JPH0241598B2 - - Google Patents

Info

Publication number
JPH0241598B2
JPH0241598B2 JP57136539A JP13653982A JPH0241598B2 JP H0241598 B2 JPH0241598 B2 JP H0241598B2 JP 57136539 A JP57136539 A JP 57136539A JP 13653982 A JP13653982 A JP 13653982A JP H0241598 B2 JPH0241598 B2 JP H0241598B2
Authority
JP
Japan
Prior art keywords
plating
plated
carbon
rod
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57136539A
Other languages
Japanese (ja)
Other versions
JPS5928597A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13653982A priority Critical patent/JPS5928597A/en
Publication of JPS5928597A publication Critical patent/JPS5928597A/en
Publication of JPH0241598B2 publication Critical patent/JPH0241598B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炭素電極棒又は接地棒などのような
製品の母材である炭素焼結体又は黒鉛体の円柱状
又は多角形状の棒状物(以下、単に炭素棒とい
う)の表面にメツキを均一に施す電気メツキ方法
及びその装置並びにこれらの方法及びその装置に
より得られた炭素電極棒に関するものである。 従来、炭素電極棒の表面にメツキを施す方法及
び装置は次の通りである。 前記電極棒は通常、大量生産型のものであり、
メツキ時間は2〜数時間におよぶため、そのメツ
キ方法及び装置は必然的に一度に多数の炭素電極
棒を同時にメツキする方法を採用せざるを得なか
つた。 従来方法はたとえば第1A図に示すようなメツ
キ枠19に10〜30本の炭素棒10をセツトし、第
2図に示す如く、大きなメツキ浴槽20中に多数
のメツキ枠19を浸漬し、導電性ブスバー23と
で固定してメツキをする方法である。そのためメ
ツキ枠内ではそれぞれの炭素棒は導電部23より
並列に通電し、またそれぞれのメツキ枠もブスバ
ー23より並列通電されていた。 その結果、炭素電極棒10に折出した金属メツ
キ量は一つのメツキ枠においてはそれぞれ導電部
19′と炭素棒10との接点、メツキ浴槽20で
は導電性ブスバー23とメツキ枠19との間の接
点22の電気抵抗が均一にならないため、メツキ
量が大きくばらついて、平均メツキ量に対して極
端にメツキの付かないもの或は他の2〜3倍メツ
キ量が付着するものがあつた。このメツキ量のば
らつきを少くするための従来種々の対策がとられ
て来たが、この接点においてはメツキ液の付着に
よる汚れ、酸化被膜、接触圧力の差などによる電
気抵抗がばらつき、その電気抵抗によるジユール
熱によつて温度が上昇すると更にメツキ液等によ
る接点腐触が加つて更に加速されるため、この電
気抵抗を均一にする根本的な対策がないまま今日
に至つている。 これは被メツキ体が、炭素電極棒にかぎらず多
量生産品であるメツキ製品に関しては共通な課題
であり、メツキ法の品質管理上の大きな問題点に
なつている。 更に炭素電極棒の一端に凸部、他端に凹部を有
する接続式炭素電極棒においては、上記メツキ量
のばらつきに原因してメツキ膜の厚みにばらつき
ができる。この厚みのばらつきは±0.2mm位にも
達するため、この接続式炭素電極棒の使用時に凹
凸部を嵌合させようとしても完全嵌合が得られな
い。 このため本発明者らは、先に実公昭55−13034
号で提案しているように、「接続式炭素電極棒の
凹形部に長い割溝」を設け、それによりメツキの
厚み誤差を吸収することにより解決した。然し乍
ら、上記考案による電極棒は長い間に亘つて業界
では好評を得ているが、欠点としては嵌合時に接
続部が拡がること及び割溝が設けられているため
強度が低下する点などがある。これら従来の解決
手段に対してもメツキ後加工して厚み誤差をなく
す方法や割溝によらない方法も提案されている。
しかしながらこれらの従来方法は未だ完全なもの
になつていない。これら従来法の欠点は何れも並
列通電によるメツキ量のばらつきに起因するもの
である。 これに対して本発明は従来の並列通電によるメ
ツキ方法に替えて直列通電によるメツキ方法及び
装置を提案し、これらによつてメツキばらつきの
少い炭素電極棒をうるものである。 実際にこの直列通電方式が発明されなかつたの
は、従来法の多量同時生産方式における大きなメ
ツキ浴槽中での同時メツキ方式からは、直列通電
することは不可能であつたことに起因している。 これらの欠点を解決するため、本発明者らは、
大きなメツキ浴槽の代りに陽極と被メツキ体であ
る炭素棒を陰極とした単位毎の密閉容器より成る
メツキユニツトを多数並設させることとし、この
メツキユニツトを夫々電気的に直列に接続する方
法を着想した。 本発明のこの着想より、炭素棒相互のメツキ量
ばらつきは、従来の1/10以下になり炭素棒のメ
ツキ厚みの誤差を±0.05mm以内におさめることが
できるようになつた。 更にユニツトを密閉式にし、このユニツトの陽
極と陰極である被メツキ物の炭素棒との間隔を1
〜10mmの範囲とし、一端に電解液の入口を他端に
出口を設けて電解液を高速に移動すれば、電極表
面に生成する境界膜を破り、高スピードで金属イ
オンの供給が可能になり、電流密度を大きくする
ことができることを新規に知見した。これによ
り、電流密度を0.5A/dm2から最高450A/dm2
まで取れ、電流密度に応じてメツキ時間を大巾に
短縮できることを新規に知見した。 そこで本発明者等は、直列通電により電極棒の
相互のメツキ量のばらつきを減少させ、これに陽
極の形状を陰極である被メツキ体の炭素棒の外径
と相似する形状として、陽極と陰極との間隔を1
〜10mmの等間隔に保つことによりメツキの厚み誤
差を±0.05mmの範囲になるようメツキ膜を施すこ
とができるようになり、炭素電極棒の本体表面の
メツキ膜を高精度で均一に施すことができるよう
になつた。接続式炭素電極棒の凹凸部に施すメツ
キ法においても誤差の少ないメツキ膜を施すこと
ができ、完全嵌合のできる接続式炭素電極棒を提
供することができることを新規に知見した。 また、電流密度は0.5〜450A/dm2に応じ流速
を1cm/30m/secとし、好ましくは30〜450A/
dm2、流速60cm〜30m/secにすれば、従来の方
法に比較し電流密度が約10〜150倍となりメツキ
所要時間を20分〜1分の如く従来の約1/10〜
1/150に短縮することができると共にメツキに
要するメツキ設備並びにメツキコストを著しく低
減することができ極めて効率がよく電気メツキす
る方法及びその装置並びに、これによりメツキ誤
差のきわめて少ない接続式炭素電極棒を提供する
ものである。 本発明は少くとも陽極となる容器と、この容器
内の一定の間隔を隔てて装入された炭素棒よりな
る陰極としての被メツキ体との間にメツキ液を満
し循環させるようにしたメツキユニツトの複数個
を、機械的に直列又は並列に連結し、かつ少くと
も一の電源に電気的に直列接続し、前記メツキユ
ニツトの夫々に電流を直列に通じ、電流密度を
0.5〜450A/dm2とし、メツキ液の流速を1cm〜
30m/秒として循環させ、メツキ液の流速に対応
して電流を制御し、メツキユニツト内に装入した
炭素棒の表面にメツキ膜を形成することを特徴と
する炭素電極棒のメツキ方法に関するものであ
る。 本発明の他の目的の一つは一端部は凸形を、他
端部は凹形をなし、一つの炭素電極棒の凹形部
に、他の同形の炭素電極棒の凸形部を嵌合接続さ
せることができる接続式炭素電極棒において、少
くとも陽極を有する円筒形容器内に炭素棒よりな
る被メツキ体を装入し、陽極と陰極としての被メ
ツキ体との間隔を1〜10mmの範囲でほぼ等間隔に
保持し、前記容器の1側に設けたメツキ液装入口
と他側に設けたメツキ液排出口との間にメツキ液
を流通させるようにし、かつ前記電極棒の凸形部
の中間及び他側の凹形部の内方を塞栓した複数個
のメツキユニツトを機械的に直列又は並列に連結
し、メツキ液を直列又は並列に循環流通させるよ
うにし、前記メツキユニツトを電気的に電源に対
して直列に接続し電流密度を0.5〜450A/dm2
し、メツキ液の流速を1cm〜30m/秒として循環
させ、メツキ液の流速に対応して電流を制御し、
メツキユニツト内に装入した炭素棒の凸形部の先
端部分と凹形部の内方部を残して部分的にメツキ
し、前記炭素棒の凸形部の根本部分と、凹形部の
周縁端部分に施されるメツキ膜は、その基部より
先端又は内方に向けて小許のテーパーを有してい
るようメツキする炭素電極棒の部分的電気メツキ
方法を提供するにある。 本発明の更に他の目的とするところは炭素棒と
ほぼ相似する形状の陽極を有する容器であつて、
この容器は少くとも被メツキ体である炭素棒を出
し入れする開口部と、その一端にはメツキ液の流
入口と、その他端にはメツキ液の流出口とを備
え、かつ容器の複数個がそれぞれ直列又は並列に
機械的に連結せられ、メツキ液が直列又は並列に
1cm〜30m/秒の範囲の所定で循環するように構
成し、被メツキ体である前記炭素棒は電源に対し
て電気的に直列接続され、電流密度が0.5〜
450A/dm2となるよう構成したことを特徴とす
る炭素電極棒のメツキ装置を提供するにある。 本発明の更に他の目的とする所は、メツキ膜の
厚み誤差が±0.05mmの範囲にある高精度のメツキ
を施した炭素電極棒を提供するにある。 本発明の更に他の目的とする所は一端部は凸形
部を、他端部は凹形をなし、一つの炭素電極棒の
凹形部に、他の同形の炭素電極棒の凸形部を嵌合
接続させることができる接続式炭素電極棒におい
て、前記凸形部の外表面の根本部分及び凹形部の
内表面の周縁端は、電極棒本体の外周表面と連続
してテーパー状の金属メツキ膜が形成されてお
り、該電極棒の本体外周表面のメツキ膜厚み及び
前記凸形部の根本部分と凹形部の周縁端部とのテ
ーパー状のメツキ膜の基部の厚みとが±0.05mmの
誤差範囲にあるよう高精度のメツキ膜が施されて
成る接続式炭素電極棒を提供することにある。 以下本発明のメツキ方法の原理を説明すると次
の通りである。 本発明のメツキ法を直列通電方式にすると被メ
ツキ体へのメツキ析出量が、いずれの被メツキ体
においても等しく析出し、ばらつきが著しく少な
くなる。その理由は次の通りである。第3図及び
第4図は各々のメツキユニツトを機械的に並列及
び直列に連結し、各ユニツトの電極は電気的に直
列に接続した状態を示す図である。第3図に示す
ものはメツキユニツトが開放式であり、第4図に
示すものは密閉式である。これらの第3図及び第
4図において、各々のメツキユニツトのもつ電気
抵抗をR1,R2,……,Roとし、抵抗R1,R2,…
…,Roを直列につないだときの合成抵抗をR、
直列に接続した両端の電圧をV、陽極陰極間に流
れる電流をIとするとオームの法則により、I−
V/Rとなる。しかし夫々の被メツキ体に流れる
電流は直列接続のときは途中の漏洩がない限り皆
同じである。 即ち、夫々のメツキユニツトの電気抵抗が異な
る場合においても、メツキユニツトの夫々の端子
の電圧をV1,V2,V3,……とするとV=V1+V2
+V3……+Vo=IR1+IR2+IR3……IRo=I(R1
+R2+R3……Ro)=IRとなる。即ちメツキユニ
ツトの夫々の端子の電圧は夫々の電気抵抗に比例
して異なつた値になるが、被メツキ体に流れる電
流Iは一定であるから被メツキ体へのメツキ析出
量も等しくなる。 従来の並列通電方式を第5図の模式図で説明す
ると前記同様メツキユニツトの電気抵抗をR1
R2,R3,……,Roとすると、これらを第5図の
如く並列に接続した場合R1,R2,……,Roを流
れる電流をそれぞれI1,I2,………Io、陽極、陰
極の両端子間の電圧をVとすると、並列接続にお
いては、メツキユニツトの端子の電圧と両端の電
圧とは共通であるから、 V=R1I1=R2I2=R3I3=……=RoIo となる。R1,R2,……Roを合成した抵抗をR、
Rを流れる電流をIとすると、次のようになる。 I−I1+I2+I3……Io,V=RI ∴I=V/R=I1+I2+I3……+Io=(1/R1+1/R2
+1/R3+……1/Ro)V つまりIは設定電流であり、I1,I2,……,Io
は被メツキ体(炭素棒)に流れる電流であるから
設定電流は被メツキ体に流れる電流の総和であ
る。各ユニツトの被メツキ体に流れる電流はI1
V/R1,I2=V/R2,……,Io=V/Roとなる。従つて 夫々の被メツキ量もこの電流に比例した析出量と
なるから、夫々の被メツキ体へのメツキ析出量は
夫々のメツキユニツトの電気抵抗によりばらつき
を生ずるのである。 よつて前記の理由により、夫々の被メツキ体の
メツキ析出量のばらつきを少くするには、複数個
のメツキユニツトの電極を電気的に直列接続し、
メツキ電流を各ユニツトで一定にすることが必要
である。 しかしメツキユニツト間の機械的接続即ちメツ
キ液の循環配管は、直列、並列いずれでもよく、
メツキ液の循環量及び流速並びにメツキ液の液送
圧力などが経済的である方を選択すればよい。 陽極は被メツキ体である炭素極が丸棒の他多角
形、半丸形等の形状であつてもよく、炭素棒の外
形に相似した形であると均一な厚みのメツキ膜が
得られる。 さらに少くとも陽極となる部分をもつた容器と
炭素棒よりなる陰極としての被メツキ体との間隔
がほぼ等間隔に保たれていることが重要であり、
この間隔は1〜10mm位に設定するのがよい。 この陰極との間隔は、後述するように電圧効
率、電流密度に応じたメツキ液の流速並びに流
量、被メツキ体の出入の難易さで、電気効率を経
済性から総合的に定められている。 メツキ膜の厚み誤差を±0.05mm以とするために
はメツキユニツトを電気的に直列配線して、被メ
ツキ体の相互のメツキの析出量をばらつきの少な
いほぼ等しい状態にする。陽極は被メツキ体の形
状に相似形で、陰極と陰極との間隔を1〜10mmの
ほぼ等間隔にすることにより、被メツキ体に析出
した金属を一定とし、被メツキ体全体に均一なメ
ツキ膜を形成することができる。 電流密度を0.5〜450A/dm2とし、メツキ液の
流速を1cm〜30m/秒として循環させ、メツキす
る場合、電流密度を大きくすればする程、メツキ
時間は短縮された高速メツキが達成される。そし
て高速メツキを達成するためには、メツキ液をで
きるだけ早く流通させメツキに必要な金属イオン
を供給せねばならない。第6図はメツキ液の流速
と電流密度との関係を示したものである。メツキ
液の流速と良好なメツキが得られる電流密度とは
メツキ浴槽の形式には関係なく、全く正比例の相
関関係がある。メツキ液は電流密度に対応して高
速流通することが必要で、このために加圧強制流
通が必要となる。 本発明の方法を実施するに当り好ましい電流密
度とメツキ液の流速及びこれに要するメツキ時間
との関係を示すと次のようである。
The present invention applies uniform plating to the surface of a cylindrical or polygonal rod-like object (hereinafter simply referred to as a carbon rod) made of carbon sintered body or graphite body, which is the base material of products such as carbon electrode rods or ground rods. The present invention relates to an electroplating method and an apparatus thereof, and a carbon electrode rod obtained by these methods and apparatus. Conventionally, the method and apparatus for plating the surface of a carbon electrode rod are as follows. The electrode rod is usually of a mass-produced type,
Since the plating time ranges from two to several hours, the plating method and apparatus inevitably adopt a method of plating a large number of carbon electrode rods at the same time. In the conventional method, for example, 10 to 30 carbon rods 10 are set in a plating frame 19 as shown in FIG. 1A, and a large number of plating frames 19 are immersed in a large plating bath 20 as shown in FIG. This is a method of fixing with the bus bar 23 and plating. Therefore, within the plating frame, each of the carbon rods was energized in parallel from the conductive portion 23, and each of the plating frames was also energized in parallel from the bus bar 23. As a result, the amount of metal plating deposited on the carbon electrode rod 10 is determined at the contact points between the conductive part 19' and the carbon rod 10 in one plating frame, and between the conductive bus bar 23 and the plating frame 19 in the plating bath 20. Since the electrical resistance of the contacts 22 is not uniform, the amount of plating varies greatly, with some being extremely unplated or having two to three times as much plating as the average plating amount. Conventionally, various measures have been taken to reduce the variation in the amount of plating, but the electrical resistance of these contacts varies due to dirt due to adhesion of the plating liquid, oxide film, and differences in contact pressure. When the temperature rises due to the Joule heat caused by the electrical resistance, contact corrosion due to plating fluid and the like is added and accelerated, so to this day there has been no fundamental measure to make this electrical resistance uniform. This is a common problem when the object to be plated is not limited to carbon electrode rods, but is a mass-produced plated product, and is a major problem in quality control of the plated method. Furthermore, in a connected carbon electrode rod having a convex portion at one end and a recessed portion at the other end, the thickness of the plating film varies due to the above-mentioned variation in the amount of plating. This variation in thickness reaches about ±0.2 mm, so even if you try to fit the uneven parts together when using this connectable carbon electrode rod, you will not be able to get a perfect fit. For this reason, the present inventors first proposed the
