JPH0431009B2 - - Google Patents

Info

Publication number
JPH0431009B2
JPH0431009B2 JP25434587A JP25434587A JPH0431009B2 JP H0431009 B2 JPH0431009 B2 JP H0431009B2 JP 25434587 A JP25434587 A JP 25434587A JP 25434587 A JP25434587 A JP 25434587A JP H0431009 B2 JPH0431009 B2 JP H0431009B2
Authority
JP
Japan
Prior art keywords
composite material
alloy
hypereutectic
rotor
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25434587A
Other languages
Japanese (ja)
Other versions
JPH0196342A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP25434587A priority Critical patent/JPH0196342A/en
Priority to US07/175,217 priority patent/US4865808A/en
Publication of JPH0196342A publication Critical patent/JPH0196342A/en
Priority to US07/352,878 priority patent/US4917359A/en
Publication of JPH0431009B2 publication Critical patent/JPH0431009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粒子分散強化または繊維強化した過
共晶Al−Si合金複合材料の連続製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for continuously producing a hypereutectic Al--Si alloy composite material reinforced by particle dispersion or fiber reinforcement.

[従来の技術] 合金複合材料を製造するため、固液共存状態の
合金材料に対して、回転翼により機械的な回転攪
拌を加えながら非金属粒子を添加して、均質な複
合材料をつくる鋳造法は、コンポキヤスト法とし
て知られている。また、急冷凝固法などで製造し
た微細結晶粒粉末を非金属粉末と均質混合して焼
結させる粉末治金法がある。
[Conventional technology] In order to produce alloy composite materials, non-metallic particles are added to the alloy material in a solid-liquid coexistence state while mechanical rotational stirring is applied using a rotary blade, thereby creating a homogeneous composite material. The method is known as the Compocast method. There is also a powder metallurgy method in which fine crystal grain powder produced by a rapid solidification method or the like is homogeneously mixed with nonmetallic powder and sintered.

しかるに、コンポキヤスト法では回転翼の回転
速度が1000rpm以下に抑えられているので、結晶
粒の均質微細化と粒子の均一分散が十分行われな
い。また、還元性雰囲気や大気中で回転翼を回転
させるので、不活性ガスを巻き込みやすく、得ら
れた材料の機械的性質はそれほど改善されない。
However, in the CompoCast method, the rotational speed of the rotor blade is suppressed to 1000 rpm or less, so homogeneous refinement of crystal grains and uniform dispersion of particles cannot be achieved sufficiently. Furthermore, since the rotor is rotated in a reducing atmosphere or the air, inert gas is likely to be drawn in, and the mechanical properties of the obtained material are not significantly improved.

一方、粉末治金法では、複雑な製造プロセスと
大規模な設備が不可欠であるため、必然的に材料
製造費がコスト高にならざるを得ない。
On the other hand, powder metallurgy requires complicated manufacturing processes and large-scale equipment, which inevitably leads to higher material manufacturing costs.

[発明が解決しようとする問題点] 本発明の目的は、過共晶Al−Si合金複合材料
における鋳造欠陥の除去と材料特性の向上を図る
に当り、簡易な方法により晶出する初晶Si粒子の
大きさを数μmにして、粉末治金法と同等の均質
微細なミクロ組織と機械的性質をもつ耐摩耗性の
過共晶Al−Si合金複合材料を低コストで製造可
能にすることにある。
[Problems to be Solved by the Invention] An object of the present invention is to eliminate casting defects and improve material properties in a hypereutectic Al-Si alloy composite material by a simple method. To make it possible to manufacture a wear-resistant hypereutectic Al-Si alloy composite material at a low cost by reducing the particle size to several micrometers and having a homogeneous, fine microstructure and mechanical properties equivalent to powder metallurgy. It is in.

