JPH02133162A - Alloy casting - Google Patents

Alloy casting

Info

Publication number
JPH02133162A
JPH02133162A JP28517688A JP28517688A JPH02133162A JP H02133162 A JPH02133162 A JP H02133162A JP 28517688 A JP28517688 A JP 28517688A JP 28517688 A JP28517688 A JP 28517688A JP H02133162 A JPH02133162 A JP H02133162A
Authority
JP
Japan
Prior art keywords
alloy
molten metal
alloy casting
particles
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28517688A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Shinji Yamamoto
真二 山本
Nobuhiro Fujita
伸弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP28517688A priority Critical patent/JPH02133162A/en
Publication of JPH02133162A publication Critical patent/JPH02133162A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the wear resistance and lubricity of the alloy casting by adding particles having good wettability to a molten alloy, subjecting this molten metal to mechanical stirring, rapidly cooling and solidifying the molten metal. CONSTITUTION:The particles 4 having good wettability are added to the molten metal 2a melted in a crucible 1. This molten metal 2b is stirred by a mechanical stirring member 5. A plug 9 is thereafter removed and the molten metal 2b is poured through a feed port 10 into a casting mold 11. The molten metal 2b is rapidly cooled and solidified by the cooling effect of a water cooling cylinder 12. Fibrous high melting metals or alloys are added to the melt of a low melting alloy and the molten alloy is mechanically stirred and rapidly cooled and solidified. The wear resistance and lubricity of the alloy casting are enhanced in this way.

Description

【発明の詳細な説明】 a、 産業上の利用分野 本発明は、合金鋳物に関するものである。[Detailed description of the invention] a. Industrial application field The present invention relates to alloy castings.

b、 従来の技術 従来より、合金鋳物としてはA ff1−Mg合金の如
き軽合金が広く使用されている。この種の合金鋳物の場
合は、溶湯を自gl固(91通凝固)させると、結晶粒
が方向性を持ち、大きく成長しようとする。
b. Prior Art Conventionally, light alloys such as Aff1-Mg alloy have been widely used as alloy castings. In the case of this type of alloy casting, when the molten metal is self-solidified (91 times solidified), the crystal grains become directional and tend to grow large.

このように方向性を持った材料は、強度や靭性が方向性
を有することとなり、弱い方向ができる。
Materials with such directional properties have directional properties in strength and toughness, resulting in a weak direction.

そこで、このような不都合を解消するために、合金の溶
湯を急冷凝固させて、結晶粒を微細化し、これにより方
向性を無くすと共に強度及び靭性を高めるようにしてい
る。また、Affi合金の場合には、強度及び靭性のよ
り一層の向上のために、PやNaを0,01〜0.1重
量%添加するようにしている。
Therefore, in order to solve this problem, the molten alloy is rapidly solidified to make the crystal grains finer, thereby eliminating the directionality and increasing the strength and toughness. In the case of Affi alloy, 0.01 to 0.1% by weight of P or Na is added to further improve strength and toughness.

一方、低融点(660″C)合金(例えば、Al、Mg
Zn、 pb、 Sn+ Bi等)鋳物の場合には、溶
湯ノ象、冷凝固を行なうと共に、熱処理(例えば、A1
合金では、溶体化処理後に自然時効させるようなJIS
規格のT4処理、又は溶体化処理後に人工時効硬化させ
るようなJIS規格のT6処理)を行なうようにしてい
る。なお、加圧鋳造(溶湯鍛造)により繊維状物質(例
えば、アルミナ、カーボン等)や短繊維(ウィスカー)
に合金を含浸させて強化を図ることも行なわれている。
On the other hand, low melting point (660″C) alloys (e.g. Al, Mg
In the case of castings (Zn, pb, Sn+ Bi, etc.), the molten metal is cooled and solidified, and heat treatment (for example, A1
For alloys, JIS standards require natural aging after solution treatment.
Standard T4 treatment or JIS standard T6 treatment, which involves artificial aging hardening after solution treatment, is performed. In addition, fibrous materials (e.g. alumina, carbon, etc.) and short fibers (whiskers) are produced by pressure casting (molten metal forging).
It is also possible to strengthen the steel by impregnating it with an alloy.

