JPH044382B2 - - Google Patents

Info

Publication number
JPH044382B2
JPH044382B2 JP62254344A JP25434487A JPH044382B2 JP H044382 B2 JPH044382 B2 JP H044382B2 JP 62254344 A JP62254344 A JP 62254344A JP 25434487 A JP25434487 A JP 25434487A JP H044382 B2 JPH044382 B2 JP H044382B2
Authority
JP
Japan
Prior art keywords
rotor
alloy
hypereutectic
molten metal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254344A
Other languages
Japanese (ja)
Other versions
JPH0196341A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP25434487A priority Critical patent/JPH0196341A/en
Publication of JPH0196341A publication Critical patent/JPH0196341A/en
Publication of JPH044382B2 publication Critical patent/JPH044382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非金属粒子や短繊維の分散によつて
強化した過共晶Al−Si合金複合材料の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hypereutectic Al--Si alloy composite material reinforced by dispersing non-metallic particles or short fibers.

[従来の技術] 固液共存状態の合金材料に対して、回転翼によ
り機械的な回転撹拌を加えながら、非金属粒子や
短繊維などの強化材を添加し、均質な複合材料を
つくる鋳造法は、コンポキヤスト法として知られ
ている。また、急冷凝固法などで製造した微細結
晶粉末と非金属粉末を均質混合して焼結させる粉
末冶金法がある。
[Conventional technology] A casting method that creates a homogeneous composite material by adding reinforcing materials such as non-metallic particles and short fibers to an alloy material in a solid-liquid coexistence state while applying mechanical rotational agitation using a rotary blade. is known as the Compocast method. There is also a powder metallurgy method in which fine crystal powder produced by a rapid solidification method or the like and nonmetal powder are homogeneously mixed and sintered.

しかるに、上記コンポキヤスト法では回転翼の
回転速度が1000rpm以下に抑えられているので、
結晶粒の均質微細化と粒子の均一分散が十分行わ
れず、鋳造欠陥が生じ易いという問題がある。ま
た、還元性雰囲気や大気中で回転翼を回転させる
ので、不活性ガスや空気を巻き込みやすく、得ら
れた機械的性質はそれほど改善されない。
However, in the CompoCast method mentioned above, the rotation speed of the rotor blade is suppressed to 1000 rpm or less, so
There is a problem in that the homogeneous refinement of crystal grains and the uniform dispersion of particles are not sufficiently carried out, and casting defects are likely to occur. Furthermore, since the rotor is rotated in a reducing atmosphere or the atmosphere, inert gas or air is likely to be drawn in, and the resulting mechanical properties are not significantly improved.

一方、上記粉末冶金法では、均質で微細な結晶
粒をもつた緻密なミクロ組織を得ることができる
が、複雑な材料製造プロセスと大規模な設備が不
可欠であるため、必然的に材料製造費がコスト高
にならざるを得ない。
On the other hand, with the powder metallurgy method described above, it is possible to obtain a dense microstructure with homogeneous and fine crystal grains, but because it requires a complicated material manufacturing process and large-scale equipment, it inevitably increases material manufacturing costs. However, this has no choice but to result in high costs.

[発明が解決しようとする問題点] 本発明の目的は、過共晶Al−Si合金複合材料
における鋳造欠陥の除去と材料特性の向上を図る
に当り、簡易な方法により晶出する初晶Si粒子を
微細化すると共に、マトリツクス合金と非金属粒
子や短繊維からなる強化材との比重差が大きい場
合でも全体を均質に混合できるようにし、それに
よつて、粉末冶金法に匹敵する均質微細なミクロ
組織と機械的性質をもつ耐摩耗性の優れた過共晶
Al−Si合金複合材料を低コストで製造可能にす
ることにある。
[Problems to be Solved by the Invention] An object of the present invention is to eliminate casting defects and improve material properties in a hypereutectic Al-Si alloy composite material by a simple method. In addition to making the particles finer, even if there is a large difference in specific gravity between the matrix alloy and the reinforcing material made of non-metallic particles or short fibers, it is possible to mix the entire material homogeneously, thereby achieving a homogeneous and fine structure comparable to powder metallurgy. Hypereutectic with excellent wear resistance and microstructure and mechanical properties
The objective is to enable the production of Al-Si alloy composite materials at low cost.

