JPH01156448A - Magnesium-type composite material - Google Patents
Magnesium-type composite materialInfo
- Publication number
- JPH01156448A JPH01156448A JP62313142A JP31314287A JPH01156448A JP H01156448 A JPH01156448 A JP H01156448A JP 62313142 A JP62313142 A JP 62313142A JP 31314287 A JP31314287 A JP 31314287A JP H01156448 A JPH01156448 A JP H01156448A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- powder
- composite material
- alloy
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 15
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 22
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims abstract description 5
- 239000011777 magnesium Substances 0.000 claims description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 20
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 19
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 238000004663 powder metallurgy Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 2
- 229910018137 Al-Zn Inorganic materials 0.000 abstract 1
- 229910018573 Al—Zn Inorganic materials 0.000 abstract 1
- 229910003023 Mg-Al Inorganic materials 0.000 abstract 1
- 238000013329 compounding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910005091 Si3N Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
マグネシウム系複合材料に関し、
軽量高強度金属材料としてのマグネシウム又はマグネシ
ウム合金のヤング率を向上することを目的とし、
マグネシウム又はマグネシウム合金マトリックス中にホ
ウ素を分散して成る複合材料として構成する。[Detailed Description of the Invention] [Summary] Regarding magnesium-based composite materials, with the aim of improving the Young's modulus of magnesium or magnesium alloys as lightweight, high-strength metal materials, boron is dispersed in a magnesium or magnesium alloy matrix. It is constructed as a composite material consisting of:
[産業上の利用分野]
本発明はマグネシウム系複合材料に係り、より詳しくは
軽量高強度金属材料としてボロンで強化したマグネシウ
ム系複合材料に関する。[Industrial Application Field] The present invention relates to a magnesium-based composite material, and more particularly to a magnesium-based composite material reinforced with boron as a lightweight, high-strength metal material.
〔従来の技術と発明が解決しようとする問題点]マグネ
シウム合金は、軽量高強度な金属材料として注目されて
おり、航空・宇宙機器および電子機器に用いられている
。[Prior Art and Problems to be Solved by the Invention] Magnesium alloys are attracting attention as lightweight, high-strength metal materials, and are used in aerospace equipment and electronic equipment.
電子機器の分野では、磁気ディスク用の機構部品、特に
ヘッドアームとしてマグネシウム合金製ダイカスト品が
用いられることが多い。ヘッドアームとして用いる場合
に重要な材料特性は、振動減衰能のほか、(1)密度が
小さく 、(2) 強度、特にヤング率が大きいこと
である。マグネシウム合金は振動減衰能に優れているの
で、密度をあまり増加させずにヤング率を向上させれば
、ヘッドアームをさらに高速で動作させることができる
ので磁気ディスクをさらに高性能化することが可能とな
る。In the field of electronic equipment, die-cast magnesium alloy products are often used as mechanical components for magnetic disks, especially head arms. Important material properties when used as a head arm include (1) low density, and (2) high strength, especially Young's modulus, in addition to vibration damping ability. Magnesium alloy has excellent vibration damping ability, so if Young's modulus is improved without significantly increasing the density, the head arm can operate at even higher speeds, making it possible to further improve the performance of the magnetic disk. becomes.
マグネシウム合金のヤング率を向上させる手段としては
、これまでジルコニウムや希土類元素などを微量に添加
して結晶粒の成長をおさえる手法がとられてきたが、得
られたヤング率の値は4500kg f / mm ”
程度とあまり太き(ない。Up until now, the method of improving the Young's modulus of magnesium alloys has been to suppress the growth of crystal grains by adding small amounts of zirconium, rare earth elements, etc., but the obtained Young's modulus value was 4500 kg f / mm”
It's not very thick (not very thick).
本発明は、上記問題点を解決するために、マグネシウム
又はマグネシウム合金中にホウ素を分散して成ることを
特徴とするマグネシウム系複合材料を提供する。In order to solve the above problems, the present invention provides a magnesium-based composite material characterized by dispersing boron in magnesium or a magnesium alloy.