[問題点を解決するための手段、作用] 上記目的を達成するための本発明の連続製造方
法は、真空容器内の溶解炉で溶融した過共晶Al
−Si合金に攪拌翼を挿入して低速回転させなが
ら、非金属粒子または繊維からなる強化材を添加
して均質混合させ、それによつて得られる溶融合
金複合材料を、耐熱容器内で水平軸のまわりに高
速回転する多角形状の回転子上に落下させ、その
溶融合金複合材料を上記回転子の高速回転による
回転攪拌作用により飛散させて、生成した初晶Si
結晶を破砕し、飛散した半溶融金属複合材料を上
記耐熱容器に受止めて、均質微細なミクロ組織を
もつ半固体状の塊状集合体として取り出すことを
特徴とするものである。
[Means and effects for solving the problems] The continuous production method of the present invention for achieving the above object is based on a hypereutectic Al melted in a melting furnace in a vacuum container.
- While inserting a stirring blade into the Si alloy and rotating it at low speed, reinforcing material consisting of non-metal particles or fibers is added and mixed homogeneously, and the resulting molten alloy composite material is placed in a heat-resistant container on a horizontal axis. The molten alloy composite material is dropped onto a polygonal rotor that rotates at high speed, and the molten alloy composite material is scattered by the rotational agitation action of the high-speed rotation of the rotor, and the generated primary crystal Si
The method is characterized in that the crystals are crushed and the scattered semi-molten metal composite material is received in the heat-resistant container and taken out as a semi-solid lumpy aggregate having a homogeneous and fine microstructure.

本発明において添加する非金属粉末あるいは繊
維からなる強化材としては、黒鉛粒子、炭化チタ
ン粒子、黒鉛短繊維等が適し、またその添加量は
3〜8wt%程度が望ましい。
Graphite particles, titanium carbide particles, graphite short fibers, etc. are suitable as the reinforcing material made of non-metallic powder or fibers to be added in the present invention, and the amount added is preferably about 3 to 8 wt%.

このような本発明の方法によれば、過共晶Al
−Si合金複合材料における鋳造欠陥の除去と材料
特性の向上を図るに当り、簡易な方法により晶出
する初晶Si粒子の大きさを数μmに破砕して、粉
末治金法と同等の均質微細なミクロ組織と機械的
性質をもつ耐摩耗性の過共晶Al−Si合金複合材
料を低コストで製造することができる。
According to the method of the present invention, hypereutectic Al
- In order to eliminate casting defects and improve material properties in Si alloy composite materials, we use a simple method to crush the crystallized primary Si particles into a few micrometers, resulting in a homogeneous structure equivalent to powder metallurgy. Wear-resistant hypereutectic Al-Si alloy composites with fine microstructures and mechanical properties can be produced at low cost.

また、粉末治金で得られるような微細結晶粒と
非金属粒子等の強化材の均質混合が、鋳造時にす
べて同時に行われ、複合材料を簡易に製造するこ
とができる。
In addition, homogeneous mixing of fine crystal grains and reinforcing materials such as non-metallic particles, such as those obtained by powder metallurgy, is carried out simultaneously during casting, making it possible to easily manufacture the composite material.

次に、第1図及び第2図を参照して、本発明の
方法を実施するのに適した複合材料連続製造装置
について説明する。
Next, with reference to FIGS. 1 and 2, a composite material continuous manufacturing apparatus suitable for carrying out the method of the present invention will be described.

両図に示す製造装置において、真空容器1はそ
の内部に過共晶Al−Si合金の溶解炉2を備えて
いる。
In the manufacturing apparatus shown in both figures, a vacuum vessel 1 is equipped with a melting furnace 2 for hypereutectic Al--Si alloy therein.

上記溶解炉2は、周囲を断熱材3によつて囲繞
され、中心に配設したルツボ4の周囲にヒータ5
が設けられ、上面は図示しないシリンダで駆動さ
れるシヤツタ6により開閉可能に形成される。溶
解炉2のルツボ4に内挿される攪拌翼8は、その
横断面が十字状をなし、外部に配置したモータ等
の駆動装置9の回転軸10の先端に固定され、
1000rpm以下で低速回転駆動されるものである。
The melting furnace 2 is surrounded by a heat insulating material 3, and a heater 5 is placed around a crucible 4 disposed at the center.
The upper surface is formed to be openable and closable by a shutter 6 driven by a cylinder (not shown). The stirring blade 8 inserted into the crucible 4 of the melting furnace 2 has a cross-shaped cross section and is fixed to the tip of a rotating shaft 10 of a drive device 9 such as a motor disposed outside.
It is driven to rotate at a low speed of 1000 rpm or less.

上記溶解炉2におけるルツボ4には、そこで溶
融した過共晶Al−Si合金に対して非金属粒子あ
るいは短繊維などの強化材を投与する投入装置1
1が付設されている。この投入装置11は、強化
材用バケツト12からルツボ4上に強化材投入管
13を伸ばしたものである。また、上記ルツボ4
の内底には、混合攪拌した合金複合材料溶湯を注
下させる湯口15が設けられ、この湯口15を開
閉するため、昇降モータ17により湯口の開閉栓
18を昇降可能にした湯口開閉装置16が付設さ
れている。
In the crucible 4 in the melting furnace 2, there is a feeding device 1 for injecting reinforcing materials such as non-metallic particles or short fibers into the hypereutectic Al-Si alloy melted therein.
1 is attached. This charging device 11 has a reinforcing material charging pipe 13 extending from a reinforcing material bucket 12 onto the crucible 4 . In addition, the crucible 4
A sprue 15 for pouring the mixed and stirred alloy composite material molten metal is provided at the inner bottom of the sprue, and in order to open and close this sprue 15, a sprue opening/closing device 16 is provided in which a sprue opening/closing plug 18 can be raised and lowered by an elevating motor 17. It is attached.

上記溶解炉2は、過共晶Al−Si合金を溶解す
ると共に、それに強化材を均質混合して、下方の
溶融複合材料攪拌装置20に供給するための電気
炉を構成するもので、この溶解炉の下方に配設し
た溶融複合材料攪拌装置20は、受湯用ロート2
1によつて回転子23を備えた耐熱容器22に溶
解炉2からの溶融複合材料を導くように構成して
いる。
The melting furnace 2 constitutes an electric furnace for melting the hypereutectic Al-Si alloy, homogeneously mixing the reinforcing material therein, and supplying the melted composite material stirring device 20 below. A molten composite material stirring device 20 disposed below the furnace has a funnel 2 for receiving the melt.
1 leads the molten composite material from the melting furnace 2 to a heat-resistant container 22 equipped with a rotor 23.

上記回転子23は、溶融複合材料に機械的な高
速回転攪拌を加えることにより、その結晶粒を微
細化し、且つ強化材を一層均一に分散させるもの
で、前記湯口15からほぼ中心に落下するように
供給される溶融複合材料を、その高速回転により
周囲に飛散させるため、第2図に示すように、横
断面を多角形状に形成し、回転子モータ25によ
り高速回転する駆動軸26に固定している。
The rotor 23 applies mechanical high-speed rotation stirring to the molten composite material to refine its crystal grains and disperse the reinforcing material more uniformly. In order to scatter the molten composite material supplied to the surrounding area by its high speed rotation, the cross section is formed into a polygonal shape and is fixed to a drive shaft 26 which is rotated at high speed by a rotor motor 25, as shown in FIG. ing.

上記回転子23を収容する耐熱容器22は、回
転子23の回転に伴つて飛散する溶融複合材料を
受け止め、それを塊状集合体として下方の回収細
孔28から鋳型29に取り出すためのものであ
る。
The heat-resistant container 22 that accommodates the rotor 23 is for receiving the molten composite material scattered as the rotor 23 rotates, and taking it out as a lumpy aggregate from the collection pore 28 below into the mold 29. .

なお、図中、31,32は覗窓、33は真空吸
引口、34は温度制御用熱電対を示している。
In the figure, 31 and 32 are viewing windows, 33 is a vacuum suction port, and 34 is a temperature control thermocouple.