[問題点を解決するための手段、作用] 上記目的を達成するための本発明の合金複合材
料製造方法は、内部を真空に保持した冷却室にお
いて固液共存状態の過共晶Al−Si合金中に、黒
鉛などの非金属粒子や短繊維からなる強化材をア
ルミ箔でくるんで添加して、溶湯中に挿入した回
転子を低速回転させることにより上記強化材を分
散させ、凝固開始と同時に回転子を高速回転させ
て、粉砕した初晶Si結晶の間隙に強化材を均一に
分散させ、均質な粒子分散強化または繊維強化を
行つた合金複合材料を得ることを特徴とするもの
である。
[Means and effects for solving the problems] The method for producing an alloy composite material of the present invention to achieve the above object is to produce a hypereutectic Al-Si alloy in a solid-liquid coexistence state in a cooling chamber whose interior is kept in vacuum. A reinforcing material made of non-metallic particles such as graphite or short fibers is added to the molten metal by wrapping it in aluminum foil, and by rotating a rotor inserted into the molten metal at low speed, the reinforcing material is dispersed, and as soon as solidification begins. The method is characterized in that a rotor is rotated at high speed to uniformly disperse the reinforcing material in the gaps between the crushed primary Si crystals, thereby obtaining an alloy composite material with homogeneous particle dispersion reinforcement or fiber reinforcement.

本発明の方法についてさらに具体的に説明する
と、まず、マトリツクス合金としての過共晶Al
−Si合金は、真空容器内において加熱炉により溶
解し、この過共晶Al−Si合金に対して固液共存
状態において黒鉛などの非金属粒子や短繊維から
なる強化材を添加する。これらの強化材は、固液
共存状態にある過共晶Al−Si合金を回転撹拌す
る回転子に、アルミ箔にくるんだ状態で固定し
て、溶湯へ挿入するのが好ましく、これによつて
アルミ箔の溶融と同時にそれを溶湯中に押し込む
ことができ、回転子を溶湯への挿入後に直ちに低
速回転させることにより、Al−Si合金の溶湯内
に非金属粒子や短繊維を均一に分散させることが
できる。
To explain the method of the present invention more specifically, first, hypereutectic Al as a matrix alloy is used.
The -Si alloy is melted in a heating furnace in a vacuum container, and a reinforcing material consisting of nonmetallic particles such as graphite or short fibers is added to the hypereutectic Al-Si alloy in a solid-liquid coexistence state. These reinforcing materials are preferably wrapped in aluminum foil and fixed to a rotor that rotates and stirs the hypereutectic Al-Si alloy in a solid-liquid coexistence state, and then inserted into the molten metal. It is possible to push the aluminum foil into the molten metal at the same time as it melts, and by rotating the rotor at low speed immediately after inserting it into the molten metal, non-metallic particles and short fibers are uniformly dispersed in the molten Al-Si alloy. be able to.

上記強化材としては、粒子分散強化型や繊維強
化型の合金複合材料を得るのに適した非金属材料
の粉末や短繊維、例えば、上記黒鉛以外に、炭化
チタンなどの炭化物、アルミナなどの酸化物、窒
化ケイ素などの窒化物等のいずれか、またはそれ
らの複数の混合物を用いることができ、マトリツ
クス合金に対するそれらの混合割合は、3〜8wt
%程度が適している。
The above reinforcing materials include powders and short fibers of non-metallic materials suitable for obtaining particle dispersion-strengthened or fiber-reinforced alloy composite materials, for example, in addition to the above-mentioned graphite, carbides such as titanium carbide, oxidized materials such as alumina, etc. nitrides such as silicon nitride, or a mixture of a plurality of them can be used, and the mixing ratio of these to the matrix alloy is 3 to 8 wt.
% is suitable.