As proposed in the issue, the problem was solved by providing a ``long groove in the concave part of the connected carbon electrode rod'' to absorb the thickness error of the plating. However, although the electrode rod according to the above invention has been well received in the industry for a long time, its disadvantages include that the connection part expands when mated and the strength is reduced due to the groove. . In response to these conventional solutions, methods have also been proposed in which the thickness error is eliminated by processing after plating, and methods that do not involve grooves.
However, these conventional methods have not yet been perfected. The drawbacks of these conventional methods are all due to variations in the amount of plating caused by parallel energization. In view of this, the present invention proposes a plating method and apparatus using series energization in place of the conventional plating method using parallel energization, and by these, a carbon electrode rod with less variation in plating can be obtained. In fact, the reason why this series energization method was not invented was that it was impossible to energize in series using the conventional method of simultaneous plating in a large plating bath in the mass production method. . In order to solve these shortcomings, the present inventors
Instead of a large plating bath, we decided to install a large number of plating units in parallel, each consisting of a sealed container with an anode and a carbon rod as a cathode, and came up with a method of electrically connecting these plating units in series. . Based on this idea of the present invention, the variation in the plating amount between the carbon rods is reduced to less than 1/10 of the conventional value, and it has become possible to keep the error in the plating thickness of the carbon rods within ±0.05 mm. Furthermore, the unit is made into a closed type, and the distance between the anode of this unit and the carbon rod of the object to be plated, which is the cathode, is set to 1.
If the range is ~10 mm and the electrolyte is moved at high speed by providing an inlet for the electrolyte at one end and an outlet at the other end, it will be possible to break the boundary film that forms on the electrode surface and supply metal ions at high speed. We have newly discovered that the current density can be increased. This increases the current density from 0.5 A/dm 2 up to 450 A/dm 2
We have newly discovered that the plating time can be significantly shortened depending on the current density. Therefore, the present inventors reduced the variation in the mutual plating amount of the electrode rods by series energization, and made the shape of the anode similar to the outer diameter of the carbon rod of the object to be plated, which is the cathode. The distance between
By maintaining equal intervals of ~10 mm, the plating film can be applied so that the plating thickness error is within ±0.05 mm, and the plating film can be applied uniformly on the surface of the carbon electrode rod body with high precision. Now I can do it. It was newly discovered that a plating film with little error can be applied to the uneven portions of a connected carbon electrode rod, and that a connected carbon electrode rod that can be perfectly fitted can be provided. In addition, the current density is 0.5 to 450 A/ dm2 , and the flow rate is 1 cm/30 m/sec, preferably 30 to 450 A/dm2.
dm 2 and a flow rate of 60 cm to 30 m/sec, the current density is approximately 10 to 150 times that of the conventional method, and the plating time is approximately 1/10 to 1/10 of the conventional method, such as 20 to 1 minute.
An extremely efficient electroplating method and device that can shorten the time to 1/150 and significantly reduce the plating equipment and cost required for plating, as well as its device, and a connected carbon electrode rod with extremely low plating errors. This is what we provide. The present invention provides a plating unit in which a plating solution is filled and circulated between at least a container serving as an anode and an object to be plated as a cathode made of carbon rods inserted at a fixed interval in the container. A plurality of plating units are mechanically connected in series or parallel, and electrically connected in series to at least one power source, and a current is passed in series to each of the plating units to increase the current density.
0.5 to 450 A/dm 2 , and the flow rate of the plating liquid to 1 cm or more.
This invention relates to a method for plating a carbon electrode rod, which is characterized by forming a plating film on the surface of a carbon rod inserted into a plating unit by circulating the current at a speed of 30 m/sec and controlling the current according to the flow rate of the plating solution. be. Another object of the present invention is that one end is convex and the other end is concave, and the concave part of one carbon electrode rod is fitted with the convex part of another carbon electrode rod of the same shape. In a connectable carbon electrode rod that can be connected together, a body to be plated made of a carbon rod is placed in a cylindrical container having at least an anode, and the distance between the anode and the body to be plated as a cathode is 1 to 10 mm. The plating liquid is maintained at approximately equal intervals within a range of 1 to 10 mm, and the plating liquid is made to flow between the plating liquid inlet provided on one side of the container and the plating liquid discharge port provided on the other side, and the protrusion of the electrode rod A plurality of plating units which plugged the inside of the concave portion in the middle of the shaped portion and on the other side are mechanically connected in series or in parallel so that the plating liquid is circulated in series or in parallel, and the plating units are connected electrically. connected in series to a power source, with a current density of 0.5 to 450 A/dm 2 , circulating the plating solution at a flow rate of 1 cm to 30 m/sec, and controlling the current according to the flow rate of the plating solution.
The carbon rod charged into the plating unit is partially plated, leaving only the tip of the convex part and the inner part of the concave part, and the root part of the convex part of the carbon rod and the peripheral edge of the concave part are plated. The object of the present invention is to provide a method for partial electroplating of a carbon electrode rod, in which the plating film applied to the portion has a slight taper from the base to the tip or inward. A further object of the present invention is to provide a container having an anode having a shape substantially similar to that of a carbon rod,
This container has at least an opening through which the carbon rod to be plated is taken in and taken out, an inlet for the plating liquid at one end, and an outlet for the plating liquid at the other end. They are mechanically connected in series or parallel, and the plating liquid is configured to circulate in series or in parallel at a predetermined rate in the range of 1 cm to 30 m/sec, and the carbon rods that are the objects to be plated are electrically connected to the power source. connected in series with the current density of 0.5~
An object of the present invention is to provide a carbon electrode plating device characterized in that it is configured to provide a plating power of 450 A/dm 2 . Still another object of the present invention is to provide a carbon electrode rod that is plated with high precision and the thickness error of the plated film is within the range of ±0.05 mm. A further object of the present invention is to form a convex portion at one end and a concave portion at the other end, such that one carbon electrode rod has a concave portion and another carbon electrode rod of the same shape has a convex portion. In the connectable carbon electrode rod that can be fitted and connected, the root portion of the outer surface of the convex portion and the peripheral edge of the inner surface of the concave portion are tapered continuously with the outer peripheral surface of the electrode rod main body. A metal plating film is formed, and the thickness of the plating film on the outer peripheral surface of the main body of the electrode rod and the thickness of the base of the tapered plating film between the root portion of the convex portion and the peripheral end portion of the concave portion are ±. The object of the present invention is to provide a connected carbon electrode rod which is coated with a highly accurate plating film within an error range of 0.05 mm. The principle of the plating method of the present invention will be explained below. When the plating method of the present invention is applied in series with electricity, the amount of plating deposited on each plated object is the same on all the objects to be plated, and variations are significantly reduced. The reason is as follows. 3 and 4 are diagrams showing a state in which each plating unit is mechanically connected in parallel and in series, and the electrodes of each unit are electrically connected in series. The plating unit shown in FIG. 3 is an open type, and the plating unit shown in FIG. 4 is a closed type. In FIGS. 3 and 4, the electrical resistance of each plating unit is R 1 , R 2 , ..., Ro , and the resistances R 1 , R 2 , ...