C1発明が解決しようとする課題 しかしながら、溶湯を急、冷凝固させて得られる鋳物は
、表面の結晶が微細であっても、内部は急。
C1 Problems to be Solved by the Invention However, even if the crystals on the surface of the castings obtained by rapidly cooling and solidifying the molten metal are fine, the crystals inside are crystalline.

冷されないため内部結晶は微細とならず、従って鋳物全
体が均一な結晶径をしたものは得られない。
Since it is not cooled, the internal crystals do not become fine, and therefore it is not possible to obtain a casting whose crystal diameter is uniform throughout.

また、PやNaの添加による結晶粒微細化の効果はあま
り大きくないのが実情である上に、Pは単体では扱いに
くいため、P−Fe、 P−Cu、 P−Ni等の形で
添加するので成分管理が極めて困難である。その上、P
を添加すると合金性能が劣化するといった問題点もある
。一方、Naは反応性が高いので、その取扱いが難しい
In addition, the fact is that the effect of grain refinement by adding P or Na is not very large, and P is difficult to handle alone, so it is added in the form of P-Fe, P-Cu, P-Ni, etc. Therefore, component management is extremely difficult. Besides, P
There is also the problem that alloy performance deteriorates when added. On the other hand, Na is difficult to handle because of its high reactivity.

また、既述の如き加圧鍛造を行なう場合には、強大な加
圧力(例えば50kg/c−程度)が必要である。しか
も、加圧鍛造を行なう際、繊維状物質に引張力を付与し
ておくとか、短繊維を互いにからませてバインダーで成
形するとかのセツティング作業を行なわなければならず
、この作業が非常に難しいのが実情である。
Further, when performing pressure forging as described above, a large pressing force (for example, about 50 kg/c-) is required. Moreover, when performing pressure forging, it is necessary to perform setting operations such as applying tensile force to the fibrous material and intertwining short fibers with each other and forming them with a binder, which is extremely difficult. The reality is that it is difficult.

本発明は、このような種々の問題点に鑑みてなされたも
のであって、その目的は、結晶粒が均一に微細化されか
つ方向性を持たない強度並びに靭性の優れた合金鋳物を
提供することにある。
The present invention has been made in view of these various problems, and its purpose is to provide an alloy casting with excellent strength and toughness in which crystal grains are uniformly refined and have no directionality. There is a particular thing.

また、本発明の別の目的は、加圧鍛造のように高圧力を
加えることなく繊維状の金属又は合金を複合できて充分
な強度並びに靭性を有する合金鋳物を提供することにあ
る。
Another object of the present invention is to provide an alloy casting having sufficient strength and toughness that can be composited with fibrous metals or alloys without applying high pressure as in pressure forging.

d、 課題を解決するための手段 上述の目的を達成するために、本発明では、合金の溶湯
に濡れ性の良い粒子を添加し、この溶湯に機械的撹拌を
加えて急冷凝固させるようにしている。また、本発明で
は、低融点合金の溶湯に繊維状の高融点金属又は高融点
合金を添加し、この溶湯に機械的撹拌を加えて急冷凝固
させるようにしている。
d. Means for Solving the Problems In order to achieve the above-mentioned object, in the present invention, particles with good wettability are added to the molten alloy, and the molten metal is rapidly cooled and solidified by mechanical stirring. There is. Further, in the present invention, a fibrous high-melting point metal or high-melting point alloy is added to a molten metal of a low-melting point alloy, and the molten metal is mechanically stirred to rapidly solidify it.

以下、本発明の実施例に付き図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第3図は本発明の第1実施例を示すものであっ
て、A ff1−Mg軽合金等からなるA2合金鋳物の
製造工程を概略的に図示したものである。
1 to 3 show a first embodiment of the present invention, and schematically illustrate the manufacturing process of an A2 alloy casting made of an Aff1-Mg light alloy or the like.