一般に、溶湯中への他の成分の添加は、その添
加成分を湯面上に注入するのが通例であるが、上
記過共晶Al−Si合金の溶湯内へ黒鉛等の非金属
粒子や短繊維を添加する場合には、そのぬれ性が
よくないため、溶湯と分離した状態になり易い。
しかるに、上述したように非金属粒子や短繊維を
アルミ箔にくるんだ状態で溶湯中に押し込むと、
それらの酸化も少なく、多少は溶湯と分離する傾
向があつても、直ちに回転子を回転させるので、
極めて能率的に粒子や短繊維を均一に分散させる
ことができる。
Generally, when adding other components to the molten metal, it is customary to inject the added components onto the surface of the molten metal. When fibers are added, their wettability is poor and they tend to separate from the molten metal.
However, as mentioned above, when nonmetallic particles or short fibers are wrapped in aluminum foil and pushed into the molten metal,
There is little oxidation, and even if there is a tendency to separate from the molten metal, the rotor can be rotated immediately.
Particles and short fibers can be uniformly dispersed extremely efficiently.

溶湯中においては、回転子を低速回転させなが
ら溶湯の冷却を継続するので、間もなく溶湯は凝
固を開始するが、この凝固開始と同時に回転子を
高速回転させ、生成した結晶の間隙に非金属粒子
や短繊維を均一に分散させる。その結果、均質な
粒子分散強化型や繊維強化型の合金複合材料を得
ることができる。
In the molten metal, the molten metal continues to cool while rotating the rotor at a low speed, so the molten metal soon begins to solidify.At the same time as this solidification begins, the rotor is rotated at a high speed, and non-metal particles are inserted into the gaps between the formed crystals. and short fibers are uniformly dispersed. As a result, a homogeneous particle-dispersion-reinforced or fiber-reinforced alloy composite material can be obtained.

マトリツクス合金としての過共晶Al−Si合金
には、必要に応じて、その溶融に際し予め微量の
結晶粒微細化剤を添加しておくことができる。こ
の結晶粒微細化剤としては、例えば、ほぼ5:1
の重量比をもつTiとB、あるいは、Ta、Nb、
Zrなどがある。これらの結晶粒微細化剤は、マ
トリツクス合金の粒結晶を微細化して、TiC粒子
を均一に分散させ易い状態にするものである。
If necessary, a small amount of a grain refining agent can be added to the hypereutectic Al--Si alloy as a matrix alloy in advance during melting. As this grain refining agent, for example, approximately 5:1
Ti and B, or Ta, Nb, with a weight ratio of
There are Zr etc. These grain refiners refine the grain crystals of the matrix alloy, making it easier to uniformly disperse TiC particles.

次に、図面を参照して本発明の過共晶Al−Si
合金複合材料を製造する装置例について説明す
る。
Next, referring to the drawings, the hypereutectic Al-Si of the present invention will be described.
An example of an apparatus for manufacturing an alloy composite material will be described.

第1図は、上記合金複合材料を製造する装置の
一例を示すもので、前面に開閉扉を持つチヤンバ
本体1は真空容器を構成し、その内部をエアシリ
ンダ3で開閉される耐熱性のシヤツタ2により上
下に区画して、下方の加熱室4内に抵抗加熱炉5
を配置すると共に、上方の冷却室6内に、冷却コ
イル8を持つ水冷外筒7及びその冷却外筒7内に
上方から垂下した第2図に示すような断面形状の
回転子9を配置し、この回転子9をトルクモータ
10で回転駆動するようにしたものである。
FIG. 1 shows an example of an apparatus for manufacturing the above-mentioned alloy composite material. A chamber main body 1 with an opening/closing door on the front constitutes a vacuum container, and the inside thereof is a heat-resistant shutter that is opened and closed by an air cylinder 3. A resistance heating furnace 5 is installed in the lower heating chamber 4.
At the same time, a water-cooled outer cylinder 7 having a cooling coil 8 and a rotor 9 having a cross-sectional shape as shown in FIG. 2 hanging from above are arranged in the upper cooling chamber 6. , this rotor 9 is rotationally driven by a torque motor 10.