..., the combined resistance when R o are connected in series is R,
If the voltage across the series connection is V, and the current flowing between the anode and cathode is I, then according to Ohm's law, I-
It becomes V/R. However, the current flowing through each body to be plated is the same when connected in series unless there is leakage in the middle. That is, even if the electrical resistance of each plating unit is different, if the voltage at each terminal of the plating unit is V 1 , V 2 , V 3 , ..., then V=V 1 +V 2
+V 3 ... +V o =IR 1 +IR 2 +IR 3 ...IR o = I (R 1
+R 2 +R 3 ... R o ) = IR. That is, the voltages at the respective terminals of the plating unit have different values in proportion to their respective electrical resistances, but since the current I flowing through the object to be plated is constant, the amount of plating deposited on the object to be plated is also equal. To explain the conventional parallel energization method using the schematic diagram in Fig. 5, the electrical resistance of the plating unit is expressed as R 1 ,
When R 2 , R 3 , ..., Ro are connected in parallel as shown in Fig. 5, the currents flowing through R 1 , R 2 , ..., Ro are I 1 , I 2 , ..., respectively. ... Io , and the voltage between the anode and cathode terminals is V. In parallel connection, the voltage at the terminal of the plating unit and the voltage at both ends are common, so V=R 1 I 1 = R 2 I 2 =R 3 I 3 =……=R o I o . The resistance that combines R 1 , R 2 , ... R o is R,
Assuming that the current flowing through R is I, it is as follows. I−I 1 +I 2 +I 3 ...I o , V=RI ∴I=V/R=I 1 +I 2 +I 3 ...+I o = (1/R 1 +1/R 2
+1/R 3 +...1/R o )V In other words, I is the setting current, and I 1 , I 2 ,..., I o
Since is the current flowing through the body to be plated (carbon rod), the set current is the sum of the currents flowing through the body to be plated. The current flowing through the plated body of each unit is I 1 =
V/R 1 , I 2 =V/R 2 , ..., I o =V/R o . Therefore, since the amount of plating deposited on each object to be plated is proportional to this current, the amount of plating deposited on each object to be plated varies depending on the electrical resistance of each plating unit. Therefore, for the reasons mentioned above, in order to reduce the variation in the amount of plating deposited on each object to be plated, it is necessary to electrically connect the electrodes of a plurality of plating units in series,
It is necessary to keep the plating current constant for each unit. However, the mechanical connection between the plating units, that is, the plating liquid circulation piping, may be either series or parallel.
The circulation amount and flow rate of the plating liquid, the liquid delivery pressure of the plating liquid, etc. may be selected from those that are economical. In the anode, the carbon electrode to be plated may have a shape other than a round rod, a polygon, a semicircle, etc. If the shape is similar to the outer shape of the carbon rod, a plating film with a uniform thickness can be obtained. Furthermore, it is important that the distance between the container, which has at least a portion that will serve as an anode, and the body to be plated, which serves as a cathode, made of a carbon rod, is maintained at approximately equal intervals.
It is best to set this interval to about 1 to 10 mm. As will be described later, the distance from the cathode is determined comprehensively from the viewpoint of electrical efficiency and economy, based on the voltage efficiency, the flow rate and flow rate of the plating solution depending on the current density, and the difficulty of moving in and out of the object to be plated. In order to keep the thickness error of the plating film within ±0.05 mm, the plating units are electrically connected in series so that the amount of plating deposited on the objects to be plated is almost equal with little variation. The anode has a similar shape to the object to be plated, and the spacing between the cathodes is approximately equal, 1 to 10 mm, so that the metal deposited on the object to be plated is constant and the entire object to be plated is plated uniformly. A film can be formed. When plating is performed by circulating the plating solution at a current density of 0.5 to 450 A/dm 2 and a flow rate of 1 cm to 30 m/sec, the higher the current density, the shorter the plating time and high-speed plating can be achieved. . In order to achieve high-speed plating, the plating solution must be circulated as quickly as possible to supply the metal ions necessary for plating. FIG. 6 shows the relationship between the flow rate of the plating solution and the current density. The flow rate of the plating liquid and the current density at which good plating can be obtained are completely directly proportional to each other, regardless of the type of plating bath. It is necessary for the plating liquid to flow at a high speed corresponding to the current density, and for this purpose, pressurized forced flow is required. The relationship between the current density, the flow rate of the plating solution, and the plating time required for carrying out the method of the present invention is as follows.

【表】【table】

【表】 上記表から明らかなように高速メツキをするた
めには、電流密度を30〜450A/dm2とし、これ
に対応してメツキ液の流速を60〜3000cm/sec、
好ましくは電極間隔を2〜5mm位の比較的狭く
し、メツキ液の流速を電流密度と対応して高める
ことにより高速電気メツキが可能となるのであ
る。 本発明において、1端部に凸形部をもち、他端
部に凹形部を形成し、一つの炭素電極棒の凹形部
に他の同形の炭素電極棒の凸形部を嵌合接続させ
て使用する接続式炭素電極棒の電気メツキ方法に
おいては、電気メツキ膜の厚み誤差が±0.05mmと
なるような高精度の電気メツキを施さないとその
嵌合接続が不能又は極めて困難となるおそれがあ
り、陽極となる容器と陰極となる被メツキ体との
間隔を均等にする必要がある。 このために、炭素電極棒が円形断面である場合
は、容器の陽極となる部分は円筒状とし、陽極と
陰極との間隔を等間隔とすることにより高精度の
電気メツキを施すことができる。 被メツキ体が単に円形断面の棒状体であるとき
は棒状体の外周面の全面に亘り均一厚みのメツキ
膜を施すことができる。しかし、本発明の他の目
的の一つである接続式炭素電極棒を製造する場合
は、炭素電極棒の1側の凸形部の根本部分と他の
凹形部の周縁端部とに部分的に施すメツキ膜は前
記凸形部の根本部分を凹形部の周縁端の基部の厚
み誤差が±0.05mmでありかつ、凸形部の先端方向
並びに凹形部の内端方向にゆくに従つて、膜厚が
薄くなつてテーパー状となり、従つて接続式電極
棒はその凸形部のテーパーと凹形部のテーパーと
合せて両者が嵌合し易くなり、かつ一旦嵌合する
と抜け難くなる。これは炭素電極棒を容器に挿入
したとき、その凸形部の根本部分及び凹形部の周
縁端部にはメツキ液が流通し、凸形部の先端部及
び凹形部の内方にはメツキ液が流通しないように
塞栓により密封することにより達成され、炭素電
極棒の凸形部の根本部と凹形部の周縁端部とにテ
ーパー状のメツキ膜ができるのである。この場
合、後述するように炭素電極棒の凸形部の根本部
分及び凹形部の周縁端部に被着したメツキ膜は凸
形部の先端方向及び凹形部の内方向にゆくに従つ
て薄くなりテーパーがつき凸形部と凹形部が嵌合
し易く、抜け難くなるこれは主として電極間隔が
遠くなるためである。 本発明の目的とする接続式炭素電極棒の凸形部
の外表面及び凹形部の内表面の全部にメツキ膜を
施すことは好ましくない。またメツキ膜を形成す
るのは電極棒の凸形部の根本部分と凹形部の周縁
端部にのみ限定されねばならない。この理由は電
極棒の凹形部の外表面と凹形部の内表面の全部に
メツキ膜があつた場合は電極棒の消耗に伴い、凸
凹の接続部が高温にさらされて、メツキが溶け出
し、凸凹の間に間隙が生じ嵌合力がなくなり抜け
易くなるので好ましくないからである。また、逆
に凸形部の外表面と凹形部の内表面にメツキ膜が
全くなく、炭素質相互のみで嵌合した場合は、接
続部付近まで消耗しても嵌合力は保持されるがし
かしそれが強固に嵌合した場合でも炭素質の固有
抵抗が高いので、赤熱し、酸化消耗をして使用不
可能となる。炭素電極棒の接続は、両者が同時に
満足することが必要であり、凸形部の根本部分と
凹形部の周縁端部分に部分的にメツキ膜を設け、
かつ凸形部の先端部分と凹形部の内方部分はメツ
キせず、炭素質のままとすると凸形部と凹形部と
を接続した際に、凸形部、凹形部の夫々のメツキ
膜が嵌合すると同時に凸形部、凹形部の夫々の炭
素質部分が嵌合されるのである。上記凸凹部の基
部に施したメツキ膜の嵌合は主として新旧の電極
棒間に多量の電流を流す機能を持ち、上記凸凹部
の先端又は内方のメツキを施さない部分の炭素質
テーパー部の嵌合は、嵌合力を最後まで保持する
機能を有するために必要とするものである。 本発明に使用するメツキユニツトは開放式の場
合は加圧強制流通によりメツキ液を高速流通する
ことができないため電流密度0.5〜10A/dm2
あり、メツキ液の流速を1cm〜10cm/秒の如く遅
くし、電極間隙も5〜10mmと広くしなければなら
ず、メツキ時間も1時間〜18時間を要し、高速メ
ツキは期待できない。従つてメツキユニツトは密
閉容器中に被メツキ体である炭素棒を保持し、メ
ツキ液を陽極と陰極との間に強制高速流通するも
のでないと高速短時間メツキは期待できない。 以下図面に基づいて本発明の方法及び装置並び
に得られる炭素電極棒の構成及びメツキ膜の被着
状況等の具体例について密閉式メツキ法について
説明する。 まず、第7図は本発明の炭素電極棒のメツキ方
法に直接使用する装置の主要部の概要を示す平面
図である。 上記図面において、1はメツキユニツトの陽極
となる中空円筒状の容器であり、この容器の内部
は被メツキ体である炭素棒とほぼ相似する中空円
筒の形状をなしている。 即ち、上記の炭素棒が円柱状の丸棒である場合
には、上記容器1はこの丸棒よりもやや大きな内
径を有する円筒状であつて、メツキ液に対して不
溶性の陽極となる導電性金属部をもつた容器であ
ればよい。また炭素棒が例えば4角形、8角形等
の多角柱等から成る場合には上記容器1は少くと
も内径が上記炭素棒よりもやや大きな相似形をな
した形状であればよい。 そして、上記円柱状物が例えば直径19mmの炭素
質から成る円柱状の電極棒である場合は、容器1
の内径は少くとも上記電極棒の直径19mmよりも2
〜20mmは大きく、容器1の中心部に上記電極棒が
位置すれば容器の内壁面と上記電極棒の表面との
間隙距離が通常1〜10mm位になるように容器の大
きさを設計すればよい。 なお、上記電極間隙が1mm以下となるとメツキ
液の流通抵抗が大きくなり、液の送給ポンプ圧が
大きなるため好ましくない。従つて送給ポンプの
容量も大きくしないと、所望とするメツキの流速
が得られない。送給ポンプ容量が大きくなるとエ
ネルギーの消費が大きくなり、工業的に不経済で
ある。 従つて、上記寸法は電圧効率と被メツキ物表面
に境界膜が発生しない範囲でかつこの間隙を流れ
るメツキ液の流通抵抗が極端に高くならない範囲
で決定される。即ち、電圧効率を左右するメツキ
電圧はこの間隙の距離に比例する液の電気抵抗部
分と陰・陽両極における界面抵抗によるものの和
で表わされる。従つて、この間隙は小さい方が液
の電気抵抗による電圧降下は小さくなり電圧効率
がよくなる。また、界面抵抗も被メツキ物である
陰極或いは陽極表面の静止状態層と間隙中心部を
流れる高速のメツキ液の流速の速度勾配に対して
反比例的な性質を有している。上記の電極間隙が
大きいと液の流れが各極の表面で層流になるた
め、各極の表面に形成される境界膜が厚くなり、
この境膜の厚みが大きくなるとその境界膜又は層
流内ではイオンの移動速度が小さくなり新しいイ
オンの供給が不足するために良好なメツキができ
なくなる。 これに対して従来はメツキ速度を上げるためメ
ツキ液中に空気を吹き込んだり被メツキ物を回転
揺動するなどしてこの境界膜を破つてたがこの方
法ではせいぜい2〜3倍の高速化が限度であつ
た。 これに対して本発明は両極間のメツキ液の流速