上記構成を有する装置によつて結晶粒が微細化
された過共晶Al−Si合金複合材料を製造するに
は、真空容器1内を真空とした後、ルツボ4で過
共晶Al−Si合金を溶解させ、投入装置11によ
つて非金属粒子あるいは繊維などの強化材を溶融
合金中に添加して、攪拌翼8の低速回転により均
一に攪拌する。一方、回転子23は回転子モータ
25により1000〜30000rpm程度の高速で回転さ
せ、この状態で、前記溶解炉2において攪拌翼8
により十分な攪拌混合した複合材料溶湯を、湯口
15の開放により溶融複合材料攪拌装置20に流
下させる。
In order to produce a hypereutectic Al-Si alloy composite material whose crystal grains are refined using the apparatus having the above configuration, after evacuating the vacuum chamber 1, the hypereutectic Al-Si alloy composite material is produced in the crucible 4. is dissolved, reinforcing materials such as non-metallic particles or fibers are added to the molten alloy using the charging device 11, and the mixture is uniformly stirred by the low-speed rotation of the stirring blades 8. On the other hand, the rotor 23 is rotated at a high speed of about 1,000 to 30,000 rpm by the rotor motor 25, and in this state, the stirring blades 8 are rotated in the melting furnace 2.
The molten composite material sufficiently stirred and mixed is allowed to flow down into the molten composite material stirring device 20 by opening the sprue 15.

これにより、溶融複合材料は回転中の回転子2
3上に落下し、回転子23により微細粒子状の液
滴群となつて飛散し、耐熱容器22の内壁に対し
て衝当を繰返す。その結果、飛散した溶融複合材
料は微細結晶粒化され、粘稠状あるいは半固体状
のものとして耐熱容器22内を下方に伝わつて細
孔28から鋳型29に落下し、半固体状スラリー
の塊状複合材料として連続的に取り出される。
As a result, the molten composite material is transferred to the rotating rotor 2.
The liquid drops onto the heat-resistant container 22 and is scattered as a group of fine droplets by the rotor 23, repeatedly hitting the inner wall of the heat-resistant container 22. As a result, the scattered molten composite material becomes fine crystal grains, travels downward in the heat-resistant container 22 as a viscous or semi-solid material, and falls into the mold 29 through the pores 28, forming lumps of semi-solid slurry. Continuously extracted as a composite material.

その結果、粉末治金で得られるような微細結晶
粒と非金属粒子の均質混合が、鋳造時にすべく同
時に行われ、しかも機械的性質のすぐれた材料が
連続的に製造される。
As a result, homogeneous mixing of fine grains and non-metallic particles, such as those obtained in powder metallurgy, is preferably carried out simultaneously during casting, and a material with excellent mechanical properties is produced continuously.

[実施例] 第1図及び第2図に示す構成の複合材料連続製
造装置を用いて行つた実施例を以下に示す。
[Example] An example carried out using a composite material continuous manufacturing apparatus having the configuration shown in FIGS. 1 and 2 is shown below.

まず、上記装置における真空容器内を真空とし
た後、ルツボで工業用過共晶Al−Si合金AC9Aを
溶解させ、溶解した上記合金中に投入装置によつ
て5wt%の黒鉛粒子を強化材として添加し、攪拌
翼の低速回転により均一に混合した後、湯口の開
放により混合した複合材料溶湯を1000rpmで高速
回転する回転子上に流下させた。
First, after evacuating the vacuum chamber in the above device, industrial hypereutectic Al-Si alloy AC9A is melted in a crucible, and 5wt% graphite particles are added as a reinforcing material into the melted alloy using a device. After the mixture was added and mixed uniformly by the low-speed rotation of the stirring blade, the mixed molten composite material was allowed to flow down onto a rotor rotating at a high speed of 1000 rpm by opening the sprue.