まず、第1図に示すように、坩堝1内に固形のA1合金
鋳物材料2を入れ、ヒーター3にて560〜1000℃
程度に加熱保持する。これにより、合金鋳物材料2は坩
堝l内で溶融されA1合金の溶湯2a(第2図参照)に
なる。しかる後、第2図に示すように、この溶湯2aに
濡れ性が良く(濡れ角度100”以下)粒径が0.05
〜10μ−の粒子4を0.5〜20容量%添加する。な
お、この粒子4としては、融点が1000℃以上のもの
、例えばZr+ Fe、 Co+ Ni、 Ti。
First, as shown in FIG.
Heat and maintain at a moderate temperature. As a result, the alloy casting material 2 is melted in the crucible 1 and becomes a molten metal 2a of A1 alloy (see FIG. 2). After that, as shown in FIG. 2, the molten metal 2a has good wettability (wetting angle of 100" or less) and a particle size of 0.05".
0.5-20% by volume of ~10μ particles 4 are added. The particles 4 have a melting point of 1000° C. or higher, such as Zr+Fe, Co+Ni, and Ti.

V+ Cr、 Mo+−等の如き純金属や合金又はセラ
ミックスであって、溶湯2aには濡れるがそれ自身は完
全溶融しないものを用いる。
A pure metal, an alloy, or a ceramic such as V+ Cr, Mo+-, etc., which wets the molten metal 2a but does not completely melt itself, is used.

次に、第3図に示すように、粒子4を添加した溶湯2b
を機械的な撹拌手段5にて撹拌する。この撹拌手段5は
、棒体から成るストッパ6と、このストッパ6の周囲に
おいて平行状に配置されかつ下端に螺旋状溝部7をそれ
ぞれ有する複数の撹拌部材8とから成り、これらの部材
6,8は図外の昇降手段にて上下方向に一緒に昇降され
るようになっている。さらに、上述の撹拌部材8は図外
の駆動手段にてその軸心を中心に回転駆動されるように
構成されている。しかして、撹拌手段5が下降されてス
トッパ6の下端が坩堝lの底部に当接すると、その下降
動作が停止されると共に撹拌部材8が100〜IO+0
00r、p、s+、の回転速度で回転駆動され、これに
より溶湯2b内に粒子4が均一に分散される。
Next, as shown in FIG. 3, the molten metal 2b to which particles 4 were added
is stirred by mechanical stirring means 5. The stirring means 5 consists of a stopper 6 made of a rod, and a plurality of stirring members 8 arranged in parallel around the stopper 6 and each having a spiral groove 7 at the lower end. are raised and lowered together in the vertical direction by a lifting means (not shown). Furthermore, the above-mentioned stirring member 8 is configured to be rotated around its axis by a driving means not shown. When the stirring means 5 is lowered and the lower end of the stopper 6 comes into contact with the bottom of the crucible 1, the lowering operation is stopped and the stirring member 8 is lowered from 100 to IO+0.
It is rotated at rotational speeds of 00r, p, and s+, thereby uniformly dispersing the particles 4 in the molten metal 2b.

このようにして、粒子4を添加した溶湯2bに機械的撹
拌を与えた後に、坩堝lの底壁の栓9を抜いて給湯口1
0を介して溶湯2bを鋳型11内に流し込み、水冷筒1
2による冷却作用にて前記溶湯2bを急冷凝固させ、塊
状の集合体すなわち合金鋳物13として回収する。この
ようにすれば、均一分散された粒子4が凝固時の初晶結
晶粒の核となるため、従来の場合に比べてより微細な結
晶粒を有する合金鋳物13を得ることができる。
After mechanically stirring the molten metal 2b to which the particles 4 have been added in this way, the stopper 9 on the bottom wall of the crucible 1 is removed and the hot water supply port 1 is removed.
The molten metal 2b is poured into the mold 11 through the water cooling cylinder 1.
The molten metal 2b is rapidly solidified by the cooling action of 2, and is recovered as a lump-like aggregate, that is, an alloy casting 13. In this way, the uniformly dispersed particles 4 become the core of the primary crystal grains during solidification, so that an alloy casting 13 having finer crystal grains than in the conventional case can be obtained.