この装置においては、チヤンバ本体1内を図示
しない真空源に接続して、真空排気後、炉内の黒
鉛るつぼ12中で供試合金を加熱溶解し、その溶
解後、炉上のシヤツタ2を開放して、チヤンバ本
体1の下面を貫通する支持棒11を昇降可能にし
たるつぼ昇降機構で、上記黒鉛るつぼ12を水冷
外筒7内まで上昇させることにより、るつぼ12
内の溶湯中に回転子9を挿入し、冷却室6内にお
ける急速な冷却過程において、その回転子9の回
転により半溶融合金を撹拌させる。
In this device, the inside of the chamber body 1 is connected to a vacuum source (not shown), and after evacuation, the sample gold is heated and melted in a graphite crucible 12 in the furnace, and after the melting, the shutter 2 on the furnace is opened. Then, by raising the graphite crucible 12 into the water-cooled outer cylinder 7 using a crucible lifting mechanism that allows the support rod 11 passing through the lower surface of the chamber body 1 to rise and fall, the crucible 12
A rotor 9 is inserted into the molten metal in the cooling chamber 6, and during the rapid cooling process in the cooling chamber 6, the rotation of the rotor 9 stirs the semi-molten alloy.

上記回転子9を回転させるトルクモータ10
は、回転子9を10000rpm程度まで高速回転させ
得るものとし、その回転軸にトルク検出器及び回
転検出器を設けて、それらをデイジタル表示器に
接続している。
Torque motor 10 that rotates the rotor 9
The rotor 9 is capable of rotating at a high speed of about 10,000 rpm, and its rotating shaft is provided with a torque detector and a rotation detector, which are connected to a digital display.

上記装置例に示す内径55mmの黒鉛るつぼ内にお
いて、8角形断面の回転子を用いる場合、その低
速回転は、500〜1000rpm程度で回転させる必要
があり、またそれに続く高速回転は2000〜
6000rpm程度にする必要がある。
When using a rotor with an octagonal cross section in the graphite crucible with an inner diameter of 55 mm as shown in the example device above, the low speed rotation must be approximately 500 to 1000 rpm, and the subsequent high speed rotation must be approximately 2000 to 1000 rpm.
It needs to be around 6000rpm.

[実施例] 第1図及び第2図に示す構成の合金複合材料製
造装置を用い、真空溶解した過共晶Al−Si合金
中に水冷外筒内で回転子を挿入し、その際、回転
子によつてアルミ箔でくるんだ8%の黒鉛粒子を
合金中に押込み、回転子を1000rpmで低速回転さ
せ、その後、凝固開始から凝固終了直前まで、
3000rpmで高速回転撹拌凝固させ、Al−17%Si−
8%Cの合金複合材料を得た。
[Example] Using an alloy composite material manufacturing apparatus having the configuration shown in Figs. 1 and 2, a rotor was inserted into a water-cooled outer cylinder into a hypereutectic Al-Si alloy melted in vacuum. 8% graphite particles wrapped in aluminum foil were pushed into the alloy by a rotor, the rotor was rotated at a low speed of 1000 rpm, and then from the start of solidification until just before the end of solidification.
Solidified by high-speed rotation stirring at 3000 rpm, Al−17%Si−
An 8% C alloy composite material was obtained.

また、同様にして凝固開始から凝固終了直前ま
で、2100rpmで回転撹拌を続行し、Al−17%Si−
6%Cの合金複合材料を得た。
In addition, in the same manner, rotational stirring was continued at 2100 rpm from the start of solidification to just before the end of solidification, and Al−17%Si−
A 6% C alloy composite material was obtained.

第3図及び第4図は、上述したところによつて
得られた合金複合材料中の黒鉛粒子のX線像を示
すもので、これらによれば、極めて均質で微細な
過共晶Al−Si合金が得られることがわかる。
Figures 3 and 4 show X-ray images of graphite particles in the alloy composite material obtained as described above. According to these, extremely homogeneous and fine hypereutectic Al-Si It can be seen that an alloy can be obtained.

[発明の効果] このように本発明の方法によれば、非金属粒子
や短繊維からなる強化材をアルミ箔にくるんで溶
湯中に押し込み、その状態で回転子を低速回転さ
せて強化材を分散させると共に、溶湯の凝固開始
と同時に回転子を高速回転させて破砕した初晶Si
結晶の間〓に強化材を分散させるようにしたの
で、溶湯に対するぬれ性が悪いために溶湯と分離
した状態になり易い強化材を、アルミ箔の溶融と
同時に溶湯中に確実に添加、分散させることがで
きるばかりでなく、生成した結晶の間〓に均一に
分散させることができ、しかも強化材の酸化を防
ぐこともでき、この結果、過共晶Al−Si合金複
合材料を、溶湯の均質混合及び高速回転撹拌鋳造
により、従来の粉末冶金法のように同合金を一旦
粉末化せずに、晶出する初晶Si粒子を均質微細化
して上記粉末冶金法に匹敵するミクロ組織と機械
的性質をもつ耐摩耗性材料を低コストで製造する
ことができる。
[Effects of the Invention] As described above, according to the method of the present invention, a reinforcing material made of non-metallic particles or short fibers is wrapped in aluminum foil and pushed into the molten metal, and in this state, the rotor is rotated at a low speed to remove the reinforcing material. Primary crystal Si is dispersed and crushed by rotating a rotor at high speed at the same time as the molten metal begins to solidify.
Since the reinforcing material is dispersed between the crystals, the reinforcing material, which tends to separate from the molten metal due to poor wettability with the molten metal, can be reliably added and dispersed into the molten metal at the same time as the aluminum foil is melted. Not only can it be dispersed uniformly between the formed crystals, but it can also be prevented from oxidizing the reinforcing material. As a result, the hypereutectic Al-Si alloy composite material By mixing and high-speed rotation stirring casting, the primary Si particles that crystallize are made homogeneous and fine, without first turning the alloy into powder as in the conventional powder metallurgy method, resulting in a microstructure and mechanical properties comparable to those of the powder metallurgy method. Wear-resistant materials with these properties can be manufactured at low cost.

また、従来のコンポキヤスト法に比して、回転
子の回転速度を数倍に上昇させるので、均質微細
化と粒子の均一分散が可能となり、しかも真空中
で行うので、異物の巻き込みも生じない。
In addition, since the rotation speed of the rotor is increased several times compared to the conventional composite casting method, homogeneous refinement and uniform dispersion of particles are possible, and since it is carried out in a vacuum, there is no entrainment of foreign matter. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づいて過共晶Al−Si合金
複合材料を製造する装置の断面図、第2図はその
要部断面図、第3図及び第4図は本発明によつて
得られたAl−17%Si−8%C及びAl−17%Si−
6%Cの合金複合材料についての金属組織を示す
図面代用写真である。 1……真空容器、6……冷却室、9……回転
子。
FIG. 1 is a sectional view of an apparatus for producing a hypereutectic Al-Si alloy composite material based on the present invention, FIG. 2 is a sectional view of the main part thereof, and FIGS. Al-17%Si-8%C and Al-17%Si-
It is a photograph substituted for a drawing showing the metal structure of a 6% C alloy composite material. 1...Vacuum container, 6...Cooling chamber, 9...Rotor.

Claims (1)

