JPH0241864Y2 - - Google Patents

Info

Publication number
JPH0241864Y2
JPH0241864Y2 JP1983165393U JP16539383U JPH0241864Y2 JP H0241864 Y2 JPH0241864 Y2 JP H0241864Y2 JP 1983165393 U JP1983165393 U JP 1983165393U JP 16539383 U JP16539383 U JP 16539383U JP H0241864 Y2 JPH0241864 Y2 JP H0241864Y2
Authority
JP
Japan
Prior art keywords
bonding
capillary
gold
tip
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983165393U
Other languages
Japanese (ja)
Other versions
JPS6073238U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983165393U priority Critical patent/JPS6073238U/en
Publication of JPS6073238U publication Critical patent/JPS6073238U/en
Application granted granted Critical
Publication of JPH0241864Y2 publication Critical patent/JPH0241864Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector

Description

【考案の詳細な説明】 〔考案の技術分野〕 本発明はトランジスタ、IC等半導体素子の組
立作業におけるワイヤボンデイング工程で使用す
るボンデイング用キヤピラリの表面仕上に関する
もので、特にサーモソニツクワイヤボンデイング
に使用されるボンデイング用キヤピラリである。 〔考案の技術的背景〕 リードフレーム等に取付けられた半導体素子
(半導体ペレツトともいう)上の電極とリードフ
レーム等の外部リードとを金属細線で接続する工
程をワイヤボンデイングと呼び、組立作業の中で
最も精度を要求され、半導体装置の歩留まり、信
頼性に大きな影響をおよぼす。ワイヤボンデイン
グには熱圧着法、超音波ボンデイング法等ある
が、最近では熱圧着法に超音波を加えてボンデイ
ングするサーモソニツクワイヤボンデイング法が
広く使用されている。超音波エネルギーを熱圧着
法のキヤピラリに加えると、ボンデイング時に通
常の熱圧着法で280℃程度以上を必要とする基板
温度を200℃以下に下げることができる。またキ
ヤピラリに超音波を加えても熱圧着法なので無方
向性に近いボンデイングが可能である。第2図な
いし第3図にもとずいてサーモソニツクワイヤボ
ンデイングによる従来のボンデイング作業例につ
いて説明する。キヤピラリ5のほぼ中心軸に沿つ
て挿通された金の細線6の先端はボール4を形成
している。リードフレーム9にマウントされた半
導体素子8上のアルミニウム電極7にあらかじめ
約200℃程度に加熱される。金ボール4を前記電
極7の面にあてがい、キヤピラリ5の先端押え部
1,2(第1図参照)で金ボール4に荷重を加え
たままの状態で、電極7の面とほぼ平行方向10
の超音波振動をキヤピラリ5に与える。金ボール
4は押しつぶされて第3図に示す扁平な金ボール
4′となり接着面積が増大する。この過程で金ボ
ール4又は4′とはアルミニウム電極7との接触
面の酸化膜等は超音波振動により破壊され、金と
アルミニウムの新鮮な面が互に接触し、金とアル
ミニウムの2種の金属間に拡散が生じ、接触部は
金とアルミニウムとの金属間結合によりボンデイ
ングされる。次にキヤピラリを移動すると同時に
金線を引出してループを作り、リードフレームの
外部リード(図示されていない)上に金線をキヤ
ピラリ先端で圧着し、ほぼ上記と同様の方法で外
部リードに金線をボンデイングする。最後にキヤ
ピラリを持ち上げ水素焔により金線を切断する。 〔背景技術の問題点〕 前記の半導体素子8上のアルミ電極7に金線を
サーモニツクワイヤボンデイングする工程におい
て、ボンデイング条件(ボンデイング荷重、超音
波の出力、発振時間、温度等)のわずかな変動に
よつて例えばボール4のつぶれが大きくなり或は
大きくなりすぎて半導体素子上の別の電極に接触
する等不良が発生する。ワイヤボンデイングの不
良は半導体装置にとつては致命的であり、信頼性
の面から大きな問題点である。 〔考案の目的〕 本考案は前記問題点を解消し、ボンデイング条
件かなりの変動によつても十分なボンデイング強
度を得ることができるサーモソニツクワイヤボン
デイング用キヤピラリを提供することを目的とす
る。 〔考案の概要〕 前記問題点を解決するため本考案者はキヤピラ
リ先端の金ボール押え部1,2の形状、押え部表
面の粗さおよびボンデイング条件(ボンデイング
荷重、超音波の出力、発振時間、温度等)を種々
変化させ研究を重ねた結果、ボンデイング時に超
音波の振動エネルギーが金ボール4と半導体素子
上のアルミ電極7との接合反応に有効に使われる
ためにはキヤピラリ先端の金ボール押え部1,2
の表面をつや消し状態にすることが必要であると
判明した。すなわち本考案は「半導体素子上の電
極と外部リードとを金の細線で接続するサーモソ
ニツクワイヤボンデイングに使用するボンデイン
グ用キヤピラリにおいて、キヤピラリ先端押え部
1,2の表面の粗さが(0.05〜2)μmRmaxで
あることを特徴とするサーモソニツクワイヤボン
デイング用キヤピラリ」である。 キヤピラリ先端押え部1,2はそれぞれ第1図
に示す線分1および円弧2に相当する部分であ
る。またRmaxはJISS B 0601−76(表面粗さ)
にもとづき求めた数値である。以下表面の粗さ
0.05μmRmax以下のものを鏡面仕上げ、(0.05〜
2)μmRmaxのものをつや消し仕上げ、2μm
Rmax以上のものを粗仕上げと呼ぶ。 キヤピラリの先端押え部1,2が鏡面仕上げの
場合には超音波のエネルギーが金ボール4と電極
7との接合面に有効に伝達されず、ボンデイング
条件のわずかな変動により、金ボールのつぶれ
幅、ボンデイング強度等の変動が多い。またキヤ
ピラリ先端が粗仕上げの場合には半導体素子上の
アルミ電極7と金ボール4とは良好なボンデイン
グ強度を有するが、外部リードと金線とのボンデ
イング強度が弱く実用できない。キヤピラリ先端
がつや消し仕上げ(0.05〜2)μmRmaxの時ボ
ンデイング条件のかなりの変動によつても十分な
ボンデイング強度が得られる。 〔考案の実施例〕 サーモソニツクワイヤボンデイングに使用され
るキヤピラリの先端の形状をたとえば第1図の線
分3の角度と寸法dの値を変え金ボール4を保持
し易くしたり或は線分1の長さと角度、寸法eと
円弧2の半径を変え金ボール4との接触面積を大
きくしたりして金ボール4とアルミ電極7とのボ
ンデイング反応の促進を計つた。この場合にはボ
ンデイング荷重が少し大きすぎる時、超音波出力
のわずかな増加減は発振時間を長くすると第3図
に示す1′部分に超音波が有効に伝わらずに金ボ
ールは押し広げられるだけの状態をなり、つぶれ
るわりにはボンデイング強度が不足するとか、或
はつぶれすぎて第5図に示すように半導体素子上
の別の電極7′,7″に接触し短絡不良が発生す
る。他方ボンデイング荷重を少し弱くしたり、超
音波の出力をやや減少したり或は発振時間を短く
すると上記短絡不良は防止できるボンデイング強
度が不十分となる。このように良好な結果を得る
ボンデイング条件の許容範囲が極めて小さいとい
う問題がある。これは従来のキヤピラリの先端部
が鏡面に近い滑らかな状態となつていることが原
因であると推定された。 つぎに本考案者はキヤピラリ先端押え部1,2
の表面の粗さがボンデイング特性に大きな影響を
与えることに着目し、キヤピラリの先端押え部の
表面の仕上げ程度を種々変化させると同時に、ボ
ンデイング条件にも変動(振れ)を与へ、数多く
