly increasing the density of the material. As a result, it can be suitably used for members that require light weight and high strength, such as the malm head of a magnetic disk device, and particularly high speeds can be achieved in magnetic disk devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は実施例の複合材料におけるホウ素添加量に
対する密度、ヤング率および引張強度の変化をそれぞれ
示すグラフ図である。 B添加量と密度の関係 第1図 B添加量とヤング率の関係 第2図 B添加量(vo!’)0) B添加量と引張強さの関係 亭3図
1 to 3 are graphs showing changes in density, Young's modulus, and tensile strength with respect to the amount of boron added in the composite materials of Examples, respectively. Relationship between the amount of B added and density Figure 1 Relationship between the amount of B added and Young's modulus Figure 2 Relationship between the amount of B added (vo!')0) Relationship between the amount of B added and tensile strength Figure 3

Claims (1)

【特許請求の範囲】 1、マグネシウム又はマグネシウム合金中にホウ素を分
散して成ることを特徴とするマグネシウム系複合材料。 2、ホウ素が粉末、ウィカー、又は短繊維である特許請
求の範囲第1項記載のマグネシウム系複合材料。 3、ホウ素の添加量が2〜30体積%である特許請求の
範囲第1項又は第2項記載のマグネシウム系複合材料。 4、粉末冶金法で作製された成形体である特許請求の範
囲第1項、第2項又は第3項記載のマグネシウム系複合
材料。
[Claims] 1. A magnesium-based composite material characterized by dispersing boron in magnesium or a magnesium alloy. 2. The magnesium-based composite material according to claim 1, wherein the boron is powder, wicker, or short fiber. 3. The magnesium-based composite material according to claim 1 or 2, wherein the amount of boron added is 2 to 30% by volume. 4. The magnesium-based composite material according to claim 1, 2 or 3, which is a molded body produced by a powder metallurgy method.
JP62313142A 1987-12-12 1987-12-12 Magnesium-type composite material Granted JPH01156448A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62313142A JPH01156448A (en) 1987-12-12 1987-12-12 Magnesium-type composite material
KR1019880016512A KR910009872B1 (en) 1987-12-12 1988-12-12 Sintered magnesium-based composite material and process for preparing same
EP88311738A EP0323067B1 (en) 1987-12-12 1988-12-12 Sintered magnesium-based composite material and process for preparing same
US07/282,506 US4941918A (en) 1987-12-12 1988-12-12 Sintered magnesium-based composite material and process for preparing same
DE88311738T DE3885259T2 (en) 1987-12-12 1988-12-12 Sintered magnesium-based composite material and process for its production.
ES88311738T ES2045150T3 (en) 1987-12-12 1988-12-12 MAGNESIUM BASED MATERIAL, SINTERED, AND PROCEDURE TO PREPARE IT.
EP92103613A EP0488996B1 (en) 1987-12-12 1988-12-12 Sintered magnesium-based composite material and process for preparing same
DE3855052T DE3855052T2 (en) 1987-12-12 1988-12-12 Magnesium-based composite material and process for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313142A JPH01156448A (en) 1987-12-12 1987-12-12 Magnesium-type composite material

Publications (2)

Publication Number Publication Date
JPH01156448A true JPH01156448A (en) 1989-06-20
JPH0438832B2 JPH0438832B2 (en) 1992-06-25

Family

ID=18037606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313142A Granted JPH01156448A (en) 1987-12-12 1987-12-12 Magnesium-type composite material

Country Status (1)

Country Link
JP (1) JPH01156448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238183A (en) * 2007-03-26 2008-10-09 Kumamoto Univ Method for producing magnesium alloy and magnesium alloy
CN108265220A (en) * 2017-12-23 2018-07-10 南京悠谷新材料科技有限公司 A kind of preparation method of copper potassium metallic composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180030A (en) * 1986-02-03 1987-08-07 Hitachi Ltd Turbine moving blade

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180030A (en) * 1986-02-03 1987-08-07 Hitachi Ltd Turbine moving blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238183A (en) * 2007-03-26 2008-10-09 Kumamoto Univ Method for producing magnesium alloy and magnesium alloy
CN108265220A (en) * 2017-12-23 2018-07-10 南京悠谷新材料科技有限公司 A kind of preparation method of copper potassium metallic composite

Also Published As

Publication number Publication date
JPH0438832B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JPS62290840A (en) Metal matrix composite and its production
WO2012102162A1 (en) Crystal grain refining agent for casting and method for producing the same
JPS609837A (en) Manufacture of composite material
KR910009872B1 (en) Sintered magnesium-based composite material and process for preparing same
CN107385252A (en) A kind of preparation method of Ti dispersion-strengthernings Ultra-fine Grained high-strength magnesium alloy
CN111705252A (en) Al (aluminum)2O3Nano-particle reinforced CrCoNi intermediate entropy alloy-based composite material and preparation method thereof
Chen et al. Effect of thermal-cooling cycle treatment on thermal expansion behavior of particulate reinforced aluminum matrix composites
Nie Patents of methods to prepare intermetallic matrix composites: A Review
JPH01156448A (en) Magnesium-type composite material
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
CN108672702A (en) Damper knuckle support
KR101080926B1 (en) The preparation method of ceramic/metal composite powders for metal materials to enhance the mechanical properties
JPS61149447A (en) Manufacture of fiber reinforced metallic composite body
JPH03140427A (en) Manufacture of magnesium-series sintered composite
JPH01172548A (en) Iron-cobalt-type soft magnetic material
JPH01268830A (en) Manufacture of sic dispersion cast composite material
JPS63159259A (en) High toughness silicon nitride base sintered body
JP2000288714A (en) Production of metal-ceramics composite material
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPH0364578B2 (en)
Kuzina et al. FABRICATION OF Al–AlN NANOCOMPOSITE BY POWDER METALLURGY METHOD USING AlN NANOPOWDER OF SHS-AZ BRAND
JPS6077945A (en) Manufacture of metallic material containing dispersed particle
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH10245642A (en) Production of aluminum base hyperfine grained oxide composite material
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof