JPH0196341A - Production of hypereutectic al-si alloy composite material - Google Patents
Production of hypereutectic al-si alloy composite materialInfo
- Publication number
- JPH0196341A JPH0196341A JP25434487A JP25434487A JPH0196341A JP H0196341 A JPH0196341 A JP H0196341A JP 25434487 A JP25434487 A JP 25434487A JP 25434487 A JP25434487 A JP 25434487A JP H0196341 A JPH0196341 A JP H0196341A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- hypereutectic
- alloy
- composite material
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 229910021364 Al-Si alloy Inorganic materials 0.000 title claims abstract 5
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002245 particle Substances 0.000 claims abstract description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 12
- 239000010439 graphite Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011888 foil Substances 0.000 claims abstract description 6
- 230000002787 reinforcement Effects 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims description 29
- 229910045601 alloy Inorganic materials 0.000 claims description 28
- 239000000835 fiber Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000012779 reinforcing material Substances 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000013528 metallic particle Substances 0.000 claims description 5
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- 229910018523 Al—S Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000000155 melt Substances 0.000 abstract 4
- 238000000034 method Methods 0.000 description 15
- 229910000676 Si alloy Inorganic materials 0.000 description 9
- 238000005266 casting Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000004663 powder metallurgy Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- -1 titanium carbide Chemical class 0.000 description 2
- 230000002747 voluntary effect Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、非金属粒子や短taM1の分散によって強化
した過共晶A Q−9i合金複合材料の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hypereutectic A Q-9i alloy composite material strengthened by dispersion of nonmetallic particles and short taM1.
[従来の技術]
固液共存状態の合金材料に対して、回転翼により機械的
な回転攪拌を加えながら、非金属粒子や短繊維などの強
化材を添加し、均質な複合材料をつくる鋳造法は、コン
ポキャスト法として知られている。また、急冷凝固法な
どで製造した微細結晶粉末と非金属粉末を均質混合して
焼結させる粉末冶金法がある。[Conventional technology] A casting method that creates a homogeneous composite material by adding reinforcing materials such as nonmetallic particles and short fibers to an alloy material in a solid-liquid coexistence state while applying mechanical rotational agitation using a rotary blade. This is known as the composite casting method. There is also a powder metallurgy method in which fine crystal powder produced by a rapid solidification method or the like and nonmetal powder are homogeneously mixed and sintered.
しかるに、上記コンポキャスト法では回転翼の回転速度
が1100Orp以下に抑えられているので、結晶粒の
均質微細化と粒子の均一分散が十分性われず、鋳造欠陥
が生じ易いという問題がある。また、還元性雰囲気や大
気中で回転翼を回転させるので、不活性ガスや空気を巻
き込みやすく、得られた機械的性質はそれほど改善され
ない。However, in the above-mentioned composite casting method, since the rotational speed of the rotor is suppressed to 1100 Orp or less, homogeneous refinement of crystal grains and uniform dispersion of particles are not sufficiently achieved, resulting in a problem that casting defects are likely to occur. Furthermore, since the rotor is rotated in a reducing atmosphere or the atmosphere, inert gas or air is likely to be drawn in, and the resulting mechanical properties are not significantly improved.
一方、上記粉末冶金法では、均質で微細な結晶粒をもっ
た緻密なミクロ組織を得ることができるが、複雑な材料
製造プロセスと大規模な設備が不可欠であるため、必然
的に材料製造費がコスト高にならざるを得ない。On the other hand, with the powder metallurgy method described above, it is possible to obtain a dense microstructure with homogeneous and fine crystal grains, but because it requires a complicated material manufacturing process and large-scale equipment, it inevitably increases material manufacturing costs. However, this has no choice but to result in high costs.
[発明が解決しようとする問題点]
本発明の目的は、過共晶Al−5r合金複合材料におけ
る鋳造欠陥の除去と材料特性の向上を図るに当り、簡易
な方法により晶出する初晶Si粒子を微細化すると共に
、マトリックス合金と非金属粒子や短m維からなる強化
材との比重差が大きい場合でも全体を均質に混合できる
ようにし、それによって、粉末冶金法に匹敵する均質微
細なミクロ組織と機械的性質をもつ耐摩耗性の優れた過
共晶A12−Si合金複合材料を低コストで製造可能に
することにある。[Problems to be Solved by the Invention] An object of the present invention is to solve the problem of primary Si crystallized by a simple method in order to eliminate casting defects and improve material properties in a hypereutectic Al-5r alloy composite material. In addition to making the particles finer, even if there is a large difference in specific gravity between the matrix alloy and the reinforcing material made of nonmetallic particles or short fibers, the whole can be mixed homogeneously. The object of the present invention is to enable the production of a hypereutectic A12-Si alloy composite material with excellent wear resistance and microstructure and mechanical properties at low cost.