の試行を繰り返した。これらの試行においてボン
デイング効果の評価項目等は次の通りである。(a)
ボンデイング引張強度(ボンデイング個所の金ワ
イヤに規定張力を加え断線の有無をしらべる)、
(b)ボールはがし強度(ボンデイング後のつぶれた
ボールの横から、カミソリ状の先端をもつ治具に
てボールをはがし、金が残つているかどうかを見
て、金が残つていれば良とする)、(c)ボンデイン
グ後のボールの大きさ、(d)金とアルミニウムの反
応状態(ボンデイング個所の断面調査による)、
(e)製品での熱衝撃試験(−45℃〜150℃の加熱と
冷却を200回繰返した後の特性の良否)(f)外部リ
ードとの接着強度、とした。キヤピラリ先端部の
表面の粗さが0.05μmRmax以下の滑らかな鏡面
仕上になると前記評価項目の(a)ないし(e)の特性は
いずれも劣化する。(第1表の比較試験結果で項
目(a)に有意差がないのは本試験法が実用可否判定
であるため)またキヤピラリ先端部の表面の粗さ
を2μmRmax以上に粗くすると半導体素子上のア
ルミ電極と金線とのボンデイング特性は良好であ
るが外部リードとのボンデイング強度は弱くな
る。ボンデイング特性の評価項目をすべて満足す
るキヤピラリ先端部の表面粗さは(0.05〜2)μ
mRmaxの範囲にあることが判明した。 〔考案の効果〕 サーモソニツクワイヤボンデイング用キヤピラ
リで先端の金ボール押え部の表面の粗さが(A)鏡面
仕上げ(0.05μmRmax以下)(B)本考案のつや消
し仕上げ(0.05〜2)μmRmax、および(C)粗仕
上げ(2μmRmax以上)の3種類のキヤピラリを
用い、その他のボンデイング条件(超音波出力、
発振時間、ボンデイング荷重、温度)およびその
振れ等は3種類とも同一にして本考案の効果を調
べた結果を第1表に示す。本考案によるキヤピラ
リを用いてボンデイングした結果((B)列)は、す
べての評価項目を満足し、ボンデイング条件のわ
ずかな変動によつても安定した十分なボンデイン
グ強度を得ることができる。 【表】
[Detailed description of the invention] [Technical field of the invention] The present invention relates to the surface finish of a bonding capillary used in the wire bonding process in the assembly work of semiconductor devices such as transistors and ICs, and in particular to the surface finish of a bonding capillary used in thermosonic wire bonding. This is a capillary for bonding. [Technical background of the invention] Wire bonding is the process of connecting electrodes on a semiconductor element (also called semiconductor pellet) attached to a lead frame etc. with external leads of the lead frame etc. using thin metal wires. It requires the highest precision, and has a major impact on the yield and reliability of semiconductor devices. Wire bonding methods include thermocompression bonding, ultrasonic bonding, and the like, but recently thermosonic wire bonding, in which bonding is performed by adding ultrasonic waves to thermocompression bonding, has been widely used. By applying ultrasonic energy to the capillary for thermocompression bonding, the substrate temperature can be lowered to below 200°C during bonding, compared to the 280°C or higher required for normal thermocompression bonding. Furthermore, even if ultrasonic waves are applied to the capillary, nearly non-directional bonding is possible because it is a thermocompression bonding method. An example of conventional bonding work using thermosonic wire bonding will be explained based on FIGS. 2 and 3. The tip of a thin gold wire 6 inserted approximately along the central axis of the capillary 5 forms a ball 4. The aluminum electrode 7 on the semiconductor element 8 mounted on the lead frame 9 is heated in advance to about 200°C. Place the gold ball 4 on the surface of the electrode 7, and while applying a load to the gold ball 4 with the tip pressers 1 and 2 of the capillary 5 (see FIG. 1), move the gold ball 4 in a direction 10 approximately parallel to the surface of the electrode 7.
ultrasonic vibration is applied to the capillary 5. The gold ball 4 is crushed to become a flat gold ball 4' as shown in FIG. 3, and the adhesive area increases. In this process, the oxide film on the contact surface of the gold ball 4 or 4' with the aluminum electrode 7 is destroyed by ultrasonic vibration, and the fresh surfaces of gold and aluminum come into contact with each other, and the two Diffusion occurs between the metals and the contact is bonded by intermetallic bonding between gold and aluminum. Next, while moving the capillary, pull out the gold wire to make a loop, crimp the gold wire onto the external lead (not shown) of the lead frame with the tip of the capillary, and attach the gold wire to the