マグネシウム又はその合金の密度をあまり増加せずにヤ
ング率を向上させる手段としては、密度(ρ)が小さく
、ヤング率+E)の大きな材料と複合化する手法が考え
られる。このような材料の例をマグネシウムと共にその
特性を下表に示す。この中でSi3N、 、 SiCな
どについては、Mgとの間に脆弱な化合物を生成するた
めに複合化は難しい。As a means of improving the Young's modulus without significantly increasing the density of magnesium or its alloy, a method of compounding it with a material having a low density (ρ) and a high Young's modulus (+E) can be considered. Examples of such materials, along with magnesium, and their properties are shown in the table below. Among these, it is difficult to combine Si3N, SiC, etc. because they form fragile compounds with Mg.
そこで、本発明ではB(ホウ素)に着目し、これをマグ
ネシウム又はマグネシウム系合金マトリックス中に分散
させた複合材料によって、ヤング率の向上を図った。Therefore, in the present invention, we focused on B (boron) and attempted to improve the Young's modulus by using a composite material in which B (boron) is dispersed in a magnesium or magnesium-based alloy matrix.
表
マトリックスとなるマグネシウム合金としては、特に限
定されないが、Mg−Al1系(特にAn 3〜12重
量%) 、Mg Aj! −Zn (特に、Al:3
〜9重量%、Zn:0.1〜3.0重量%)などが用い
られる。The magnesium alloy that forms the surface matrix is not particularly limited, but may include Mg-Al1 (especially An 3 to 12% by weight), Mg Aj! -Zn (especially Al:3
-9% by weight, Zn: 0.1-3.0% by weight), etc.
ホウ素は粉末のほか、ウィスカーや短繊維などでもよい
。ホウ素の添加量は複合材料に基づいて2〜30体積%
の範囲内が好ましい。ホウ素の添加量が少ないと強度(
ヤング率)向上の効果が小さく、またホウ素の添加量が
多すぎても成形性や均一分散性が劣り強度向上効果が得
られない。ホウ素の粒径等は0.1〜100μ程度が好
ましい。マグネシウム又はマグネシウム合金マトリック
ス中にホウ素を分散させる方法は、特に限定されず、例
えば鋳造法でもよいが、マトリックス中へのホウ素の分
散を良くし、最終製品形状に近い形で成形するためには
粉末冶金法によることが好ましい。In addition to powder, boron may also be in the form of whiskers or short fibers. The amount of boron added is 2-30% by volume based on the composite material
It is preferably within the range of . If the amount of boron added is small, the strength (
The effect of improving Young's modulus is small, and even if the amount of boron added is too large, the moldability and uniform dispersibility are poor and the strength improvement effect cannot be obtained. The particle size of boron is preferably about 0.1 to 100 μm. The method for dispersing boron in the magnesium or magnesium alloy matrix is not particularly limited; for example, a casting method may be used, but in order to improve the dispersion of boron in the matrix and mold it into a shape close to the final product shape, powder Preferably, metallurgical methods are used.
この場合、マグネシウム又はマグネシウム合金の粉末に
ホウ素の粉末又はウィスカーあるいは短繊維を適当量添
加して慣用の粉末冶金法でプレス成形、焼結すればよい
。In this case, an appropriate amount of boron powder, whiskers, or short fibers may be added to magnesium or magnesium alloy powder, and the mixture may be press-molded and sintered using a conventional powder metallurgy method.
軽量高強度材料であるマグネシウム又はマグネシウム合
金にさらに高強度(ヤング率)かつ低密度のホウ素を複
合化することによって、軽量性を失なうことなく強度(
ヤング率)を高めることができる。By compounding magnesium or magnesium alloy, which is a lightweight, high-strength material, with boron, which has high strength (Young's modulus) and low density, strength (
Young's modulus) can be increased.
貞よ
一200メツシュのMg粉末、−300メツシユのAl
粉末を混合して、Mg−9wtχAj2となる混合粉末
を作製した。これに−300メツシユのB粉末を混合し
て、5〜30ν0!%を含む混合粉末とした。1〜8t
/cfflの圧力でプレス成形した後、Ar雰囲気中、
550〜650°Cの温度で1hの焼結を行った。これ
らの焼結体について密度、ヤング率、引張強さを測定し
た結果を第1〜3図に示す。Teiyoichi 200 mesh Mg powder, -300 mesh Al
The powders were mixed to produce a mixed powder of Mg-9wtχAj2. Mix -300 mesh of B powder to this and get 5 to 30 ν0! It was made into a mixed powder containing %. 1~8t
After press molding at a pressure of /cffl, in an Ar atmosphere,
Sintering was carried out for 1 h at a temperature of 550-650°C. The results of measuring the density, Young's modulus, and tensile strength of these sintered bodies are shown in FIGS. 1 to 3.