を1cm〜30m/秒、好ましくは60cm〜30m/秒の
速度で移動させることにより両極表面と液流の間
の速度勾配を大きくし、両極表面に発生する層流
域を非常に薄くし、乱流状態でイオンの供給を豊
富にすることによりメツキの高速化を可能にでき
るのである。 一方、液の流速を高くすればする程、乱流域が
増して層流域が減少するので境膜は小さくなり、
メツキ電圧は小さくなるが、逆に高速の液流を得
るためには液の流通抵抗が大となるため断面積に
逆比例して高圧を要するようになり、動力費が増
大し更に気密構造を維持することも困難となつて
来る。このために前記の間隙1〜10mm程度及び30
cm〜60cm/秒以上30m/秒以下の適当な流速のと
きが高速メツキのために最も良好な結果を得るこ
とができる条件となる。 つまり本発明は被メツキ体と容器の内壁の形状
とはほぼ相似形であつて、なるべく被メツキ体と
容器内壁面との間隙距離が小さくなり、かつ被メ
ツキ体と容器内壁とが接触することなく、しかも
これら間隙を該メツキ溶液が連続的に流動するス
ペース(電極間隔)が十分に大きく保たれている
とメツキを短時間でかつ効率よく施すことができ
るのである。 従つて、上記容器1は被メツキ体である電極棒
の形状及び長さ又は直径などの寸法に相応した形
状を考慮して設計することが必要である。 次に、このようにして形状と大きさが定まつた
容器を少くとも2以上、好ましくは5ないし20個
位を第7図に示すように並列的に配列する。 そしてこれら並列した複数個の容器1の先順位
に配設された一つの容器1の先端位置に該メツキ
溶液の流入口2を設け、かつこれら並列配置した
複数の容器1内をメツキ溶液が連続して直列に流
通するよう夫々の容器1が連結管3によりそれぞ
れ適宜所定の位置で直列又は並列に連結した一群
の容器1を配設する。この連結管を設ける適宜所
定の位置はなるべく容器1の両端部であることが
好ましく、この両端のうち一端又は両端のいずれ
もが容器本体と着脱自在に係合されている態様に
おいては、それぞれの両端に係合する容器係合体
4及び5の位置であることが最適である。 その理由は、本発明のメツキ方法は電極が直列
接続してあり、その電極間隔が一定でかつ炭素棒
と陽極とが相似形であり、該メツキ溶液が連続し
て複数個の容器内を一定の流速で、かつどの容器
の中のいずれの部分においても均一に流動させる
ことができるため、被メツキ体表面のいずれの部
分も高精度で均一に金属メツキし得るのである。 従つて、上記メツキ溶液の流入口2はなるべく
該容器1の係合体4又は5の一端部に設けること
が望ましい。 そして、前記容器係合体4及び5が容器本体1
と係合する側面のほぼ中央部には被メツキ体であ
る炭素棒を容器1の中でほぼ中央部に配置させる
ための突出した支持体6及び7をそれぞれ備えて
いることが望ましい。しかも、上記支持体6及び
7は電気メツキに必要な電流通路を兼ね備えてい
るものとする。 また、これらの並列された複数の容器1のそれ
ぞれには、そのほぼ両端部の値置に第8図及び第
8A図に示すように直列に電流が流れるように電
源11と直列接続することが本発明の装置におい
て重要な条件となる。 このようにすれば、各電極間抵抗のばらつきに
関係なく電気的に直列に連結されている被メツキ
体に流れる電流を一定にすることができ、従つて
被メツキ体ごとに均一なメツキを施すことができ
るようになる。 これは従来のメツキ法のように複数個の炭素棒
が電気的に並列に接続されていると、通常は各接
点の接触抵抗が全く同じになることがあり得ない
から被メツキ体(炭素棒)個々に流れる電流が異
なるからである。その結果、被メツキ体(炭素
棒)に移行する金属量(以後メツキ量と呼ぶ)に
もバラツキが生ずる。これに対して本発明におい
てはメツキ時間を25〜150分の1にもできるので、
この分だけ設備容量的に見て直列に接続すること
が可能になりメツキ量のバラツキを減少すること
ができる。 一方、これらの並列された一群の他の該順位に
配設された容器1の一部、たとえばこの容器の該
係合体4又は5のいずれかの側面部の位置にメツ
キ溶液の流出口8を設ける必要がある。 このようにして構成された本発明の装置におい
て、容器1の一端又は両端のいずれかの開口部1
Aより被メツキ体である炭素棒を同容器1の内壁
に被メツキ体10(炭素棒)が接触しないように
入れる。このとき、同容器内のほぼ中央好ましく
は被メツキ体10の表面と同容器1の内壁面のい
ずれの部分においても、これらの間隙距離がたと
えば1〜10mmの範囲内で均等となるような位置
に、上記被メツキ体が配置されることが望まし
い。 なお、上記被メツキ体を容器内に挿入するに際
しては、第7A図に示すように被メツキ体10で
ある炭素棒を予めそれぞれの容器の配設された間
隔と相応するよう並列的に配置して保持した搬送
板12を機械的に進退させ自動的に供給すること
ができる。 そのためには、容器1の少なくとも一端又は両
端は開口しており、この開口部1Aと係合体4又
は5との間隙に上記搬送板12に炭素棒の一端を
支持した状態でC又はDの方向から平行移送され
ることが必要となる。 そして、被メツキ体である炭素棒10の一端を
支持する係合体4又は5のいずれかが容器方向に
前後移動することによつて行うこともできる。 このようにして容器内に挿入された被メツキ体
表面に該メツキ溶液である硫酸銅と硫酸との混合
水溶液、即ち最も安価で本発明に適合したメツキ
溶液を1cm〜3m/secの速度で上記被メツキ体表
面に確実に接触させつつ、連続的に移動させ、前
記被メツキ体表面に該メツキ金属イオンが多量に
供給されるよう該メツキ溶液の流入口2から流出
口8の方向へ流動させるのである。その結果、電
流密度は0.5〜450A/dm2、液流速1cm〜30m/
sec、高速メツキを日的とする場合には電流密度
30〜450A/dm2、液流速60cm〜30m/secとする
のがよい。そのため本発明によれば、炭素棒の被
メツキ体表面は低速のメツキ方法によるメツキ速
度の約25〜150倍の極めて高速のメツキも可能と
なり、従つてメツキ所要時間は従来の約25〜150
分の1の短時間とすることができるので、メツキ
設備費もそれに相応して著しく安価に低減でき
る。 第9A図及び第9B図並びに第9C図、第9D
図に示すものは、本発明のメツキ方法及び装置を
使用して得られた接続式炭素電極棒の両端部を断
面として示した。第9A図においてその1側端部
に形成された凸形部10Aの根本部分10Bと、
その他側端部に形成された凹形部10Cの周縁内
側端部10Dに夫々銅メツキ等のメツキ膜14A
と14Bとが若干のテーパーをもつて形成されて
いる状態を示してある。 第9B図に示すものは炭素電極棒10の一側に
設けた凹形部10Cの周縁内端部10Dを円筒状
とし、凹形部10Cのテーパー部に対して若干の
段部10Eを設けた実施例を示すものである。 第9C図に示すものは、凸形部10Aは根本部
分10Bまで同じ傾斜であり、凹形部10Cは周
縁端部10Dを円筒状とし、凹形部のテーパー部
10Cに対して若干の段部10Eを設けた場合を
示す。 第9D図に示すものは、凸形部10Aは根本部
分10Bまで同じ傾斜であり、凹形部10Cは周
縁端部10Dを外方に拡がる切落しを設け、凹形
部10Cのテーパー部分がこの切落部につながつ
ている場合を示す。実験によると、第9B図及び
第9C図に示す段部を設けたものは、段部10E
を設けない第9A図、第9D図に示すものよりも
嵌り易く、抜け難い特徴があることが判つた。 また、凸形部10Aの根本部分10Bに施され
たメツキ膜14Aの外径D1と凹形部10Cの周
縁内側端部10Dに施されたメツキ膜14Bの内
径D2との間に次の関係を満たす範囲が、最も好
ましい嵌合状態となる。 ΔD=D1−D2とすると 0≦ΔD<0.10mm つまり凸形部の根本部分の外径D1と凹形部の
周縁端部の内径D2とは等しいか、それよりも0.10
mm以内D1の方がD2より大きいのが望ましい。そ
の理由は凸形部10Aと凹形部10Cが嵌合した
際、炭素質部の嵌合とメツキ膜部の嵌合が前記に
述べた如く、両者が同時に満足しなければならな
いからである。嵌合は凸形部10Aの非メツキ部
分(炭素質部)と凹形部10Cの非メツキ部分が
嵌合することにより炭素電極棒の機械的な結合が
完全かつ容易になる。一方凸形部10Aの根本部
10Bのメツキ膜14Aと凹形部10Cの周縁内
側端部10Dのメツキ膜14Bの嵌合において
は、両者のメツキ膜の厚さのばらつきが大きいと
前記の条件を満足することが不可能となり嵌合が
困難となる。前記外径D1と内径D2との差ΔDが零
よりも小さいと凸形部と凹形部の基部のメツキ膜
は接触しなくなり、ΔDが0.10mmより大きい凹形
部の中へ凸形部の根本部分まで嵌合することが困
難となるからである。よつて前記の条件の中にメ
ツキ膜の厚みを制御することにより、わずかの押
込力で両者のメツキ膜が圧接と同時に銅の展延性
により変形し丁度よい嵌合力を保ち、大容量の電
流を発熱することなく新電極棒から旧電極棒へ通
電することが可能となるのである。 このような接続式炭素電極棒を製造する装置は
第10図に示す通りである。第10図において、
1は陽極となる円筒部をもつた容器を示し、この
容器1の一方の開口部1Aより容器係合体4をあ
てがい、パツキング16により密封して結合す
る。容器係合体4にはメツキユニツト1の開口端
1Aよりその内部空洞中に向けて突出する棒状の
被メツキ体支持体6が設けられており、この支持
体6の先端に塞栓17を設け、これを接続式炭素
電極棒10の1側に形成した凹形部10Cに嵌合
して支持するようにし、この容器係合体4の支持
台12をシリンダー15(第7A図参照)により
支持して炭素電極棒10をメツキユニツトの容器
1の内部空洞1C中に挿入する。 容器1の他側の開口部1Bには他の容器係合体
5がパツキング16により密封して結合されてお
り、この他の容器係合体5には内方に突出する被
メツキ体支持体7が設けられており、この被メツ
キ体支持体7の内部は円錐状の凹孔部7Aが形成
され、接続式炭素電極棒10の一端に形成された
凸形部10Aが挿入されたときシールリング18
の個所でシールされ、シールリング18より先方
にある凸形部10Aはメツキされないようにメツ
キ液の流通を阻止するよう構成する。7Bは必要
に応じて設けたストツパーであり、電極の凸形部
10Aの先端を支持するものである。容器1の1
側の開口部1Aを閉塞する容器係合体4にはメツ
キ液流出口8が設けられており、他側の容器係合
体5にはメツキ液流入口2が設けられる。このメ
ツキユニツト1を第8A図に示すように多数並列
に配置して、連結管3により各メツキユニツトを
直列に連結する。 このようにするとメツキ液は先順位のメツキユ
ニツト1−より入り、順次1−,1−,1
−,……1−Nと直列に流通する。被メツキ体
支持体6の外方中央より突出した電極6Aは電源
11の負端子に、又導電体である被メツキ体支持
体6は導線13により電源11に接続されてい
る。メツキユニツト1の容器の陽極となる導電体
部分と被メツキ体である炭素棒10との間隔は第
10図に示すように等間隔に保持されており、電
極6Aの先端部分6Cは被メツキ体10と電気的
に接続されており、陽極の容器と陰極の被メツキ
体との間にメツキ液が流通するとメツキができる
のである。 また、炭素電極棒10の凸形部10Aの根本部
分10Bのメツキ膜14A及び凹形部10Cの周
縁内側端部10Dのメツキ膜14Bも同時にメツ
キされ、その基部の厚さは±0.05mmの範囲内に制
御することができる。この場合このメツキ膜14
Aと14Bとはその先端及び内方端にゆくに従つ
て夫々薄くなりテーパーした形状となる。 第10図に示す場合においては、塞栓17が電
極棒10の凹形部10Cに嵌合しているので、凹
形部10Cは図示の段部10Eより内方部分はメ
ツキ液の流通が阻止され、メツキされない状態と
なる。又他側の凸形部10Aはシールリング18
でその中間をシールされているので、このシール
点の先端部分はメツキされないため同形の接続式
炭素電極棒の凸形部と凹形部との嵌合が堅固にお
こなわれる。 次に本発明の実施例について説明する。 実施例 1 直径16mm、長さが400mmの炭素棒を第7図に示
す本発明の装置内に挿入し、間隔を3.5mmとして
硫酸銅250g/と硫酸35g/との混合水溶液を
メツキ液として、これを3cm/secの流速で供給
しつつ電流密度3A/dm2で3時間メツキを行つ
た。また第2図の従来法の開放型メツキ浴槽中で
電極を並列配置して電源に対して並列接続した場
合であつて平均の電流密度が前記と同じ3A/d
m2で3時間メツキを行つた。試料は100本としそ
の結果を第11図及び第2表、第3表に示す。 第11図は本発明の密閉浴槽、直列通電方式で
メツキした場合と従来例の開放浴槽で並列通電方
式メツキを行つた電極棒に夫々析出したメツキ量
の分布図である。 第11図の分布図aは本発明の密閉浴槽で直列
通電を行つたときの棒に析出したメツキ量の分布
であり、bは従来法の開放浴槽で並列通電を行つ
たときの電極棒に析出したメツキ量の分布であ
る。並列通電は被メツキ体である炭素棒の接点の
接触抵抗をはじめとした種々電気抵抗が夫々の被
メツキ体である炭素棒に流れる電流をばらつかせ
てメツキ量のばらつきとなつて巾の広い分布とな
つた。本発明の直列通電は夫々の被メツキ体であ
る炭素棒へ流れる電流は一定であるので、ほとん
どばらつきがなく、ほぼ同量のメツキ量が得られ
た。 第2表は銅メツキ量のばらつき状態を偏差値で
表わしたものである。 第3表は炭素電極棒を3等分し頭部、中央部、
後部のそれぞれの銅メツキの膜厚のばらつき状態
を膜厚の差(最大値と最小値)を調査したもので
ある。
[Table] As is clear from the above table, in order to perform high-speed plating, the current density should be 30 to 450 A/dm 2 , and the flow rate of the plating solution should be 60 to 3000 cm/sec, corresponding to this.
High-speed electroplating becomes possible by making the electrode spacing relatively narrow, preferably about 2 to 5 mm, and increasing the flow rate of the plating solution in accordance with the current density. In the present invention, one end has a convex portion and the other end has a concave portion, and the concave portion of one carbon electrode rod is fitted and connected to the convex portion of another carbon electrode rod of the same shape. In the electroplating method for connecting carbon electrode rods that are used in conjunction with the electrodes, the fitting and connection will be impossible or extremely difficult unless high-precision electroplating is performed so that the thickness error of the electroplated film is ±0.05 mm. Therefore, it is necessary to equalize the distance between the container that serves as an anode and the body to be plated that serves as a cathode. For this reason, when the carbon electrode rod has a circular cross section, the part of the container that becomes the anode is cylindrical, and the anode and cathode are spaced at equal intervals, so that highly accurate electroplating can be performed. When the object to be plated is simply a rod-shaped object with a circular cross section, a plating film having a uniform thickness can be applied over the entire outer peripheral surface of the rod-shaped object. However, when manufacturing a connected carbon electrode rod, which is one of the other objects of the present invention, a portion is formed between the base of the convex portion on one side of the carbon electrode rod and the peripheral end of the concave portion on the other side. The plating film applied on the base of the convex part has a thickness error of ±0.05 mm at the base of the peripheral edge of the concave part, and the thickness error is ±0.05 mm in the direction of the tip of the convex part and towards the inner end of the concave part. Therefore, the film thickness becomes thinner and has a tapered shape, so that the connecting electrode rod has a tapered convex portion and a tapered concave portion, making it easier for both to fit