external lead in almost the same manner as above. Bonding. Finally, lift the capillary and cut the gold wire using a hydrogen flame. [Problems in the Background Art] In the process of thermonic wire bonding the gold wire to the aluminum electrode 7 on the semiconductor element 8, slight variations in bonding conditions (bonding load, ultrasonic output, oscillation time, temperature, etc.) As a result, defects may occur, such as the ball 4 being crushed or becoming too large and coming into contact with another electrode on the semiconductor element. Defects in wire bonding are fatal to semiconductor devices and are a major problem in terms of reliability. [Purpose of the invention] An object of the present invention is to solve the above-mentioned problems and provide a capillary for thermosonic wire bonding that can obtain sufficient bonding strength even when bonding conditions vary considerably. [Summary of the invention] In order to solve the above-mentioned problems, the present inventor developed the shape of the gold ball holding parts 1 and 2 at the tip of the capillary, the roughness of the holding part surface, and the bonding conditions (bonding load, ultrasonic output, oscillation time, As a result of repeated research by changing various temperatures (temperature, etc.), we found that in order for the ultrasonic vibration energy to be effectively used for the bonding reaction between the gold ball 4 and the aluminum electrode 7 on the semiconductor element during bonding, the gold ball holder at the tip of the capillary must be Part 1, 2
It has been found necessary to bring the surface to a matte state. In other words, the present invention proposes that "in a bonding capillary used for thermosonic wire bonding, which connects an electrode on a semiconductor element and an external lead with a thin gold wire, the surface roughness of the capillary tip pressers 1 and 2 is (0.05~ 2) A capillary for thermosonic wire bonding characterized by a μmRmax. The capillary tip pressers 1 and 2 correspond to the line segment 1 and the arc 2 shown in FIG. 1, respectively. Also, Rmax is JISS B 0601-76 (surface roughness)
This is a value calculated based on the following. Below surface roughness
Mirror finish for items with Rmax of 0.05 μm or less, (0.05~
2) Matte finish for μmRmax, 2μm
Anything above Rmax is called rough finishing. If the capillary tip holding parts 1 and 2 have a mirror finish, the ultrasonic energy will not be effectively transmitted to the bonding surface between the gold ball 4 and the electrode 7, and slight variations in bonding conditions will cause the collapse width of the gold ball to change. , there are many fluctuations in bonding strength, etc. Further, when the tip of the capillary is roughly finished, the aluminum electrode 7 on the semiconductor element and the gold ball 4 have good bonding strength, but the bonding strength between the external lead and the gold wire is weak and cannot be put to practical use. When the capillary tip has a matte finish (0.05 to 2) μmRmax, sufficient bonding strength can be obtained even with considerable variation in bonding conditions. [Embodiment of the invention] For example, the shape of the tip of a capillary used in thermosonic wire bonding may be changed to make it easier to hold the gold ball 4 by changing the angle and dimension d of the line segment 3 in FIG. The bonding reaction between the gold ball 4 and the aluminum electrode 7 was promoted by changing the length and angle of the metal ball 1, the dimension e, and the radius of the arc 2 to increase the contact area