なお、溶湯2bを急冷せずに自然(9通)凝固させた場
合には、第4図に示すように、結晶粒14は鋳型11の
内壁面11aから最終凝固部となる上面中央部Aに向け
て長く成長することとなり、微細な結晶粒とはならない
In addition, when the molten metal 2b is allowed to solidify naturally (nine times) without being rapidly cooled, the crystal grains 14 are distributed from the inner wall surface 11a of the mold 11 to the upper central part A, which becomes the final solidified part, as shown in FIG. As a result, the crystal grains grow long toward the grain, and do not become fine crystal grains.

本実施例において粒子4に高硬度()IV250以上)
のものを用いるようにすれば耐摩耗性を改善することが
でき、また自己潤滑性のある粒子(例えば大方晶の窒化
ホウ素やカーボン)を用いれば耐摩耗性並びに潤滑性の
双方を改善することができる。
In this example, particle 4 has high hardness (IV250 or higher)
Using self-lubricating particles (such as macrogonal boron nitride or carbon) can improve both wear resistance and lubricity. Can be done.

ところで、従来より、鉄系の炭素鋼や合金鋼の切削性を
改善するためにCa(0,001〜0.01重量%)や
S(0,04〜0.12重量%)やPb(0,04〜0
.30重量%)を添加するようにしているが、Sやpb
はA2合金には容易に添加することができず、またCa
はA2合金の性能を劣化させるという事情から、A2合
金鋳物に関しては素材自体に快削性を持たせるべく添加
物を加えるようにした例はないのが実状である。
By the way, in order to improve the machinability of iron-based carbon steel and alloy steel, Ca (0,001 to 0.01% by weight), S (0,04 to 0.12% by weight), and Pb (0. ,04~0
.. 30% by weight), but S and pb
cannot be easily added to A2 alloy, and Ca
Since this degrades the performance of A2 alloy, there is no example of adding additives to the A2 alloy casting material itself in order to give it free machinability.

そこで、次に、上述の如き本発明の合金鋳物製造方法を
用いて、自己潤滑性のある粒子を添加することにより、
切削性の改善されたAffi合金鋳物を製造する場合に
付き述べる。
Therefore, by adding self-lubricating particles using the method for producing alloy castings of the present invention as described above,
The case of manufacturing Affi alloy castings with improved machinability will be described.