together, and once fitted, it is difficult to come off. Become. This is because when a carbon electrode rod is inserted into a container, the plating liquid flows through the base of the convex part and the peripheral edge of the concave part, and the plating liquid flows into the tip of the convex part and inside the concave part. This is achieved by sealing with an embolus to prevent the plating solution from flowing, and a tapered plating film is formed at the root of the convex part and the peripheral edge of the concave part of the carbon electrode rod. In this case, as will be described later, the plating film deposited on the base of the convex part and the peripheral edge of the concave part of the carbon electrode rod will gradually increase as it goes toward the tip of the convex part and inward of the concave part. As it becomes thinner and tapered, it becomes easier for the convex and concave portions to fit together, and it is difficult for them to come off.This is mainly due to the distance between the electrodes. It is not preferable to apply a plating film to the entire outer surface of the convex portion and the inner surface of the concave portion of the connected carbon electrode rod, which is the object of the present invention. Furthermore, the plating film must be formed only on the base of the convex portion and the peripheral edge of the concave portion of the electrode rod. The reason for this is that if a plating film forms on the entire outer surface and inner surface of the concave part of the electrode rod, as the electrode rod wears out, the concave and convex connection parts will be exposed to high temperatures and the plating will melt. This is undesirable since it creates a gap between the projections and projections, which causes the fitting force to be lost and the connector to come off easily. On the other hand, if there is no plating film on the outer surface of the convex part and the inner surface of the concave part, and they are fitted only with carbonaceous material, the fitting force will be maintained even if it wears down to the vicinity of the connection part. However, even if they are tightly fitted, the carbonaceous material has a high specific resistance, so it becomes red hot and oxidized, making it unusable. It is necessary for the connection of the carbon electrode rod to satisfy both conditions at the same time, so a plating film is partially provided at the base of the convex part and the peripheral edge of the concave part,
In addition, if the tip of the convex part and the inner part of the concave part are left unplated and made of carbon, when the convex part and the concave part are connected, At the same time as the plating film is fitted, the carbonaceous portions of the convex and concave portions are also fitted. The fitting of the plating film applied to the base of the above-mentioned uneven part mainly has the function of passing a large amount of current between the old and new electrode rods, and the fitting of the plating film applied to the base of the above-mentioned uneven part mainly has the function of passing a large amount of current between the old and new electrode rods. Fitting is necessary to maintain the fitting force to the end. If the plating unit used in the present invention is an open type, the plating liquid cannot be passed through at high speed due to forced flow under pressure, so the current density is 0.5 to 10 A/ dm2 , and the flow rate of the plating liquid is set to 1 cm to 10 cm/sec. It is necessary to slow down the process and widen the electrode gap to 5 to 10 mm, and the plating time also takes 1 to 18 hours, so high-speed plating cannot be expected. Therefore, unless the plating unit holds the carbon rod to be plated in a closed container and forces the plating solution to flow between the anode and the cathode at high speed, high-speed, short-time plating cannot be expected. The closed plating method will be described below with reference to the drawings, with specific examples of the method and apparatus of the present invention, the structure of the obtained carbon electrode rod, and the state of adhesion of the plating film. First, FIG. 7 is a plan view schematically showing the main parts of an apparatus directly used in the method of plating carbon electrode rods of the present invention. In the above drawings, reference numeral 1 denotes a hollow cylindrical container which serves as the anode of the plating unit, and the inside of this container has a hollow cylindrical shape that is almost similar to the carbon rod that is the object to be plated. That is, when the above-mentioned carbon rod is a cylindrical round rod, the above-mentioned container 1 is cylindrical with an inner diameter slightly larger than the round rod, and has a conductive material that serves as an anode insoluble in the plating solution. Any container with metal parts may be used. Further, when the carbon rod is made of a polygonal column such as a quadrangle or an octagon, the container 1 may have a similar shape with at least a slightly larger inner diameter than the carbon rod. If the cylindrical object is, for example, a cylindrical electrode rod made of carbonaceous material with a diameter of 19 mm, the container 1
The inner diameter of the electrode rod is at least 2 mm larger than the diameter of the above electrode rod, which is 19 mm.
~20 mm is large, and if the size of the container is designed so that if the electrode rod is located at the center of the container 1, the gap distance between the inner wall of the container and the surface of the electrode rod is usually about 1 to 10 mm. good. It should be noted that if the electrode gap is less than 1 mm, the flow resistance of the plating liquid will increase, and the pressure of the liquid feeding pump will increase, which is not preferable. Therefore, the desired plating flow rate cannot be obtained unless the capacity of the feed pump is also increased. As the feed pump capacity increases, energy consumption increases, which is industrially uneconomical. Therefore, the above-mentioned dimensions are determined within a range in which voltage efficiency and boundary film are not generated on the surface of the object to be plated, and in which the flow resistance of the plating liquid flowing through this gap does not become extremely high. That is, the plating voltage, which influences voltage efficiency, is expressed as the sum of the electrical resistance of the liquid, which is proportional to the distance of the gap, and the interfacial resistance between the negative and anode electrodes. Therefore, the smaller the gap, the smaller the voltage drop due to the electrical resistance of the liquid and the better the voltage efficiency. Furthermore, the interfacial resistance has a property that is inversely proportional to the velocity gradient of the high-speed plating liquid flowing between the stationary state layer on the surface of the cathode or anode that is the object to be plated and the center of the gap. If the above-mentioned electrode gap is large, the liquid flow will be laminar on the surface of each pole, and the boundary film formed on the surface of each pole will become thicker.
When the thickness of this boundary film increases, the movement speed of ions decreases within the boundary film or laminar flow, and the supply of new ions becomes insufficient, making it impossible to perform good plating. Conventionally, in order to increase the plating speed, air was blown into the plating liquid or the object to be plated was rotated and rocked to break the boundary film, but with this method, the speed could be increased by at most two to three times. It was at its limit. On the other hand, the present invention increases the velocity gradient between the surface of both electrodes and the liquid flow by moving the plating liquid between the two electrodes at a flow rate of 1 cm to 30 m/sec, preferably 60 cm to 30 m/sec. By making the laminar region generated on the surface very thin and creating a turbulent flow with an abundant supply of ions, plating can be done at high speed. On the other hand, as the flow rate of the liquid increases, the turbulent region increases and the laminar region decreases, so the boundary film becomes smaller.