with the gold ball 4. In this case, when the bonding load is a little too large and the ultrasonic output increases or decreases slightly, if the oscillation time is increased, the ultrasonic waves will not be effectively transmitted to the 1' part shown in Figure 3 and the gold ball will just be pushed out. The bonding strength may be insufficient in spite of the crushing, or it may be crushed too much and come into contact with other electrodes 7' and 7'' on the semiconductor element, causing a short circuit failure, as shown in FIG. If the load is slightly weakened, the ultrasonic output is slightly reduced, or the oscillation time is shortened, the bonding strength to prevent the above-mentioned short-circuit failure will be insufficient.In this way, the acceptable range of bonding conditions to obtain good results is determined. There is a problem in that the tip of the conventional capillary is extremely small.This is presumed to be due to the fact that the tip of the conventional capillary is smooth, almost mirror-like.Next, the inventor of the present invention
Focusing on the fact that the surface roughness of the capillary has a large effect on the bonding characteristics, we conducted numerous trials by varying the surface finish of the capillary tip holding part and at the same time varying the bonding conditions. repeated. The evaluation items for the bonding effect in these trials are as follows. (a)
Bonding tensile strength (applying a specified tension to the gold wire at the bonding point and checking for breakage),
(b) Ball peeling strength (after bonding, use a jig with a razor-shaped tip to peel off the crushed ball from the side and check to see if any gold remains. ), (c) the size of the ball after bonding, (d) the reaction state of gold and aluminum (based on a cross-sectional survey of the bonding location),
(e) Thermal shock test on the product (quality of characteristics after 200 repetitions of heating and cooling from -45°C to 150°C) (f) Adhesive strength with external leads. When the surface roughness of the tip of the capillary reaches a smooth mirror finish of 0.05 μmRmax or less, all of the characteristics (a) to (e) of the above evaluation items deteriorate. (The reason why there is no significant difference in item (a) in the comparative test results in Table 1 is because this test method is used to judge whether or not it is practical) Also, if the surface roughness of the capillary tip is made rougher than 2μmRmax, Although the bonding characteristics between the aluminum electrode and the gold wire are good, the bonding strength with the external lead is weak. The surface roughness of the capillary tip that satisfies all evaluation items for bonding characteristics is (0.05 to 2)μ
It was found to be within the range of mRmax. [Effects of the invention] The surface roughness of the gold ball holding part at the tip of the capillary for thermosonic wire bonding is (A) Mirror finish (0.05 μmRmax or less) (B) Matte finish of the present invention (0.05 to 2) μmRmax, and (C) using three types of capillaries with rough finish (2 μm Rmax or more) and other bonding conditions (ultrasonic output,
Table 1 shows the results of examining the effects of the present invention with the three types of oscillation time, bonding load, temperature) and their fluctuations being the same. The results of bonding using the capillary according to the present invention (column (B)) satisfy all evaluation items, and stable and sufficient bonding strength can be obtained even with slight variations in bonding conditions. 【table】