まず、坩堝1内のAn合金鋳物材料2をヒーター3にて
加熱保持(570〜900°C)シ、これに自己潤滑性
のある六方晶窒化ホウ素(h BN)の粒子(粒径:0
.1〜500 μ論)4を0.05〜3重量%添加する
。この場合、A1合金鋳物材料2の上記温度域での比重
は2.3〜2.7程度であり、六方晶窒化ホウ素粒子4
は真比重が2.27で見掛は密度はもっと小さくなるの
に加えて、濡れ性も良くないので浮遊してしまう、従っ
て、普通鋳造では、六方晶窒化ホウ素粒子4をA2合金
鋳物材料2に複合することは不可能である。そこで、本
例においては、ヒーター3で加熱保持中の六方晶窒化ホ
ウ素粒子4を添加したAl1合金鋳物材料2の溶湯2a
又は半溶融状態のA2合金鋳物材料に、下向きの力が加
わるような形状の1〜3個の撹拌部材8(例えば、逆ネ
ジ方向に加工したスクリュー、へりカルギヤー、スパイ
ラルギヤー等)により、100〜10.00Or、p、
m、の機械的撹拌を加え、六方晶窒化ホウ素粒子4をA
I!、合金鋳物材料2の溶湯2a又は半溶融状態のAI
1合金鋳物材料2に強制的に複合化せしめる。そして、
この複合化された八1合金の溶湯2aを、撹拌中順次或
いは一度に全てを、坩堝1の給湯口10を介して鋳型1
1内に注入して象、冷凝固させる。
First, an An alloy casting material 2 in a crucible 1 is heated and held (570 to 900°C) with a heater 3, and then self-lubricating hexagonal boron nitride (hBN) particles (particle size: 0
.. 1 to 500 µm theory) 0.05 to 3% by weight of 4 is added. In this case, the specific gravity of the A1 alloy casting material 2 in the above temperature range is about 2.3 to 2.7, and the hexagonal boron nitride particles 4
has a true specific gravity of 2.27 and has a smaller apparent density, and also has poor wettability, so it floats. Therefore, in normal casting, hexagonal boron nitride particles 4 are used as A2 alloy casting material 2. It is impossible to combine Therefore, in this example, a molten metal 2a of an Al1 alloy casting material 2 to which hexagonal boron nitride particles 4 are added is heated and maintained by a heater 3.
Or, by using one to three stirring members 8 (for example, screws machined in the opposite thread direction, helical gear, spiral gear, etc.) shaped to apply downward force to the semi-molten A2 alloy casting material, 100~ 10.00Or,p,
m, and mechanically stirred to form hexagonal boron nitride particles 4.
I! , molten metal 2a of alloy casting material 2 or semi-molten AI
1 alloy casting material 2 is forcibly composited. and,
The composite molten metal 2a of the 81 alloy is poured into the mold 1 through the melt inlet 10 of the crucible 1, either sequentially during stirring or all at once.
1. Inject it into a container and let it cool and solidify.

このようにして得られた八1合金鋳物13は自己潤滑性
を具備することとなるため、切削性の改善が図られる。
Since the 81 alloy casting 13 thus obtained has self-lubricating properties, the machinability is improved.

因に、AC9A(JIS規格で規定されたA1−5i 
−Cu−Ni−Mg系のアルミニウム合金鋳物の1分類
)で厚さ50閣程度のAj!合金を5LNa円板砥石(
00φ200 x t2)で連続的に切削する場合の切
削速度は3m/S程度であるが、上述のように六方晶窒
化ホウ素粒子4を複合したものは5〜20M/S程度で
切削が可能である。なお、六方晶窒化ホウ素粒子4の添
加量と切削速度との間には、相関関係があり、その相関
関係は第5図において斜線で示すゾーンである。斯くし
て、六方晶窒化ホウ素粒子の添加により従来のA1合金
に比べて切削速度を数倍〜10倍程変向上させることが
できる。
Incidentally, AC9A (A1-5i specified by JIS standard)
-Cu-Ni-Mg-based aluminum alloy castings) with a thickness of about 50 mm Aj! The alloy was polished using a 5LNa disc grindstone (
The cutting speed when continuously cutting with 00φ200 x t2) is about 3 m/s, but as mentioned above, the cutting speed of a composite of hexagonal boron nitride particles 4 is about 5 to 20 m/s. . It should be noted that there is a correlation between the amount of hexagonal boron nitride particles 4 added and the cutting speed, and this correlation is shown in the shaded zone in FIG. 5. Thus, by adding hexagonal boron nitride particles, the cutting speed can be improved several to ten times as compared to the conventional A1 alloy.

また、第6図〜第8図は本発明の第2実施例を示すもの
であって、低融点合金に繊維状の高融点金属又は合金を
添加複合化して成る合金鋳物の製造工程を概略的に図示
したものである。
6 to 8 show a second embodiment of the present invention, and schematically illustrate the manufacturing process of an alloy casting made by adding and compounding a fibrous high-melting point metal or alloy to a low-melting point alloy. This is illustrated in the figure.