【特許請求の範囲】[Claims] 1 内部を真空に保持した冷却室において固液共
存状態の過共晶A−Si合金中に、黒鉛などの非金
属粒子や短繊維からなる強化材をアルミ箔でくる
んで押し込み、溶湯中に挿入した回転子を低速回
転させることにより上記強化材を分散させ、凝固
開始と同時に回転子を高速回転させて、破砕した
初晶Si結晶の間〓に強化材を均一に分散させ、均
質な粒子分散強化または繊維強化を行つた合金複
合材料を得ることを特徴とする過共晶A−Si合金
複合材料の製造方法。
1 In a cooling chamber kept in a vacuum, a reinforcing material made of non-metallic particles such as graphite or short fibers is wrapped in aluminum foil and pushed into the hypereutectic A-Si alloy in a solid-liquid coexistence state, and then inserted into the molten metal. The reinforcing material is dispersed by rotating the rotor at low speed, and at the same time as solidification begins, the rotor is rotated at high speed to uniformly disperse the reinforcing material between the crushed primary Si crystals, resulting in homogeneous particle dispersion. A method for producing a hypereutectic A-Si alloy composite material, which comprises obtaining a reinforced or fiber-reinforced alloy composite material.
JP25434487A 1987-10-08 1987-10-08 Production of hypereutectic al-si alloy composite material Granted JPH0196341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25434487A JPH0196341A (en) 1987-10-08 1987-10-08 Production of hypereutectic al-si alloy composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25434487A JPH0196341A (en) 1987-10-08 1987-10-08 Production of hypereutectic al-si alloy composite material

Publications (2)

Publication Number Publication Date
JPH0196341A JPH0196341A (en) 1989-04-14
JPH044382B2 true JPH044382B2 (en) 1992-01-28

Family

ID=17263691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25434487A Granted JPH0196341A (en) 1987-10-08 1987-10-08 Production of hypereutectic al-si alloy composite material

Country Status (1)

Country Link
JP (1) JPH0196341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513688A (en) * 1992-12-07 1996-05-07 Rheo-Technology, Ltd. Method for the production of dispersion strengthened metal matrix composites
US9303299B2 (en) 2011-10-11 2016-04-05 Nippon Light Metal Company, Ltd. Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782441A (en) * 1980-11-12 1982-05-22 Manabu Kiuchi Manufacture of grain reinforced composite material
JPS61119632A (en) * 1984-11-14 1986-06-06 Agency Of Ind Science & Technol Manufacture of high ductility material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782441A (en) * 1980-11-12 1982-05-22 Manabu Kiuchi Manufacture of grain reinforced composite material
JPS61119632A (en) * 1984-11-14 1986-06-06 Agency Of Ind Science & Technol Manufacture of high ductility material

Also Published As

Publication number Publication date
JPH0196341A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US4865808A (en) Method for making hypereutetic Al-Si alloy composite materials
US6547850B1 (en) Method for mixing particles into a liquid medium
KR20000048914A (en) Apparatus and method for semi-solid material production
US4961461A (en) Method and apparatus for continuous casting of composites
US6106588A (en) Preparation of metal matrix composites under atmospheric pressure
Klier et al. Fabrication of cast particle-reinforced metals via pressure infiltration
JPH044382B2 (en)
JPH0431009B2 (en)
CA1338006C (en) Composites and method therefor
JPS61119632A (en) Manufacture of high ductility material
US5358687A (en) Processes for manufacturing intermetallic compounds, intermetallic alloys and intermetallic matrix composite materials made thereof
JPS62130234A (en) Method for homogeneously mixing al-pb alloy
Ichikawa et al. Refinement of microstructures and improvement of mechanical properties in intermetallic TiAl alloys by rheocasting
US5513688A (en) Method for the production of dispersion strengthened metal matrix composites
CA2063726A1 (en) Cast composite material having a matrix containing a stable oxide-forming element
Ichikawa et al. Rheocasting techniques applied to intermetallic TiAl alloys and composites
JPH027749B2 (en)
JP2701298B2 (en) Method and apparatus for continuous production of metal matrix composite materials
JPH0627294B2 (en) Method for producing Al-Cu-TiC alloy composite material
US6129134A (en) Synthesis of metal matrix composite
JPH01129935A (en) Manufacture of fine cristallized metallic material by self-soluble stirring rod
JPH0244622B2 (en) KAISHITSUSARETACHUKUIMONONOSEIZOHOHO
JP2701297B2 (en) Method and apparatus for controlling semi-solidification of metal
Ichikawa et al. Microstructural control of Intermetallic CuAl-based and hypereutectic Al–Si alloys by stirring synthesis method
Ichikawa et al. Rheocasting of TiAl alloys and composites

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 16