注:表中○印は全数合格
△印は不合格品を含む。
Note: ○ marks in the table indicate all passes.
△ mark includes rejected products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はサーモソニツクワイヤボ
ンデイング用キヤピラリの先端部分の拡大断面図
である。第1図はキヤピラリの断面図、第2図お
よび第3図は半導体素子上の電極に金の細線をボ
ンデイングする工程を説明するための断面図で、
第2図は工程開始直前、第3図は工程終了直後を
示す。第4図および第5図はボンデイング時のボ
ールのつぶれ状態を示し、第4図は正常、第5図
はつぶれすぎの状態を示す。 1……キヤピラリ先端押え部1、2……キヤピ
ラリ先端押え部2、4……金ボール、5……ボン
デイング用キヤピラリ、6……金の細線、7……
半導体素子上の電極、8……半導体素子、9……
リードフレーム。
1 to 5 are enlarged sectional views of the tip portion of a capillary for thermosonic wire bonding. FIG. 1 is a cross-sectional view of a capillary, and FIGS. 2 and 3 are cross-sectional views for explaining the process of bonding a thin gold wire to an electrode on a semiconductor element.
FIG. 2 shows the process immediately before the process starts, and FIG. 3 shows the process immediately after the process ends. FIGS. 4 and 5 show the collapsed state of the ball during bonding, with FIG. 4 showing the ball in a normal state and FIG. 5 showing an excessively crushed state. 1...Capillary tip presser 1, 2...Capillary tip presser 2, 4...Gold ball, 5...Capillary for bonding, 6...Gold thin wire, 7...
Electrode on semiconductor element, 8... Semiconductor element, 9...
Lead frame.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半導体素子上の電極と外部リードとを金の細線
で接続するサーモソニツクワイヤボンデイングに
使用するボンデイング用キヤピラリにおいて、キ
ヤピラリ先端押え部1,2の表面の粗さが(0.05
〜2)μmRmaxであることを特徴とするサーモ
ソニツクワイヤボンデイング用キヤピラリ。
In a bonding capillary used for thermosonic wire bonding, which connects an electrode on a semiconductor element and an external lead with a thin gold wire, the surface roughness of the capillary tip holding parts 1 and 2 is (0.05
~2) A capillary for thermosonic wire bonding characterized by μmRmax.
JP1983165393U 1983-10-27 1983-10-27 Capillary for wire bonding Granted JPS6073238U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983165393U JPS6073238U (en) 1983-10-27 1983-10-27 Capillary for wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983165393U JPS6073238U (en) 1983-10-27 1983-10-27 Capillary for wire bonding