まず、第6図に示すように、融点が700℃以下の低融
点合金(例えば、Al2. Mg、 Zn、 Pbn 
Sn、 Bi等の合金)から成る合金鋳物材料15を坩
堝1内に入れ、これをヒーター3にて加熱溶解して保持
する。なおこの際の加熱温度は完全溶融温度域(例えば
、八It :660℃以上、 Mg:650°C以上、
 Zn:420℃以上、 Pb:328℃以上、 Sn
:232 ’C以上、 Bi:272℃以上)、或いは
部分溶融温度域(例えば、AN −Cu合金では548
〜660°C)に設定する。これにより、合金鋳物材料
15は坩堝l内で溶融されて溶湯15a(第2図参照)
となる。
First, as shown in Fig. 6, a low melting point alloy (for example, Al2, Mg, Zn, Pbn
An alloy casting material 15 consisting of an alloy of Sn, Bi, etc.) is placed in the crucible 1, heated and melted by a heater 3, and held. The heating temperature at this time is within the complete melting temperature range (for example, 8It: 660°C or higher, Mg: 650°C or higher,
Zn: 420°C or higher, Pb: 328°C or higher, Sn
: 232'C or higher, Bi: 272°C or higher), or partial melting temperature range (for example, 548°C for AN-Cu alloy)
~660°C). As a result, the alloy casting material 15 is melted in the crucible l, and the molten metal 15a (see Fig. 2)
becomes.

次に、第7図に示すように、断面積がlXl0−’〜1
m”で長さが0.1〜ioamの短繊維状の高融点金属
(例えば、融点が800℃以上のW、 Ni+ Ti+
 Fe。
Next, as shown in Fig. 7, the cross-sectional area is lXl0-'~1
short fibrous high-melting point metal with a length of 0.1 to ioam (e.g., W with a melting point of 800°C or higher, Ni+ Ti+
Fe.

Cu)又は合金(以下において、繊維状物質16という
)を上述の溶湯15aに5〜25容量%添加する。
Cu) or alloy (hereinafter referred to as fibrous material 16) is added in an amount of 5 to 25% by volume to the above-mentioned molten metal 15a.

なお、この添加は、合金鋳物材料15の溶解後に限らず
、合金鋳物材料15の加熱前又は加熱中に行なってもよ
い。
Note that this addition is not limited to after melting the alloy casting material 15, but may be performed before or during heating of the alloy casting material 15.

しかる後、繊維状物質16を添加した溶湯15bを既述
の実施例の場合と同様に機械的撹拌手段5にて100 
N10.0OOr、p、m、の機械的撹拌を加える。こ
れにより、添加した繊維状物質(短繊維)16が互いに
からみ合わせられると共に、溶湯15a内に均一に分散
された状態で複合される1次いで、坩堝1の給湯口10
を介して鋳型11内に注入して急冷凝固させ、得られた
塊状の集合体を合金鋳物17として回収する。これによ
り、マトリックス合金の結晶粒を微細化でき、より強靭
な複合化鋳物を得ることができる。
Thereafter, the molten metal 15b to which the fibrous material 16 has been added is stirred by the mechanical stirring means 5 to 100%
Add mechanical stirring of N10.00Or, p, m. As a result, the added fibrous substances (short fibers) 16 are intertwined with each other and composited in a uniformly dispersed state in the molten metal 15a.
The alloy is injected into the mold 11 through a tube and rapidly solidified, and the obtained lump-like aggregate is recovered as an alloy casting 17. Thereby, the crystal grains of the matrix alloy can be made finer, and a stronger composite casting can be obtained.

以上、本発明の実施例に付き述べたが、本発明は既述の
実施例に限定されるものではなく、本発明の技術的思想
に基いて各種の変更が可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and various modifications can be made based on the technical idea of the present invention.