The plating voltage will be reduced, but on the other hand, in order to obtain a high-speed liquid flow, the flow resistance of the liquid will increase, so a high pressure will be required in inverse proportion to the cross-sectional area, increasing power costs and requiring an airtight structure. It is also becoming difficult to maintain. For this reason, the above-mentioned gap is about 1 to 10 mm and 30 mm.
The conditions under which the best results can be obtained for high-speed plating are when the flow rate is at an appropriate flow rate of cm - 60 cm/sec or more and 30 m/sec or less. In other words, in the present invention, the shapes of the object to be plated and the inner wall of the container are substantially similar, the gap distance between the object to be plated and the inner wall of the container is as small as possible, and the object to be plated and the inner wall of the container are in contact with each other. Moreover, if the space (electrode spacing) in which the plating solution flows continuously through these gaps is kept sufficiently large, plating can be performed efficiently in a short time. Therefore, the container 1 needs to be designed in consideration of the shape and dimensions such as length and diameter of the electrode rod which is the body to be plated. Next, at least two containers, preferably about 5 to 20 containers whose shape and size have been determined in this way are arranged in parallel as shown in FIG. Then, an inlet 2 for the plating solution is provided at the tip of one container 1 arranged in the order of precedence among the plurality of containers 1 arranged in parallel, and the plating solution is continuously flowed through the plurality of containers 1 arranged in parallel. A group of containers 1 are arranged in which each container 1 is connected in series or in parallel at an appropriate predetermined position by a connecting pipe 3 so that the containers 1 can flow in series. Preferably, the appropriate predetermined positions for providing this connecting pipe are at both ends of the container 1, and in an embodiment in which one or both of these ends are removably engaged with the container body, each The optimum position is for the container engaging bodies 4 and 5 to engage at both ends. The reason for this is that in the plating method of the present invention, the electrodes are connected in series, the spacing between the electrodes is constant, and the carbon rod and the anode are similar in shape. Since the metal can be made to flow uniformly in any part of any container at a flow rate of 1, any part of the surface of the object to be plated can be metal-plated uniformly with high precision. Therefore, it is desirable that the inlet 2 for the plating solution be provided at one end of the engaging body 4 or 5 of the container 1 as much as possible. Then, the container engaging bodies 4 and 5 are connected to the container main body 1.
It is desirable that protruding supports 6 and 7 be provided at approximately the center of the side surfaces that engage with the container 1 so that the carbon rod to be plated is located approximately at the center of the container 1. Moreover, the supports 6 and 7 are assumed to have a current path necessary for electroplating. Further, each of the plurality of containers 1 arranged in parallel can be connected in series with a power source 11 so that a current flows in series at the positions at almost both ends thereof, as shown in FIGS. 8 and 8A. This is an important condition in the device of the present invention. In this way, the current flowing through the objects to be plated that are electrically connected in series can be made constant regardless of variations in the resistance between each electrode, and therefore uniform plating can be applied to each object to be plated. You will be able to do this. This is because when multiple carbon rods are electrically connected in parallel as in the conventional plating method, it is impossible for the contact resistance of each contact to be exactly the same. ) This is because the currents flowing individually are different. As a result, variations occur in the amount of metal transferred to the body to be plated (carbon rod) (hereinafter referred to as the amount of plating). On the other hand, in the present invention, the plating time can be reduced to 1/25 to 150,
This makes it possible to connect them in series in terms of equipment capacity, and it is possible to reduce variations in the amount of plating. On the other hand, an outflow port 8 for the plating solution is provided at a part of the container 1 arranged in the other order of the parallel group, for example, at the position of the side surface of either the engaging body 4 or 5 of this container. It is necessary to provide In the device of the present invention configured in this way, the opening 1 at either one end or both ends of the container 1
From A, a carbon rod to be plated is placed into the inner wall of the container 1 so that the object to be plated 10 (carbon rod) does not come into contact with it. At this time, approximately at the center of the container, preferably at any part of the surface of the object to be plated 10 and the inner wall surface of the container 1, at a position where the gap distance between these parts is equal, for example, within a range of 1 to 10 mm. It is preferable that the body to be plated is placed at. In addition, when inserting the bodies to be plated into the containers, as shown in FIG. 7A, the carbon rods that are the bodies to be plated 10 are arranged in parallel in advance so as to correspond to the spacing between the respective containers. The conveyor plate 12 held by the conveyor plate 12 can be mechanically advanced and retracted to automatically feed the conveyor plate. For this purpose, at least one end or both ends of the container 1 are open, and one end of the carbon rod is supported on the transport plate 12 in the gap between the opening 1A and the engaging body 4 or 5 in the direction C or D. It is necessary to carry out parallel transport from This can also be done by moving either the engaging body 4 or 5, which supports one end of the carbon rod 10, which is the body to be plated, back and forth in the direction of the container. The plating solution, which is a mixed aqueous solution of copper sulfate and sulfuric acid, that is, the plating solution that is the cheapest and is compatible with the present invention, is applied to the surface of the object to be plated inserted into the container at a speed of 1 cm to 3 m/sec. The plating solution is moved continuously while ensuring reliable contact with the surface of the object to be plated, and is caused to flow from the inlet 2 to the outlet 8 of the plating solution so that a large amount of the plating metal ions are supplied to the surface of the object to be plated. It is. As a result, the current density was 0.5 to 450 A/ dm2 , and the liquid flow rate was 1 cm to 30 m/dm.
sec, current density when high-speed plating is used daily
It is preferable to set the flow rate to 30 to 450 A/dm 2 and the liquid flow rate to 60 cm to 30 m/sec. Therefore, according to the present invention, the surface of the carbon rod to be plated can be plated at an extremely high speed of approximately 25 to 150 times the plating speed of a low-speed plating method, and therefore the time required for plating is approximately 25 to 150 times that of the conventional method.
Since the time required for plating can be reduced to one-fold, the cost of plating equipment can be correspondingly reduced significantly. Figures 9A and 9B and Figures 9C and 9D
The figure shows a cross section of both ends of a connected carbon electrode rod obtained using the plating method and apparatus of the present invention. A root portion 10B of the convex portion 10A formed at one end thereof in FIG. 9A;
A plating film 14A such as copper plating is formed on the peripheral inner end 10D of the concave portion 10C formed on the other side end.
and 14B are shown with a slight taper. In the case shown in FIG. 9B, the inner end 10D of the periphery of the concave portion 10C provided on one side of the carbon electrode rod 10 is cylindrical, and a slight stepped portion 10E is provided at the tapered portion of the concave portion 10C. This is an example. In the case shown in FIG. 9C, the convex portion 10A has the same slope up to the root portion 10B, and the concave portion 10C has a cylindrical peripheral end 10D, and has a slight step with respect to the tapered portion 10C of the concave portion. The case where 10E is provided is shown. As shown in FIG. 9D, the convex portion 10A has the same slope up to the root portion 10B, the concave portion 10C has a cutout extending outwardly from the peripheral end 10D, and the tapered portion of the concave portion 10C has the same slope as the base portion 10B. This shows the case where it is connected to the cut part. According to experiments, the step shown in FIGS. 9B and 9C has a step 10E.
It was found that it was easier to fit in than the ones shown in FIGS. 9A and 9D, which are not provided with a hole, and that it was difficult to come off. In addition, the following distance exists between the outer diameter D 1 of the plating film 14A applied to the base portion 10B of the convex portion 10A and the inner diameter D 2 of the plating film 14B applied to the peripheral inner end 10D of the concave portion 10C. The range that satisfies the relationship is the most preferable fitted state. If ΔD=D 1 −D 2 , then 0≦ΔD<0.10mm In other words, the outer diameter D 1 of the base of the convex part and the inner diameter D 2 of the peripheral end of the concave part are equal to or 0.10
It is desirable that D 1 is larger than D 2 within mm. The reason for this is that when the convex portion 10A and the concave portion 10C are fitted together, the fit of the carbonaceous portion and the fit of the plating film portion must both be satisfied at the same time, as described above. When the unplated portion (carbonaceous portion) of the convex portion 10A and the unplated portion of the concave portion 10C fit together, the mechanical connection of the carbon electrode rod becomes complete and easy. On the other hand, when fitting the plating film 14A on the root portion 10B of the convex portion 10A and the plating film 14B on the inner peripheral edge portion 10D of the concave portion 10C, the above condition is satisfied if there is a large variation in the thickness of the plating films on both sides. It becomes impossible to satisfy this condition and fitting becomes difficult. If the difference ΔD between the outer diameter D 1 and the inner diameter D 2 is smaller than zero, the plating film at the base of the convex part and the concave part will not come into contact with each other, and the convex shape will move into the concave part where ΔD is greater than 0.10 mm. This is because it becomes difficult to fit down to the root of the part. Therefore, by controlling the thickness of the plating film within the above conditions, the plating films on both sides are pressed and deformed by the malleability of the copper at the same time as they are pressed together with a slight pushing force, maintaining just the right fitting force and allowing a large amount of current to flow. This makes it possible to conduct electricity from the new electrode to the old electrode without generating heat. An apparatus for manufacturing such a connected carbon electrode rod is shown in FIG. In Figure 10,
Reference numeral 1 denotes a container having a cylindrical portion serving as an anode.A container engaging member 4 is applied from one opening 1A of the container 1, and is sealed and connected with a packing 16. The container engaging body 4 is provided with a rod-shaped body support body 6 that protrudes from the open end 1A of the plating unit 1 into its internal cavity. The carbon electrode is fitted into and supported by the concave portion 10C formed on one side of the connectable carbon electrode rod 10, and the support base 12 of the container engaging body 4 is supported by the cylinder 15 (see FIG. 7A). The rod 10 is inserted into the internal cavity 1C of the container 1 of the plating unit. Another container engaging body 5 is sealed and connected to the opening 1B on the other side of the container 1 by a packing 16, and this other container engaging body 5 has a plated object support 7 that projects inward. A conical recessed hole 7A is formed inside the plated body support 7, and when a convex portion 10A formed at one end of the connectable carbon electrode rod 10 is inserted, a seal ring 18 is formed.
The convex portion 10A located ahead of the seal ring 18 is configured to block the flow of plating liquid to prevent plating. Reference numeral 7B denotes a stopper provided as necessary to support the tip of the convex portion 10A of the electrode. Container 1 of 1
The container engaging body 4 that closes the opening 1A on one side is provided with a plating liquid outlet 8, and the container engaging body 5 on the other side is provided with a plating liquid inlet 2. A large number of plating units 1 are arranged in parallel as shown in FIG. 8A, and each plating unit is connected in series through a connecting pipe 3. In this way, the plating liquid enters the plating unit 1-, which has the highest priority, and sequentially enters the plating unit 1-, 1-, 1-, and so on.
-,...1-N and circulate in series. An electrode 6A protruding from the outer center of the plated body support 6 is connected to the negative terminal of a power source 11, and the plated body support 6, which is a conductor, is connected to the power source 11 by a conductive wire 13. As shown in FIG. 10, the distance between the conductor portion which becomes the anode of the container of the plating unit 1 and the carbon rod 10 which is the object to be plated is maintained at equal intervals, and the tip portion 6C of the electrode 6A is connected to the object to be plated. Plating occurs when the plating liquid flows between the anode container and the cathode to be plated. Furthermore, the plating film 14A on the base portion 10B of the convex portion 10A of the carbon electrode rod 10 and the plating film 14B on the inner peripheral edge portion 10D of the concave portion 10C are also plated at the same time, and the thickness of the base portion is within ±0.05 mm. can be controlled within. In this case, this plating film 14
A and 14B each become thinner and tapered toward the tip and inner end. In the case shown in FIG. 10, since the embolus 17 is fitted into the concave portion 10C of the electrode rod 10, the plating liquid is prevented from flowing through the concave portion 10C inward from the step portion 10E shown in the figure. , it will not be plated. The convex portion 10A on the other side is a seal ring 18.