[問題点を解決するための手段、作用]上記目的を達成
するための本発明の合金複合材料製造方法は、内部を真
空に保持した冷却室において固液共存状態の過共晶AΩ
−Si合金中に、黒鉛などの非金属粒子や短繊維からな
る強化材をアルミ箔でくるんで添加して、溶湯中に挿入
した回転子を低速回転させることにより上記強化材を分
散させ、凝固開始と同時に回転子を高速回転させて、破
砕した初晶Si結晶の間隙に強化材を均一に分散させ、
均質な粒子分散強化または繊維強化を行った合金複合材
料を得ることを特徴とするものである。[Means and effects for solving the problem] The method for producing an alloy composite material of the present invention to achieve the above object is to produce hypereutectic AΩ in a solid-liquid coexistence state in a cooling chamber whose interior is kept in vacuum.
- A reinforcing material made of non-metallic particles such as graphite or short fibers is added to the Si alloy by wrapping it in aluminum foil, and by rotating a rotor inserted into the molten metal at low speed, the reinforcing material is dispersed and solidified. At the same time as the start, the rotor is rotated at high speed to uniformly disperse the reinforcing material in the gaps between the crushed primary Si crystals.
This method is characterized by obtaining an alloy composite material which is homogeneously reinforced by particle dispersion or fiber reinforcement.
本発明の方法についてさらに具体的に説明すると、まず
、マトリックス合金としての過共晶へΩ−Si合金は、
真空容器内において加熱炉により溶解し、この過共晶A
l−Si合金に対して固液共存状態において黒鉛などの
非金属粒子や短繊維からなる強化材を添加する。これら
の強化材は、固液共存状態にある過共晶AΩ−Si合金
を回転攪拌する回転子に、アルミ箔にくるんだ状態で固
定して、溶湯へ挿入するのが好ましく、これによってア
ルミ箔の溶融と同時にそれを溶湯中に押し込むことがで
き、回転子を溶湯への挿入後に直ちに低速回転させるこ
とにより、AΩ−9i合金の溶湯内に非金属粒子や短繊
維を均一に分散させることができる。To explain the method of the present invention in more detail, first, the hypereutectic Ω-Si alloy as a matrix alloy is
This hypereutectic A is melted in a heating furnace in a vacuum container.
A reinforcing material consisting of nonmetallic particles such as graphite or short fibers is added to the l-Si alloy in a solid-liquid coexistence state. These reinforcing materials are preferably wrapped in aluminum foil and fixed to a rotor that rotates and stirs the hypereutectic AΩ-Si alloy in a solid-liquid coexistence state, and then inserted into the molten metal. By rotating the rotor at low speed immediately after inserting it into the molten metal, non-metallic particles and short fibers can be uniformly dispersed in the molten AΩ-9i alloy. can.
上記強化材としては、粒子分散強化型や繊維強化型の合
金複合材料を得るのに適した非金属材料の粉末や短繊維
、例えば、上記黒鉛以外に、炭化チタンなどの炭化物、
アルミナなどの酸化物、窒化ケイ素などの窒化物等のい
ずれか、またはそれらの複数の混合物を用いることがで
き、マトリックス合金に対するそれらの混合割合は、3
〜8wt%程度が適している。Examples of the reinforcing material include powders and short fibers of non-metallic materials suitable for obtaining particle dispersion-reinforced or fiber-reinforced alloy composite materials, for example, in addition to the graphite described above, carbides such as titanium carbide,
Any one of oxides such as alumina, nitrides such as silicon nitride, etc., or a mixture of multiple thereof can be used, and the mixing ratio of these to the matrix alloy is 3.
Approximately 8 wt% is suitable.
一般に、溶湯中への他の成分の添加は、その添加成分を
湯面上に注入するのが通例であるが、上記過共晶AΩ−
Si合金の溶湯内へ黒鉛等の非金属粒子や短繊維を添加
する場合には、そのぬれ性がよくないため、溶湯と分離
した状態になり易い、しかるに、上述したように非金属
粒子や短繊維をアルミ箔にくるんだ状態で溶湯中に押し
込むと、それらの酸化も少なく、多少は溶湯と分離する
傾向があっても、直ちに回転子を回転させるので、極め
て能率的に粒子や短繊維を均一に分散させることができ
る。Generally, when adding other components to the molten metal, it is customary to inject the added components onto the surface of the molten metal.