Publications (2)

Publication Number Publication Date
JPS6073238U JPS6073238U (en) 1985-05-23
JPH0241864Y2 true JPH0241864Y2 (en) 1990-11-08

Family

ID=30362367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983165393U Granted JPS6073238U (en) 1983-10-27 1983-10-27 Capillary for wire bonding

Country Status (1)

Country Link
JP (1) JPS6073238U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261230B2 (en) * 2003-08-29 2007-08-28 Freescale Semiconductor, Inc. Wirebonding insulated wire and capillary therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BONDING HANDBOOK=1979 *
MICRO-SWISSubh|-þbþ *

Also Published As

Publication number Publication date
JPS6073238U (en) 1985-05-23

Similar Documents

Publication Publication Date Title
JP5899907B2 (en) Wedge tool for wire bonding, bonding apparatus, wire bonding method, and method for manufacturing semiconductor device
JPS60154537A (en) Method of producing semiconductor device
JPH0241864Y2 (en)
Schafft Testing and fabrication of wire bonds electrical connection: A comprehensive survey
US3585711A (en) Gold-silicon bonding process
JP3232824B2 (en) Thermocompression bonding tool, bump forming method and lead bonding method
JP2798040B2 (en) Method for manufacturing semiconductor device
JPH03208355A (en) Semiconductor device and manufacture thereof
JPS5944836A (en) Wire bonding method
JPH04334035A (en) Soldering wire and formation of soldering bump using the wire
JPH0430546A (en) Method of ultrasonic bonding of coated wire, and outer lead for the bonding
JPS5943534A (en) Manufacture of semiconductor device
JPH0325019B2 (en)
JP4318533B2 (en) Ball bump forming ribbon
CN116110809A (en) Wire bonding process for integrated circuit package
JPS6324630A (en) Wire bonding equipment
JPH04158523A (en) Bump forming method
JPS58182843A (en) Wire bonding method
JPH02165645A (en) Semiconductor device and its manufacture
JPS63232440A (en) Wire bonding method
JPH0126532B2 (en)
JPH04268731A (en) Formation of bump
JPS63296248A (en) Formation of ball bump and device therefor
JPS61231727A (en) Wire bonding method
Chavez BONDING TO METALLIC FILMS AND SOLID-STATE DEVICES