Since the tip of the sealing point is not plated, the convex portion and concave portion of the connected carbon electrode rod of the same shape can be firmly fitted. Next, examples of the present invention will be described. Example 1 A carbon rod with a diameter of 16 mm and a length of 400 mm was inserted into the apparatus of the present invention shown in FIG. Plating was carried out for 3 hours at a current density of 3 A/dm 2 while supplying this at a flow rate of 3 cm/sec. In addition, when the electrodes are arranged in parallel and connected in parallel to the power supply in the conventional open plating bath shown in Figure 2, the average current density is 3A/d, which is the same as above.
I did plating for 3 hours at m2 . 100 samples were used and the results are shown in Figure 11 and Tables 2 and 3. FIG. 11 is a distribution diagram of the amount of plating deposited on the electrode rods when plating was performed using the series energization method in the closed bathtub of the present invention and when plating was performed using the parallel energization method in the conventional open bathtub. The distribution diagram a in FIG. 11 shows the distribution of the amount of plating deposited on the rod when series energization is carried out in the closed bathtub of the present invention, and b is the distribution of the amount of plating deposited on the electrode rod when parallel energization is carried out in the open bathtub of the conventional method. This is the distribution of the amount of plating deposited. In parallel energization, various electrical resistances such as the contact resistance of the contacts of the carbon rods that are the objects to be plated cause the current flowing through each carbon rod that is the object to be plated to vary, resulting in variations in the amount of plating and a wide range. distribution. In the series energization of the present invention, since the current flowing to each carbon rod to be plated is constant, there is almost no variation, and almost the same amount of plating was obtained. Table 2 shows the variation in copper plating amount using deviation values. Table 3 shows the carbon electrode rod divided into three equal parts: head, center,
The differences in film thickness (maximum and minimum values) were investigated to determine the variation in film thickness of each copper plating on the rear part.

【表】【table】

【表】 第2表における平均重量は直列通電でも並列通
電でも変化はないが、メツキ量のばらつきを偏差
値で見ると並列通電の10分の1以下である。 第3表よりメツキ膜の厚みは直列通電において
は炭素電極棒のどの部分も均一で厚みのばらつき
が少なく、膜厚の差は小さいが並列通電において
は頭部と後部に厚く析出し又電極棒の個々の膜厚
の誤差(最大値−最小値)は大きい。 実施例 2 直径19mm、長さ400mmの炭素棒を第7図に示す
本発明の装置内に実施例1と同様に挿入し、電極
間隔を2mmとして硫酸銅250g/と硫酸35g/
の混合水溶液をメツキ液とし、電流密度を2A/
dm2、30A/dm2、60A/dm2、200A/dm2
300A/dm2、450A/dm2についてメツキ量及び
メツキの膜厚のばらつきを調査した。試料は30本
とした。電流密度に対応してそれぞれ流速は
0.02m/sec、0.7m/sec、1.6m/sec、10m/
sec、20m/sec、30m/sec、メツキ時間は6時
間、24分、12分、3.6分、2.4分、1.6分に設定した
実験した結果を第4表及び第5表に示す。 第4表は夫々の電流密度における銅メツキ量の
ばらつきを偏差値(δ/×100)で表わしたも
のである。 第5表は夫々の電流密度における銅メツキの膜
厚の誤差(最大値−最小値)で表したものであ
る。
[Table] The average weight in Table 2 does not change whether series or parallel energization is applied, but when looking at the variation in plating amount in terms of deviation value, it is less than one-tenth of parallel energization. Table 3 shows that the thickness of the plating film is uniform on all parts of the carbon electrode rod when energized in series, with little variation in thickness, and the difference in film thickness is small, but when energized in parallel, a thick layer is deposited on the head and rear part of the electrode rod. The error (maximum value - minimum value) of each film thickness is large. Example 2 A carbon rod with a diameter of 19 mm and a length of 400 mm was inserted into the apparatus of the present invention shown in FIG.
A mixed aqueous solution of is used as the plating liquid, and the current density is 2A/
dm2 , 30A/ dm2 , 60A/ dm2 , 200A/ dm2 ,
Variations in plating amount and plating film thickness were investigated at 300 A/dm 2 and 450 A/dm 2 . The number of samples was 30. The flow velocity is proportional to the current density.
0.02m/sec, 0.7m/sec, 1.6m/sec, 10m/
sec, 20 m/sec, 30 m/sec, and the plating time was set to 6 hours, 24 minutes, 12 minutes, 3.6 minutes, 2.4 minutes, and 1.6 minutes. Tables 4 and 5 show the results of experiments. Table 4 shows the variation in the amount of copper plating at each current density expressed as a deviation value (δ/×100). Table 5 shows the error (maximum value - minimum value) of the copper plating film thickness at each current density.

【表】【table】

【表】 第4表より低電流密度でも高電流密度において
も、メツキ量及びその偏差値はほとんど変化な
く、これに対する電流密度による影響はみられな
かつた。 第5表においてもメツキ膜の厚みに対しては電
流密度による影響はみられなかつた。 以上の実験結果を綜合判断すると、本発明のよ
うにメツキ浴槽を密閉型とし、各ユニツトの電極
を電気的に直列接続とし、かつ各ユニツトを順次
メツキ液が流通するように機械的に直列に連結し
てメツキすると電流密度及びそれに対応したメツ
キ液の流速、メツキ時間等の条件に関係なく膜厚
の誤差が±0.05mm以下で、かつメツキ量が一定と
なることが確認された。 実施例 3 直径19mm、長さ430mmの第9B図に示す接続式
炭素電極棒を第10図に示すメツキユニツトと同
じ型の密閉型メツキ浴槽内に挿入し、直列配線し
間隔を2mmとして硫酸銅250g/、硫酸35g/
の混合水溶液をメツキ液とし、電流密度100A/
dm2、流速は5m/sec、メツキ時間7.2分でメツ
キを行つた。又従来法の第2図の開放型メツキ浴
槽に第1B図の接続式炭素電極棒用のメツキ枠を
使用し、被メツキ体である炭素棒の凸形部の根本
部分まで浸漬し電流密度A/dm2で4時間メツキ
をした。メツキ液は密閉型浴槽のものと同じとし
た。試料(炭素棒)は夫々50本とした。次にその
結果を示す。 第6表は第9B図の電極棒の凸形部の根本部分
のメツキ膜14Aと凹形部の周縁内側端部のメツ
キ膜14Bとの夫々の厚みをt1,t2とし、試験し
その膜厚の誤差(最大値−最小値)で示したもの
である。 第7表は接続式炭素電極棒の凸形部と凹形部と
を実際に嵌合し、この嵌合した炭素電極棒をトー
チに装着し、電流1600Aで鋼材にアークを飛ばし
ながら実用テストを繰返した結果である。 (A) 凸凹部のいずれかのメツキ膜が厚すぎて嵌合
困難なもの (B) メツキ膜の嵌合が不充分か又は接触してなく
て使用中に接続部が発熱したり、酸化消耗し折
損したもの (C) 嵌合も良好で、使用中も支障を起さず良好で
あつたもの の3つに分類し試料50本のそれぞれの試験結果を
示した。
[Table] From Table 4, the amount of plating and its deviation value hardly changed at both low and high current densities, and no influence of current density was observed on this. Also in Table 5, there was no effect of current density on the thickness of the plating film. Judging from the above experimental results, it can be concluded that, as in the present invention, the plating bath is of a closed type, the electrodes of each unit are electrically connected in series, and each unit is connected mechanically in series so that the plating liquid flows through the units in sequence. It was confirmed that when connected and plated, the error in film thickness was ±0.05 mm or less and the amount of plating remained constant, regardless of conditions such as current density, flow rate of plating liquid corresponding to it, and plating time. Example 3 Connectable carbon electrode rods shown in Fig. 9B with a diameter of 19 mm and a length of 430 mm were inserted into a closed plating bath of the same type as the plating unit shown in Fig. 10, wired in series with a spacing of 2 mm, and 250 g of copper sulfate was added. /, sulfuric acid 35g/
A mixed aqueous solution of is used as the plating liquid, and the current density is 100A/
Plating was performed at a flow rate of 5 m/sec, a plating time of 7.2 minutes, and a flow rate of 5 m/sec. In addition, using the plating frame for the connected carbon electrode rod shown in Fig. 1B in the open type plating bath shown in Fig. 2 using the conventional method, the carbon rod to be plated is immersed up to the base of the convex part, and the current density is A. I spent 4 hours plating on / dm2 . The Metsuki liquid was the same as that in the closed bathtub. The number of samples (carbon rods) was 50 each. The results are shown below. Table 6 shows the thickness of the plating film 14A at the base of the convex part of the electrode rod in Fig. 9B and the thickness of the plating film 14B at the inner end of the periphery of the concave part as t 1 and t 2 respectively. It is shown as a film thickness error (maximum value - minimum value). Table 7 shows a practical test in which the convex and concave parts of a connectable carbon electrode are actually fitted together, the fitted carbon electrode is attached to a torch, and an arc is struck on a steel material with a current of 1600A. This is a repeated result. (A) The plating film on one of the uneven parts is too thick and it is difficult to fit. (B) The plating film is not sufficiently fitted or there is no contact, causing the connection part to generate heat during use or wear out due to oxidation. The test results for each of the 50 samples were classified into three categories: (C) those with good fit and no problems during use.

【表】【table】

【表】 第6表よりt1,t2のそれぞれの平均メツキ膜の
厚みは直列通電及び並列通電ともほぼ等しいが、
膜厚誤差は直列通電の方が著しく小さく±0.05mm
以下に制御することができ、前記直径差ΔDは0
≦ΔD<0.10mmの範囲内に十分入つていることが
判つた。 第7表における結果から、本発明のいずれの接
続式電極棒においては、嵌合状態及び使用中の状
態も良好であつた。然し、従来法においては、メ
ツキ膜の厚すぎるものや、薄すぎるものがあり、
これらの原因によるものが夫々16%及び18%あり
嵌合状態及び使用中の状態も良好なものは66%で
あつた。 従つて、本発明の接続式炭素電極棒によると、
完全にかつ容易に嵌合し、脱け難く、高温焼耗中
においても脱落が生ぜず、使用効率100%である
ことが確認された。
[Table] From Table 6, the average thickness of the plating film at t 1 and t 2 is almost the same for both series and parallel energization.
The film thickness error is significantly smaller with series energization, ±0.05mm.