When non-metallic particles such as graphite or short fibers are added into the molten Si alloy, their wettability is poor and they tend to separate from the molten metal.However, as mentioned above, non-metallic particles and short fibers When the fibers are wrapped in aluminum foil and pushed into the molten metal, there is less oxidation of the fibers, and even if they tend to separate from the molten metal, the rotor is immediately rotated, so particles and short fibers are removed extremely efficiently. Can be uniformly dispersed.
溶湯中においては、回転子を低速回転させなから溶湯の
冷却を継続するので1間もなく溶湯は凝固を開始するが
、この凝固開始と同時に回転子を高速回転させ、生成し
た結晶の間隙に非金属粒子や短maを均一に分散させる
。その結果、均質な粒子分散強化型や#a維強化型の合
金複合材料を得ることができる。In the molten metal, the rotor is not rotated at a low speed and the molten metal continues to be cooled, so the molten metal starts to solidify within a short period of time.At the same time as this solidification starts, the rotor is rotated at a high speed and the non-metal is poured into the gaps between the formed crystals. Uniformly disperse particles and short ma. As a result, a homogeneous particle dispersion reinforced type or #a fiber reinforced type alloy composite material can be obtained.
マトリックス合金としての過共晶AΩ−S+合金には、
必要に応じて、その溶融に際し予め微量の結晶粒微細化
剤を添加しておくことができる。この結晶粒微細化剤と
しては、例えば、はぼ5:1の重量比をもつTiとB、
あるいは1丁a、Nb、Zrなどがある。これらの結晶
粒微細化剤は、マトリックス合金の粒結晶を微細化して
、TiC粒子を均一に分散させ易い状態にするものであ
る。The hypereutectic AΩ-S+ alloy as a matrix alloy has
If necessary, a small amount of a grain refining agent can be added in advance during the melting. As the grain refiner, for example, Ti and B having a weight ratio of about 5:1,
Alternatively, there are 1-choa, Nb, Zr, etc. These grain refiners refine the grain crystals of the matrix alloy, making it easier to uniformly disperse TiC particles.
次に、図面を参照して本発明の過共晶Al−9i合金複
合材料を製造する装置例について説明する。Next, an example of an apparatus for manufacturing the hypereutectic Al-9i alloy composite material of the present invention will be described with reference to the drawings.
第1図は、上記合金複合材料を製造する装置の一例を示
すもので、前面に開閉扉を持つチャンバ本体1は真空容
器を構成し、その内部をエアシリンダ3で開閉される耐
熱性のシャック2により上下に区画して、下方の加熱室
4内に抵抗加熱炉5を配置すると共←、上方の冷却室6
内に、冷却コイル8を持つ水冷外筒7及びその冷却外筒
7内に上方から垂下した第2図に示すような断面形状の
回転子9を配置し、この回転子9をトルクモータlOで
回転駆動するようにしたものである。FIG. 1 shows an example of an apparatus for manufacturing the above-mentioned alloy composite material. A chamber main body 1 with an opening/closing door on the front constitutes a vacuum container, and a heat-resistant shack inside the chamber is opened and closed by an air cylinder 3. The resistance heating furnace 5 is arranged in the lower heating chamber 4, and the upper cooling chamber 6 is divided into upper and lower parts by 2.
Inside, a water-cooled outer cylinder 7 having a cooling coil 8 and a rotor 9 having a cross-sectional shape as shown in FIG. It is designed to be rotationally driven.
この装置においては、チャンバ本体1内を図示しない真
空源に接続して、真空排気後、炉内の黒鉛るつぼ12中
で供試合金を加熱溶解し、その溶解後、炉上のシャッタ
2を開放して、チャンノく本体1の下面を貫通する支持
tP!511を昇降可能にしたるつぼ昇降機構で、上記
黒鉛るっぽ12を水冷外筒7内まで上昇させることによ
り、るつぼ12内の溶湯中に回転子9を挿入し、冷・部
室6内における急速な冷却過程において、その回転子9
の回転により半溶融合金を攪拌させる。In this device, the inside of the chamber body 1 is connected to a vacuum source (not shown), and after evacuation, the sample gold is heated and melted in a graphite crucible 12 in the furnace, and after the melting, the shutter 2 on the furnace is opened. Then, the support tP that penetrates the lower surface of the main body 1! 511 is used to raise and lower the graphite lug 12 into the water-cooled outer cylinder 7, the rotor 9 is inserted into the molten metal in the crucible 12, and the rotor 9 is rapidly moved into the cooling chamber 6. During the cooling process, the rotor 9
The semi-molten alloy is stirred by the rotation of the .