回転子上に落下した溶融合金複合材料は、その
回転子により微細粒子状の液滴群となつて飛散
し、微細結晶粒化され、粘稠状あるいは半固体状
のものとして鋳型に落下し、塊状合金複合材料と
して連続的に取り出すことができた。
The molten alloy composite material that has fallen onto the rotor is scattered by the rotor as a group of fine droplets, becomes fine crystal grains, and falls into the mold as a viscous or semi-solid material. It was possible to extract it continuously as a bulk alloy composite material.

第3図は、上述したところによつて得られた金
属基複合材料の組成像(倍率:200倍)を示し、
これによつて晶出する初晶Si粒子の大きさを数
μmにして、粉末治金法と同等の均質微細なミク
ロ組織を得られることがわかる。
FIG. 3 shows a composition image (magnification: 200 times) of the metal matrix composite material obtained as described above,
It can be seen that by this method, the size of the primary Si particles crystallized can be reduced to several μm, and a homogeneous and fine microstructure equivalent to that obtained by powder metallurgy can be obtained.

[発明の効果] 以上に詳述した本発明の方法によれば、過共晶
Al−Si合金複合材料を、簡単な装置による溶湯
の均質混合及び高速回転攪拌鋳造により、従来の
粉末治金法のように、合金を一旦粉末化したりす
ることなく、晶出する初晶Si粒子の大きさを数
μmにして、上記粉末治金法と同等の均質微細な
ミクロ組織と機械的性質をもつ耐摩耗性材料を低
コストで製造することができる。
[Effect of the invention] According to the method of the present invention detailed above, hypereutectic
Primary Si particles are crystallized from Al-Si alloy composite materials by homogeneous mixing of the molten metal using simple equipment and high-speed rotational stirring casting, without first turning the alloy into powder as in conventional powder metallurgy methods. By reducing the size to several μm, it is possible to produce a wear-resistant material at low cost that has a homogeneous, fine microstructure and mechanical properties equivalent to those obtained by the powder metallurgy method described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施する装置の正面断
面図、第2図はその側断面図、第3図は本発明に
よつて得られた合金複合材料の金属組織について
の図面代用写真である。 1……真空容器、2……溶解炉、8……攪拌
翼、20……溶融複合材料攪拌装置、22……耐
熱容器、23……回転子。
Fig. 1 is a front sectional view of an apparatus for carrying out the method of the present invention, Fig. 2 is a side sectional view thereof, and Fig. 3 is a photograph substituted for a drawing of the metallographic structure of the alloy composite material obtained by the present invention. be. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Melting furnace, 8... Stirring blade, 20... Molten composite material stirring device, 22... Heat resistant container, 23... Rotor.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器内の溶解炉で溶融した過共晶Al−
Si合金に攪拌翼を挿入して低速回転させながら、
非金属粒子または繊維からなる強化材を添加して
均質混合させ、それによつて得られる溶融合金複
合材料を、耐熱容器内で水平軸のまわりに高速回
転する多角形状の回転子上に落下させ、その溶融
合金複合材料を上記回転子の高速回転による回転
攪拌作用により飛散させて、生成した初晶Si結晶
を破砕し、飛散した半溶融金属複合材料を上記耐
熱容器に受止めて、均質微細なミクロ組織をもつ
半固体状の塊状集合体として取り出すことを特徴
とする過共晶Al−Si合金複合材料の連続製造方
法。
1 Hypereutectic Al− melted in a melting furnace inside a vacuum container
While inserting a stirring blade into the Si alloy and rotating it at low speed,
A reinforcing material consisting of non-metallic particles or fibers is added and mixed homogeneously, and the resulting molten alloy composite material is dropped onto a polygonal rotor rotating at high speed around a horizontal axis in a heat-resistant container, The molten alloy composite material is scattered by the rotational stirring action of the rotor at high speed, the generated primary Si crystals are crushed, and the scattered semi-molten metal composite material is received in the heat-resistant container to form a homogeneous and fine material. A continuous manufacturing method for a hypereutectic Al-Si alloy composite material, which is characterized in that it is extracted as a semi-solid lumpy aggregate with a microstructure.
JP25434587A 1987-03-30 1987-10-08 Continuous production of hypereutectic al-si alloy composite material Granted JPH0196342A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25434587A JPH0196342A (en) 1987-10-08 1987-10-08 Continuous production of hypereutectic al-si alloy composite material
US07/175,217 US4865808A (en) 1987-03-30 1988-03-30 Method for making hypereutetic Al-Si alloy composite materials
US07/352,878 US4917359A (en) 1987-03-30 1989-05-17 Apparatus for making hypereutectic Al-Si alloy composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25434587A JPH0196342A (en) 1987-10-08 1987-10-08 Continuous production of hypereutectic al-si alloy composite material