例えば、母体である合金鋳物材料としては各種の合金で
あってよく、機械的撹拌手段5の構成も適宜変更可能で
ある。
For example, the base alloy casting material may be any of various alloys, and the configuration of the mechanical stirring means 5 may be changed as appropriate.

e、 発明の効果 以上の如く、本発明は、合金の溶湯に濡れ性の良い粒子
を添加し、機械的撹拌を加えて唐、冷凝固させるように
したものであるから、合金鋳物の結晶粒を微細化できひ
いては強度及び靭性を高めることができると共に、結晶
粒の方向性を無くすことができひいては強度や靭性の劣
る方向を無くすことができる。さらに、硬度の高い粒子
を添加することで、耐摩耗性も高めることができ自己潤
滑性のある粒子(例えば、六方晶窒化ホウ素やカーボン
等)を添加することで耐摩耗性並びに潤滑性も高めるこ
とができる。
e. Effects of the Invention As described above, in the present invention, particles with good wettability are added to the molten alloy, and the crystal grains of the alloy casting are solidified by mechanical stirring. It is possible to make the grains finer, thereby increasing the strength and toughness, and also to eliminate the directionality of the crystal grains, thereby eliminating the direction in which the strength and toughness are poor. Furthermore, by adding particles with high hardness, wear resistance can be improved, and by adding particles with self-lubricating properties (for example, hexagonal boron nitride, carbon, etc.), wear resistance and lubricity can also be improved. be able to.

また、本発明は、低融点合金の溶湯に繊維状の高融点金
属又は高融点合金を添加し、機械的撹拌を加えて急冷凝
固するようにしたものであるから、上述の金属又は合金
から成る繊維状物質の複合化により合金鋳物の強度及び
靭性を高めることができ、しかも機械的撹拌により繊維
状物質が互いにからみ合った状態にすることができ、強
度及び靭性のより優れた合金鋳物を提供できる。さらに
、添加する繊維状物質は金属又は合金なので、母合金に
対する濡れ性(なじみ性)が良いので、i8 ?J)鍛
造(圧力鍛造)のように高圧力(50kgf/c4以上
)を加えなくてもよいので製造が容易である。
Furthermore, the present invention is a method in which a fibrous high-melting point metal or high-melting point alloy is added to a molten metal of a low-melting point alloy, and the fibrous metal or high-melting point alloy is rapidly solidified by mechanical stirring. The strength and toughness of alloy castings can be increased by compositing fibrous substances, and the fibrous substances can be entangled with each other by mechanical stirring, providing alloy castings with superior strength and toughness. can. Furthermore, since the added fibrous substance is a metal or alloy, it has good wettability (compatibility) with the mother alloy, so i8? J) Manufacture is easy because there is no need to apply high pressure (50 kgf/c4 or more) unlike forging (pressure forging).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示すものであって
、第1図は坩堝内に合金鋳物材料を入れた状態を示す断
面図、第2図は合金鋳物材料の溶湯に粒子を添加する状
態を示す断面図、第3図は溶湯の機械的撹拌及び鋳型に
おける急冷凝固の状態を示す断面図、第4図は溶湯を鋳
型内で自然凝固させた場合の結晶粒を示す断面図、第5
図は六方晶窒化ホウ素粒子の添加量と切削速度との相関
関係を示すグラフ、第6図〜第8図は本発明の第2実施
例を示すものであって、第6図は第1図と同様の断面図
、第暑図は第2図と同様の断面図、第8図は第3図と同
様の断面図である。 1・・・坩堝、      2・・・合金鋳物材料、2
a、 2b・・・ン容湯、     3・・・ヒーター
、4・・・粒子、       5・・・機械的撹拌手
段、11・・・鋳型、      12・・・水冷筒、
13・・・合金鋳物、 15・・・低融点合金から成る合金鋳物材料、15a、
 15b・・・溶湯、   17・・・合金鋳物。 第4図 を1肖’Ju& (mm/s)
Figures 1 to 3 show an embodiment of the present invention, with Figure 1 being a cross-sectional view showing the alloy casting material placed in the crucible, and Figure 2 showing the molten alloy casting material being placed in the crucible. A cross-sectional view showing the state of adding particles, Figure 3 is a cross-sectional view showing the state of mechanical stirring of the molten metal and rapid solidification in the mold, and Figure 4 shows crystal grains when the molten metal is naturally solidified in the mold. Cross section, 5th
The figure is a graph showing the correlation between the amount of hexagonal boron nitride particles added and the cutting speed. 2 is a sectional view similar to that of FIG. 2, and FIG. 8 is a sectional view similar to FIG. 3. 1... Crucible, 2... Alloy casting material, 2
a, 2b... Boiling water, 3... Heater, 4... Particles, 5... Mechanical stirring means, 11... Mold, 12... Water cooling cylinder,
13... Alloy casting, 15... Alloy casting material made of low melting point alloy, 15a,
15b... Molten metal, 17... Alloy casting. Figure 4 is 1°Ju& (mm/s)