上記回転子9を回転させるトルクモータ10は、回転子
9を10000 rprrr程度まで高速回転させ得る
ものとし、その回転軸にトルク検出器及び回転検出器を
設けて、それらをディジタル表示器に接続している。The torque motor 10 that rotates the rotor 9 is capable of rotating the rotor 9 at a high speed of about 10,000 rprrr, and is equipped with a torque detector and a rotation detector on its rotating shaft, and connects them to a digital display. ing.
上記装置例に示す内径55mmの黒鉛るつぼ内において
、8角形断面の回転子を用いる場合、その低速回転は、
500〜11000rp程度で回転させる必要があり、
またそれに続く高速回転は2000〜6000rpm程
度にする必要がある。When a rotor with an octagonal cross section is used in the graphite crucible with an inner diameter of 55 mm shown in the above device example, its low speed rotation is as follows.
It is necessary to rotate at about 500 to 11000 rpm,
Further, the subsequent high-speed rotation needs to be approximately 2000 to 6000 rpm.
[実施例]
第1図及び第2図に示す構成の合金複合材料製造装置を
用い、真空溶解した過共晶A(2−17!Si合金中に
水冷外筒内で回転子を挿入し、その際、回転子によって
アルミ箔でくるんだ8%の黒鉛粒子を合金中に押込み、
回転子を1000 rptnで低速回転させ、その後、
凝固開始から凝固終了直前まで、3000 rpmで高
速回転攪拌凝固させ、Afl−17$5i−820の合
金複合材料を得た。[Example] Using an alloy composite material manufacturing apparatus having the configuration shown in FIGS. 1 and 2, a rotor was inserted into a vacuum-melted hypereutectic A (2-17!Si alloy in a water-cooled outer cylinder, At that time, 8% graphite particles wrapped in aluminum foil were pushed into the alloy by a rotor.
The rotor was rotated at a low speed of 1000 rpm, and then
The mixture was stirred at high speed at 3000 rpm from the start of solidification to just before the end of solidification to obtain an alloy composite material of Afl-17$5i-820.
また、同様にして凝固開始から凝固終了直前まで、21
0Orpmテ回転攪拌を続行し、Al−17$5i−6
20の合金複合材料を得た。Similarly, from the start of coagulation to just before the end of coagulation, 21
Continue stirring at 0 rpm, Al-17$5i-6
20 alloy composite materials were obtained.
第3図及び第4図は、上述したところによって得られた
合金複合材料の二次電子像を示すもので、これらによれ
ば、極めて均質で微細な過共晶Aρ−Si合金が得られ
ることがわかる。Figures 3 and 4 show secondary electron images of the alloy composite material obtained as described above, and these show that an extremely homogeneous and fine hypereutectic Aρ-Si alloy can be obtained. I understand.
[発明の効果]
このような本発明の方法によれば、過共晶AΩ−9i合
金複合材料を、溶湯の均質混合及び高速回転攪拌鋳造に
より、従来の粉末冶金法のように同合金を一旦粉末化せ
ずに、晶出する初晶Si粒子を均質微細化して上記粉末
冶金法に匹敵するミクロ組織と機械的性質をもつ#I1
1摩耗性材料を低コストで製造することができる。[Effects of the Invention] According to the method of the present invention, a hypereutectic AΩ-9i alloy composite material is made by homogeneous mixing of molten metal and high-speed rotational stirring casting, unlike the conventional powder metallurgy method. #I1 has a microstructure and mechanical properties comparable to those of the powder metallurgy method by homogeneously refining the primary Si particles that crystallize without powdering.
1. Abrasive materials can be manufactured at low cost.
また、従来のコンポキャスト法に比して、回転子の回転
速度を数倍に上昇させるので、均質微細化と粒子の均一
分散が可能となり、しかも真空中で行うので、異物の巻
き込みも生じない。In addition, since the rotation speed of the rotor is increased several times compared to the conventional composite casting method, homogeneous refinement and uniform dispersion of particles are possible, and since it is carried out in a vacuum, there is no entrainment of foreign matter. .