Publications (2)

Publication Number Publication Date
JPH0196342A JPH0196342A (en) 1989-04-14
JPH0431009B2 true JPH0431009B2 (en) 1992-05-25

Family

ID=17263703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25434587A Granted JPH0196342A (en) 1987-03-30 1987-10-08 Continuous production of hypereutectic al-si alloy composite material

Country Status (1)

Country Link
JP (1) JPH0196342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108269A1 (en) 2010-03-02 2011-09-09 昭和電工株式会社 Process for production of carbon fibers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170929A (en) * 1988-12-23 1990-07-02 Suzuki Motor Co Ltd Continuous manufacturing equipment for metal matrix composite
JPH02200745A (en) * 1989-01-27 1990-08-09 Suzuki Motor Co Ltd Apparatus for continuous production of metal-based composite material
SE528376C2 (en) 2004-12-10 2006-10-31 Magnus Wessen Method and apparatus for producing a liquid-solid metal composition
CN1298457C (en) * 2005-04-05 2007-02-07 北京交通大学 Vacuum mechanical dual-stirring casting method for preparing granule reinforced aluminium-base composite material
CN104357702B (en) * 2014-11-27 2016-03-30 哈尔滨工业大学 One prepares nanometer Al 2o 3the device and method of particle enhanced aluminum-based composite material semi solid slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108269A1 (en) 2010-03-02 2011-09-09 昭和電工株式会社 Process for production of carbon fibers

Also Published As

Publication number Publication date
JPH0196342A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US6491423B1 (en) Apparatus for mixing particles into a liquid medium
US4917359A (en) Apparatus for making hypereutectic Al-Si alloy composite materials
KR20000048914A (en) Apparatus and method for semi-solid material production
JPH02500201A (en) Composite manufacturing method
US6106588A (en) Preparation of metal matrix composites under atmospheric pressure
CN100491553C (en) Technique of preparing grain reinforced aluminum base composite material and special equipment thereof
KR910006069B1 (en) Method for manufacture of cast articles of fiber-reinforced aluminium composite
Klier et al. Fabrication of cast particle-reinforced metals via pressure infiltration
JPH0431009B2 (en)
JPH027749B2 (en)
JP3283508B2 (en) Cast composite having a matrix containing stable oxide-forming elements
KR101117460B1 (en) A manufacturing method of composite metal powder using the gas atomization
JPS61119632A (en) Manufacture of high ductility material
JP2701298B2 (en) Method and apparatus for continuous production of metal matrix composite materials
JPH0114298B2 (en)
CN215998698U (en) Bottom casting device for preparing particle reinforced aluminum matrix composite
JPH044382B2 (en)
CN219079617U (en) System for in situ synthesis of nanoparticle reinforced aluminum matrix composite
US6129134A (en) Synthesis of metal matrix composite
Ichikawa et al. Refinement of microstructures and improvement of mechanical properties in intermetallic TiAl alloys by rheocasting
JPH0622531Y2 (en) Continuous production equipment for metal matrix composites
CN113547114A (en) Bottom casting device and method for preparing particle-reinforced aluminum-based composite material
JPH02290931A (en) Method for agitating and solidifying molten metal
JPH02421B2 (en)
KR20000048913A (en) Apparatus and method for integrated semi-solid material production and casting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term