これらの図によれば、密度は最大でも1.84g/cc
と従来のへラドアーム用のマグネシウム合金材(AZ9
1すなわちA19%、Zn 1%のMg合金)と大差な
く、ヤング率は6300kgf / mm2と、従来材
の1.4倍まで向上している。また、引張強さも20k
gf/mm”と大きな値を示している。Bの添別置はヤ
ング率が従来材より大きくなる2〜30voe%の範囲
が好適であることが見られる。According to these figures, the maximum density is 1.84g/cc
and magnesium alloy material (AZ9) for conventional helad arms.
1, that is, an Mg alloy with 19% A and 1% Zn), and the Young's modulus is 6300 kgf/mm2, which is 1.4 times higher than that of the conventional material. Also, the tensile strength is 20k.
gf/mm'', which is a large value. It can be seen that it is preferable for B to be added in a range of 2 to 30 voe%, where the Young's modulus is larger than that of conventional materials.
〔発明の効果]
本発明によれば、マグネシウム又はマグネシウム合金に
ホウ素を複合化することにより、材料の密度をあまり増
加させることなく、ヤング率等の強度を向上することが
できる。その結果、磁気ディスク装置のマームヘッドな
ど軽量高強度を要する部材に好適に使用でき、特に磁気
ディスク装置では高速化が可能である。[Effects of the Invention] According to the present invention, by compounding magnesium or a magnesium alloy with boron, strength such as Young's modulus can be improved without significantly increasing the density of the material. As a result, it can be suitably used for members that require light weight and high strength, such as the malm head of a magnetic disk device, and particularly high speeds can be achieved in magnetic disk devices.
第1〜3図は実施例の複合材料におけるホウ素添加量に
対する密度、ヤング率および引張強度の変化をそれぞれ
示すグラフ図である。
B添加量と密度の関係
第1図
B添加量とヤング率の関係
第2図
B添加量(vo!’)0)
B添加量と引張強さの関係
亭3図1 to 3 are graphs showing changes in density, Young's modulus, and tensile strength with respect to the amount of boron added in the composite materials of Examples, respectively. Relationship between the amount of B added and density Figure 1 Relationship between the amount of B added and Young's modulus Figure 2 Relationship between the amount of B added (vo!')0) Relationship between the amount of B added and tensile strength Figure 3
Claims (1)
散して成ることを特徴とするマグネシウム系複合材料。 2、ホウ素が粉末、ウィカー、又は短繊維である特許請
求の範囲第1項記載のマグネシウム系複合材料。 3、ホウ素の添加量が2〜30体積%である特許請求の
範囲第1項又は第2項記載のマグネシウム系複合材料。 4、粉末冶金法で作製された成形体である特許請求の範
囲第1項、第2項又は第3項記載のマグネシウム系複合
材料。[Claims] 1. A magnesium-based composite material characterized by dispersing boron in magnesium or a magnesium alloy. 2. The magnesium-based composite material according to claim 1, wherein the boron is powder, wicker, or short fiber. 3. The magnesium-based composite material according to claim 1 or 2, wherein the amount of boron added is 2 to 30% by volume. 4. The magnesium-based composite material according to claim 1, 2 or 3, which is a molded body produced by a powder metallurgy method.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62313142A JPH01156448A (en) | 1987-12-12 | 1987-12-12 | Magnesium-type composite material |
KR1019880016512A KR910009872B1 (en) | 1987-12-12 | 1988-12-12 | Sintered magnesium-based composite material and process for preparing same |
EP88311738A EP0323067B1 (en) | 1987-12-12 | 1988-12-12 | Sintered magnesium-based composite material and process for preparing same |
US07/282,506 US4941918A (en) | 1987-12-12 | 1988-12-12 | Sintered magnesium-based composite material and process for preparing same |
DE88311738T DE3885259T2 (en) | 1987-12-12 | 1988-12-12 | Sintered magnesium-based composite material and process for its production. |
ES88311738T ES2045150T3 (en) | 1987-12-12 | 1988-12-12 | MAGNESIUM BASED MATERIAL, SINTERED, AND PROCEDURE TO PREPARE IT. |
EP92103613A EP0488996B1 (en) | 1987-12-12 | 1988-12-12 | Sintered magnesium-based composite material and process for preparing same |
DE3855052T DE3855052T2 (en) | 1987-12-12 | 1988-12-12 | Magnesium-based composite material and process for its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62313142A JPH01156448A (en) | 1987-12-12 | 1987-12-12 | Magnesium-type composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01156448A true JPH01156448A (en) | 1989-06-20 |