第1図は本発明に基づいて過共晶AΩ−Si合金複合材
料を製造する装置の断面図、第2図はその要部断面図、
第3図及び第4図は本発明によって得うレタAU−17
$5i−820及びAl−17%’;1−GZC(7)
合金複合材料についての金属組織を示す図面代用写真で
ある。
l・・真空容器、 6・・冷却室、
9・・回転子。
第3図
第4図
手続補正書(自発)
特許庁長官 吉 1)文 毅 殿
■、事件の表示
昭和62年特許願第254344号
2、発明の名称
過共晶An−5i合金複合材料の製造方法3、補正をす
る者
事件との関係 特許出願人
住 所 東京都千代田区霞が関1丁目3番1号(114
)名 称 工業技術院長 飯 塚 幸 三住 所 静
岡県浜名郡可美村高塚300番地名 称 鈴木自動車工
業株式会社
取締役社長 鈴 木 修
4、指定代理人
住 所 茨城系つくば市並木1丁目2番地(昭和82年
11月30日の行政区画変更による)(0030)名
称 工業技術院機械技術研究所長曽 1) 長 一
部
5、復代理人(工業技術院長の復代理人)住 所 東京
都新宿区西新宿−丁目9番12号6、代理人(鈴木自動
車工業株式会社の代理人)住 所 東京都新宿区西新宿
−丁目9番12号7・補正命令の日付は
自 発
8、補正の対象
明細書の発明の詳細な説明の欄。
9、補正の内容
別紙の通り
補正の内容
(1)明細書第9頁第12行に記載の「合金複合材料の
二次電子像を」を、「合金複合材料中の黒鉛粒子のX線
像を」と補正します。FIG. 1 is a cross-sectional view of an apparatus for producing a hypereutectic AΩ-Si alloy composite material based on the present invention, and FIG. 2 is a cross-sectional view of the main parts thereof.
Figures 3 and 4 show letter AU-17 obtained by the present invention.
$5i-820 and Al-17%'; 1-GZC (7)
It is a photograph substituted for a drawing showing the metallographic structure of an alloy composite material. l...Vacuum container, 6...Cooling chamber, 9...Rotor. Figure 3 Figure 4 Procedural amendment (voluntary) Yoshi, Commissioner of the Japan Patent Office 1) Mr. Tsuyoshi Moon ■, Indication of the case 1988 Patent Application No. 254344 2, Name of the invention Manufacture of hypereutectic An-5i alloy composite material Method 3: Relationship with the person making the amendment Patent applicant address: 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114)
) Name: Director of the Agency of Industrial Science and Technology Sachi Iizuka Address: 300 Takatsuka, Kamimura, Hamana-gun, Shizuoka Prefecture Name: Osamu Suzuki, President and CEO of Suzuki Motor Co., Ltd. Address: 1-2 Namiki, Tsukuba City, Ibaraki Prefecture (Due to administrative division change on November 30, 1982) (0030) person
Name: Nagaso, Mechanical Technology Research Institute, Agency of Industrial Science and Technology 1) Director: Part 5, Sub-Agent (Sub-Agent of the Director of the Agency of Industrial Science and Technology) Address: 9-12-6 Nishi-Shinjuku-chome, Shinjuku-ku, Tokyo, Agent (Suzuki Motor Corporation) Co., Ltd.'s agent) Address: Nishi-Shinjuku-chome 9-12-7, Shinjuku-ku, Tokyo 7. The date of the amendment order is voluntary 8. The detailed description of the invention in the specification to be amended. 9. Contents of the amendments Contents of the amendments (1) Change the "secondary electron image of the alloy composite material" stated on page 9, line 12 of the specification to "X-ray image of graphite particles in the alloy composite material" ” and correct it.
Claims (1)
の過共晶Al−Si合金中に、黒鉛などの非金属粒子や
短繊維からなる強化材をアルミ箔でくるんで添加して、
溶湯中に挿入した回転子を低速回転させることにより上
記強化材を分散させ、凝固開始と同時に回転子を高速回
転させて、破砕した初晶Si結晶の間隙に強化材を均一
に分散させ、均質な粒子分散強化または繊維強化を行っ
た合金複合材料を得ることを特徴とする過共晶Al−S
i合金複合材料の製造方法。1. A reinforcing material made of non-metallic particles such as graphite or short fibers is added to a hypereutectic Al-Si alloy in a solid-liquid coexistence state in a cooling chamber kept in a vacuum, wrapped in aluminum foil.
The reinforcing material is dispersed by rotating a rotor inserted into the molten metal at low speed, and at the same time as the solidification starts, the rotor is rotated at high speed to uniformly disperse the reinforcing material in the gaps between the crushed primary Si crystals. A hypereutectic Al-S characterized by obtaining an alloy composite material reinforced by particle dispersion or fiber reinforcement.