Claims (2)

【特許請求の範囲】[Claims] (1)合金の溶湯に濡れ性の良い粒子を添加し、この溶
湯に機械的撹拌を加えて急冷凝固させて成る合金鋳物。
(1) An alloy casting made by adding particles with good wettability to a molten alloy, mechanically stirring the molten metal, and rapidly solidifying the molten metal.
(2)低融点合金の溶湯に繊維状の高融点金属又は高融
点合金を添加し、この溶湯に機械的撹拌を加えて急冷凝
固させて成る合金鋳物。
(2) An alloy casting made by adding a fibrous high-melting point metal or high-melting point alloy to a molten metal of a low-melting point alloy, mechanically stirring the molten metal, and rapidly solidifying the molten metal.
JP28517688A 1988-11-11 1988-11-11 Alloy casting Pending JPH02133162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28517688A JPH02133162A (en) 1988-11-11 1988-11-11 Alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28517688A JPH02133162A (en) 1988-11-11 1988-11-11 Alloy casting

Publications (1)

Publication Number Publication Date
JPH02133162A true JPH02133162A (en) 1990-05-22

Family

ID=17688086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28517688A Pending JPH02133162A (en) 1988-11-11 1988-11-11 Alloy casting

Country Status (1)

Country Link
JP (1) JPH02133162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444529A (en) * 1990-06-08 1992-02-14 Misawa Homes Co Ltd Built-up type concrete basement and execution method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444529A (en) * 1990-06-08 1992-02-14 Misawa Homes Co Ltd Built-up type concrete basement and execution method thereof

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US3175260A (en) Process for making metal carbide hard surfacing material and composite casting
US3936298A (en) Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions
US3951651A (en) Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions
US5228494A (en) Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals
US5791397A (en) Processes for producing Mg-based composite materials
EP3366389A1 (en) Composites with very high wear resistance
CN110205527A (en) A kind of increasing material manufacturing Al-Mg-Si alloy wire rod and preparation method thereof
DE3807541C1 (en)
CN110205536A (en) A kind of titanium/titanium carbide core-shell structure reinforced aluminum matrix composites and preparation method thereof
JPH05505343A (en) Controlled casting of hypereutectic A1-Si alloy
EP1017866B1 (en) Cast metal-matrix composite material and its use
JPH08120390A (en) Magnesium-silicon alloy tip and method for forming same alloy
DE4327227A1 (en) Grain refining agent, its manufacture and use
DE1284629B (en) Process for the production of composite materials containing tungsten carbide
DE2339747C3 (en) Process for the production of a liquid-solid alloy phase outside the casting mold for casting processes
JPH02133162A (en) Alloy casting
US5441697A (en) Method of producing TiC whiskers and metallic composites reinforced by TiC whiskers
EP0241193B1 (en) Process for producing extruded aluminum alloys
DE2300073A1 (en) PROCESS FOR PRODUCING ABRASIVE GRIT
JPH01154861A (en) Production of gear
JPH10249734A (en) Hard powder contained metal cast grinding stone and its manufacture
JPS6360251A (en) Aluminum-silicon alloy and its production
RU2142355C1 (en) Method for suspension casting of irons
Yakoub Squeeze casting of zinc-aluminium (ZA) alloys and ZA-27/SIC composites