JPH0438832B2 JPH0438832B2 (en) | 1992-06-25 |
Family
ID=18037606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62313142A Granted JPH01156448A (en) | 1987-12-12 | 1987-12-12 | Magnesium-type composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01156448A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008238183A (en) * | 2007-03-26 | 2008-10-09 | Kumamoto Univ | Method for producing magnesium alloy and magnesium alloy |
CN108265220A (en) * | 2017-12-23 | 2018-07-10 | 南京悠谷新材料科技有限公司 | A kind of preparation method of copper potassium metallic composite |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180030A (en) * | 1986-02-03 | 1987-08-07 | Hitachi Ltd | Turbine moving blade |
-
1987
- 1987-12-12 JP JP62313142A patent/JPH01156448A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180030A (en) * | 1986-02-03 | 1987-08-07 | Hitachi Ltd | Turbine moving blade |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008238183A (en) * | 2007-03-26 | 2008-10-09 | Kumamoto Univ | Method for producing magnesium alloy and magnesium alloy |
CN108265220A (en) * | 2017-12-23 | 2018-07-10 | 南京悠谷新材料科技有限公司 | A kind of preparation method of copper potassium metallic composite |
Also Published As
Publication number | Publication date |
---|---|
JPH0438832B2 (en) | 1992-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62290840A (en) | Metal matrix composite and its production | |
WO2012102162A1 (en) | Crystal grain refining agent for casting and method for producing the same | |
JPS609837A (en) | Manufacture of composite material | |
KR910009872B1 (en) | Sintered magnesium-based composite material and process for preparing same | |
CN107385252A (en) | A kind of preparation method of Ti dispersion-strengthernings Ultra-fine Grained high-strength magnesium alloy | |
CN111705252A (en) | Al (aluminum)2O3Nano-particle reinforced CrCoNi intermediate entropy alloy-based composite material and preparation method thereof | |
Chen et al. | Effect of thermal-cooling cycle treatment on thermal expansion behavior of particulate reinforced aluminum matrix composites | |
Nie | Patents of methods to prepare intermetallic matrix composites: A Review | |
JPH01156448A (en) | Magnesium-type composite material | |
JPH0625386B2 (en) | Method for producing aluminum alloy powder and sintered body thereof | |
CN108672702A (en) | Damper knuckle support | |
KR101080926B1 (en) | The preparation method of ceramic/metal composite powders for metal materials to enhance the mechanical properties | |
JPS61149447A (en) | Manufacture of fiber reinforced metallic composite body | |
JPH03140427A (en) | Manufacture of magnesium-series sintered composite | |
JPH01172548A (en) | Iron-cobalt-type soft magnetic material | |
JPH01268830A (en) | Manufacture of sic dispersion cast composite material | |
JPS63159259A (en) | High toughness silicon nitride base sintered body | |
JP2000288714A (en) | Production of metal-ceramics composite material | |
JP3942280B2 (en) | Method for producing hexagonal boron nitride sintered body | |
JPH0364578B2 (en) | ||
Kuzina et al. | FABRICATION OF Al–AlN NANOCOMPOSITE BY POWDER METALLURGY METHOD USING AlN NANOPOWDER OF SHS-AZ BRAND | |
JPS6077945A (en) | Manufacture of metallic material containing dispersed particle | |
JP2745889B2 (en) | Method of manufacturing high-strength steel member by injection molding method | |
JPH10245642A (en) | Production of aluminum base hyperfine grained oxide composite material | |
JPH01219102A (en) | Fe-ni-b alloy powder as additive for sintering and sintering method thereof |