A method for producing an i-alloy composite material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25434487A JPH0196341A (en) | 1987-10-08 | 1987-10-08 | Production of hypereutectic al-si alloy composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25434487A JPH0196341A (en) | 1987-10-08 | 1987-10-08 | Production of hypereutectic al-si alloy composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0196341A true JPH0196341A (en) | 1989-04-14 |
JPH044382B2 JPH044382B2 (en) | 1992-01-28 |
Family
ID=17263691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25434487A Granted JPH0196341A (en) | 1987-10-08 | 1987-10-08 | Production of hypereutectic al-si alloy composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0196341A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5513688A (en) * | 1992-12-07 | 1996-05-07 | Rheo-Technology, Ltd. | Method for the production of dispersion strengthened metal matrix composites |
WO2013054716A1 (en) * | 2011-10-11 | 2013-04-18 | 日本軽金属株式会社 | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782441A (en) * | 1980-11-12 | 1982-05-22 | Manabu Kiuchi | Manufacture of grain reinforced composite material |
JPS61119632A (en) * | 1984-11-14 | 1986-06-06 | Agency Of Ind Science & Technol | Manufacture of high ductility material |
-
1987
- 1987-10-08 JP JP25434487A patent/JPH0196341A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5782441A (en) * | 1980-11-12 | 1982-05-22 | Manabu Kiuchi | Manufacture of grain reinforced composite material |
JPS61119632A (en) * | 1984-11-14 | 1986-06-06 | Agency Of Ind Science & Technol | Manufacture of high ductility material |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5513688A (en) * | 1992-12-07 | 1996-05-07 | Rheo-Technology, Ltd. | Method for the production of dispersion strengthened metal matrix composites |
WO2013054716A1 (en) * | 2011-10-11 | 2013-04-18 | 日本軽金属株式会社 | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
JP5655953B2 (en) * | 2011-10-11 | 2015-01-21 | 日本軽金属株式会社 | Al-Fe-Si-based compound and method for producing aluminum alloy in which primary crystal Si is refined |
US9303299B2 (en) | 2011-10-11 | 2016-04-05 | Nippon Light Metal Company, Ltd. | Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si |
Also Published As
Publication number | Publication date |
---|---|
JPH044382B2 (en) | 1992-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU732289B2 (en) | Particulate field distributions in centrifugally cast metal matrix composites | |
US5897830A (en) | P/M titanium composite casting | |
US5346184A (en) | Method and apparatus for rapidly solidified ingot production | |
US4865808A (en) | Method for making hypereutetic Al-Si alloy composite materials | |
US6106588A (en) | Preparation of metal matrix composites under atmospheric pressure | |
Klier et al. | Fabrication of cast particle-reinforced metals via pressure infiltration | |
CN115595477A (en) | Aluminum-based composite material and preparation method thereof | |
JPH0196341A (en) | Production of hypereutectic al-si alloy composite material | |
JPH0431009B2 (en) | ||
JPS61119632A (en) | Manufacture of high ductility material | |
Ichikawa et al. | Rheocasting techniques applied to intermetallic TiAl alloys and composites | |
JPH0114298B2 (en) | ||
CA2063726A1 (en) | Cast composite material having a matrix containing a stable oxide-forming element | |
Ichikawa et al. | Refinement of microstructures and improvement of mechanical properties in intermetallic TiAl alloys by rheocasting | |
JPS63216919A (en) | Manufacture of al-cu-tic alloy composite material | |
JPS63242462A (en) | Apparatus for continuously producing metal base composite material | |
RU2820862C1 (en) | Method of producing aluminium composite reinforced with basalt | |
JP2583313B2 (en) | Method for producing Nb-Ti alloy | |
US6129134A (en) | Synthesis of metal matrix composite | |
JP2701298B2 (en) | Method and apparatus for continuous production of metal matrix composite materials | |
Ichikawa et al. | Microstructural control of Intermetallic CuAl-based and hypereutectic Al–Si alloys by stirring synthesis method | |
Ichikawa et al. | Rheocasting of TiAl alloys and composites | |
Ichikawa et al. | Effect of heat treatment on mechanical and electrical properties of compocast dispersion-strengthened coppers | |
JPH0244622B2 (en) | KAISHITSUSARETACHUKUIMONONOSEIZOHOHO | |
JPH05214477A (en) | Composite material and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080128 Year of fee payment: 16 |