The diameter difference ΔD can be controlled as follows, and the diameter difference ΔD is 0
It was found that the value was well within the range of ≦ΔD<0.10 mm. From the results shown in Table 7, all of the connected electrode rods of the present invention had good fitting conditions and good conditions during use. However, in conventional methods, the plating film may be too thick or too thin,
These causes accounted for 16% and 18%, respectively, and 66% were in good fit and condition during use. Therefore, according to the connected carbon electrode rod of the present invention,
It was confirmed that they fit completely and easily, are difficult to come off, and do not fall off even during high-temperature abrasion, and are 100% usable.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図は実験に使用したメツキ
枠の構造を例示する断面図、第2図は従来のメツ
キ装置図、第3図は開放メツキ浴槽を並設し、メ
ツキ液を並列に流通させ、電極を電源に対し直列
接続したメツキ装置を示す説明用断面図、第4図
は密閉メツキ浴槽を直列に並設し、電極を電源に
対し直列に接続し、メツキ液を直列に順次循環さ
せた本発明のメツキ装置を示す説明用断面図、第
5図は開放メツキ浴槽中に陰陽両電極を並列配置
し、両極の電極を電源に対して並列接続した従来
のメツキ装置の説明用断面略図、第6図は第3図
(開放メツキ浴槽、並列通電)及び第4図(密閉
メツキ浴槽、直列通電)により試験したメツキ液
の流速と電流密度との関係を示す特性図、第7
図、第7A図は本発明の炭素棒の高速電気メツキ
用装置の一例を示す平面図、第8図、第8A図は
本発明の炭素棒の高速電気メツキ装置において直
列して電流が通電する状態を示す説明図、第9A
図、第9B図、第9C図、第9D図は本発明の接
続式炭素電極棒の実施態様を示す一部断面図、第
10図は本発明の接続式炭素電極棒のメツキ装置
の詳細を示す断面図、第11図は本発明のメツキ
方式と従来のメツキ方式とを比較したメツキ量分
布図である。 1……陽極となるメツキ容器(メツキユニツ
ト)、2……メツキ液流入口、3……連結管、4
……容器係合体、5……他の容器係合体、6……
被メツキ体支持体、6A……被メツキ体支持体の
凹孔部、7……他の被メツキ体支持体、8……メ
ツキ液流出口、9……開口部、10……炭素棒、
11……電源、12A,12B……容器係合体の
支持台、12C……メツキユニツトの支持台、1
3……電線、14……メツキ膜、10A……電極
棒の凸形部、10B……電極棒の凸形部の根本部
分、10C……電極棒の凹形部、10D……電極
棒凹形部の周縁内端部、10E……電極棒凹形部
の周縁内端部内方に設けた段部、14A……電極
棒凸形部の根本部分のメツキ層、14B……電極
棒凹形部の周縁内端部のメツキ層、15……油圧
シリンダー、16……パツキング、17……塞
栓、18……シールリング、19……メツキ枠、
20……メツキ浴槽、21……炭素棒の抑止め
部、22……接点部、23……導電部、24……
メツキ液、25……メツキ液入口、26……メツ
キ液出口、27……陽極。
Figures 1A and 1B are cross-sectional views illustrating the structure of the plating frame used in the experiment, Figure 2 is a diagram of a conventional plating device, and Figure 3 shows open plating baths installed in parallel and plating liquid flowing in parallel. Figure 4 is an explanatory cross-sectional view showing a plating device in which the electrodes are connected in series to the power supply. Figure 4 shows a system in which sealed plating baths are arranged in series, the electrodes are connected in series to the power supply, and the plating liquid is circulated in series. FIG. 5 is an explanatory cross-sectional view showing the plating device of the present invention, in which both negative and negative electrodes are arranged in parallel in an open plating bath, and the two electrodes are connected in parallel to the power source. A schematic diagram, Fig. 6 is a characteristic diagram showing the relationship between the flow rate and current density of the plating liquid tested according to Fig. 3 (open plating bath, parallel energization) and Fig. 4 (closed plating bath, series energization), and Fig. 7
7A is a plan view showing an example of the apparatus for high-speed electroplating of carbon rods of the present invention, and FIGS. 8 and 8A are diagrams illustrating currents flowing in series in the apparatus for high-speed electroplating of carbon rods of the present invention. Explanatory diagram showing the state, No. 9A
9B, 9C, and 9D are partial sectional views showing embodiments of the connected carbon electrode rod of the present invention, and FIG. 10 shows details of the plating device for the connected carbon electrode rod of the present invention. The cross-sectional view shown in FIG. 11 is a plating amount distribution diagram comparing the plating method of the present invention and the conventional plating method. 1... Plating container (plating unit) serving as an anode, 2... Plating liquid inlet, 3... Connecting pipe, 4
... Container engaging body, 5... Other container engaging body, 6...
Plated object support, 6A... Recessed hole of plated object support, 7... Other plated object support, 8... Plating liquid outlet, 9... Opening, 10... Carbon rod,
11...Power source, 12A, 12B...Support stand for container engaging body, 12C...Support stand for plating unit, 1
3... Electric wire, 14... Plating film, 10A... Convex portion of electrode rod, 10B... Root portion of convex portion of electrode rod, 10C... Concave portion of electrode rod, 10D... Concave electrode rod Inner peripheral edge of the shaped portion, 10E...Step provided inward of the inner edge of the periphery of the concave electrode rod, 14A...Plating layer at the base of the convex electrode rod, 14B...Concave electrode rod plating layer at the inner end of the periphery, 15... hydraulic cylinder, 16... packing, 17... embolization, 18... seal ring, 19... plating frame,
20... Plated bathtub, 21... Carbon rod restraint part, 22... Contact part, 23... Conductive part, 24...
Plating liquid, 25... plating liquid inlet, 26... plating liquid outlet, 27... anode.

Claims (1)

【特許請求の範囲】 1 少くとも陽極となる容器と、この容器内に一
定の間隔を隔てて装入した陰極としての炭素棒よ
りなる被メツキ体との間にメツキ液を満し循環さ
せるようにしたメツキユニツトの複数個を、機械
的に直列又は並列に連結し、かつ少くとも一の電
源に電気的に直列配線で接続し、前記メツキユニ
ツトの夫々に電流を通じ、電流密度を0.5〜
450A/dm2とし、メツキ液の流速を1cm〜
30m/秒として循環させ、メツキ液の流速に対応
して電流を制御し、メツキユニツト内に装入した
炭素棒の表面にメツキ膜を形成することを特徴と
する炭素電極棒のメツキ方法。 2 炭素棒の外形とほぼ相似する形状の陽極を有
する容器内にメツキ液が満たされている特許請求
の範囲第1項記載のメツキ方法。 3 容器は、密閉型もしくは開放型であることを
特徴とする特許請求の範囲第1項記載のメツキ方
法。 4 メツキ浴槽は密閉型の容器であつて、この中
に装着する陽極は、少なくとも不溶性電極である
特許請求の範囲第1項記載のメツキ方法。 5 前記電流密度を30〜450A/dm2とする特許
請求の範囲第1項記載のメツキ方法。 6 メツキ液の流速を60cm〜30m/秒として循環
させる特許請求の範囲第1項記載のメツキ方法。 7 陽極と被メツキ体としての陰極である炭素棒
との間隔がそれぞれの部分において1〜10mmの範
囲内であつてほぼ等間隔の距離に隔たれている特
許請求の範囲第1項記載のメツキ方法。 8 メツキ液は少くとも硫酸銅と硫酸との混合水
溶液であることを特徴とする特許請求の範囲第2
項記載のメツキ方法。 9 炭素棒の一部又は全部にメツキ膜を形成する
に際し、被メツキ体である炭素棒を電源に対し直
列接続して被メツキ電流を一定にすることと、陽
極と炭素棒の間隔を一定とすることと、メツキ液
流速を一定とするようにすることによりそのメツ
キ膜厚みの誤差を±0.05mmの範囲に制御する特許
請求の範囲第1項記載の炭素電極棒のメツキ方
法。 10 一端部は凸形を、他端部は凹形をなし、一
つの炭素電極棒の凹形部に、他の同形の炭素電極
棒の凸形部を嵌合接続させることができる接続式
炭素電極棒のメツキ方法において、少くとも陽極
となる部分を有する円筒形容器内に被メツキ体で
ある炭素棒を装入し、陽極と陰極としての被メツ
キ体との間隔を1〜10mmの範囲でほぼ等間隔に保
持し、前記容器の1側に設けたメツキ液装入口と
他側に設けたメツキ液排水口との間にメツキ液を
循環流通させるように構成し、かつ前記電極棒の
1側の凸形部の中間及び他側の凹形部の内方を塞
栓した複数個のメツキユニツトを機械的に直列又
は並列に連結し、メツキ液を直列又は並列に循環
流通させるようにし、前記メツキユニツトを電気
的に電源に対して直列に接続し、電流密度を0.5
〜450A/dm2とし、メツキ液の流速を1cm〜
30m/秒として循環させ、メツキ液の流速に対応
して電流を制御し、メツキユニツト内に装入した
炭素棒の凸形部の先端部分と、凹形部の内方部分
とを残して部分的にメツキし、前記炭素棒の凸形
部の根本部分と凹形部の周縁端部分とに施される
メツキ膜はその基部より先端又は内方に向けて小
許のテーパーが形成されるようメツキすることを
特徴とする接続式炭素電極棒の部分的電気メツキ
方法。 11 前記電流密度を30〜450A/dm2とし、メ
ツキ液の流速を60cm〜30m/秒として循環させ、
メツキ時間を25〜3分となるよう電流密度とメツ
キ液の流速とを対応させて設定し、そのメツキ膜
の厚み誤差を±0.05mmの範囲に制御する特許請求
の範囲第10項記載の電気メツキ方法。 12 炭素棒本体の外周表面のメツキ膜の厚み及
び凸形部の根本部分と凹形部の周縁端部分のテー
パー状メツキ膜の基部の厚み誤差が±0.05mmの範
囲内になるよう制御してメツキ膜を施す特許請求
の範囲第10項記載の電気メツキ方法。 13 炭素棒とほぼ相似する形状の陽極を有する
容器であつて、この容器は少くとも被メツキ体で
ある炭素棒を出入れする開口部と、一端にはメツ
キ液の流入口と、他端に設けたメツキ液の流出口
とを備え、かつ容器の複数個がそれぞれ直列又は
並列に連結されており、かつこれら容器の複数個
をメツキ液が直列又は並列に1cm〜30m/秒の範
囲の所定の流速で循環するように構成し、被メツ
キ体である前記炭素棒を電源に対して電気的に直
列接続し、電流密度が0.5〜450A/dm2となるよ
う構成したことを特徴とする炭素電気棒のメツキ
装置。 14 電流密度を30〜450A/dm2とし、メツキ
液の流速を60cm〜30m/secで循環流通されるよ
う構成し、メツキ液の流速と電流密度とをできる
だけ高く設定し、メツキ膜の厚み誤差範囲が±
0.05mmの範囲内となるよう構成した特許請求の範
囲第13項記載のメツキ装置。 15 すくなくとも陽極である容器と、被メツキ
体としての陰極である炭素棒との間隔がそれぞれ
の部分において1〜10mmの範囲内でほぼ等間隔の
距離に保たれていることを特徴とする特許請求の
範囲第13項記載のメツキ装置。
[Scope of Claims] 1. A plating solution is filled and circulated between at least a container serving as an anode and a body to be plated consisting of a carbon rod serving as a cathode inserted at a predetermined distance into the container. A plurality of plating units are connected mechanically in series or in parallel, and electrically connected to at least one power source by series wiring, and a current is passed through each of the plating units to maintain a current density of 0.5 to 0.5.
450A/ dm2 , and the flow rate of plating liquid is 1cm~
A method for plating a carbon electrode rod, which is characterized by forming a plating film on the surface of a carbon rod inserted into a plating unit by circulating the plating solution at a rate of 30 m/sec and controlling the current according to the flow rate of the plating solution. 2. The plating method according to claim 1, wherein a plating solution is filled in a container having an anode having a shape substantially similar to the outer shape of the carbon rod. 3. The plating method according to claim 1, wherein the container is of a closed type or an open type. 4. The plating method according to claim 1, wherein the plating bath is a closed container, and the anode mounted therein is at least an insoluble electrode. 5. The plating method according to claim 1, wherein the current density is 30 to 450 A/ dm2 . 6. The plating method according to claim 1, wherein the plating solution is circulated at a flow rate of 60 cm to 30 m/sec. 7. The plating method according to claim 1, wherein the distance between the anode and the carbon rod serving as the cathode as the body to be plated is within the range of 1 to 10 mm in each portion and is spaced at approximately equal distances. . 8 Claim 2, characterized in that the plating solution is a mixed aqueous solution of at least copper sulfate and sulfuric acid.
Plating method described in section. 9 When forming a plating film on part or all of a carbon rod, it is necessary to connect the carbon rod to be plated in series with a power source to keep the plating current constant, and to keep the interval between the anode and the carbon rod constant. 2. The method of plating a carbon electrode rod according to claim 1, wherein the error in the plating film thickness is controlled within the range of ±0.05 mm by keeping the flow rate of the plating liquid constant. 10 A connection type carbon having a convex shape at one end and a concave shape at the other end, which allows the concave portion of one carbon electrode rod to be fitted and connected to the convex portion of another carbon electrode rod of the same shape. In the electrode rod plating method, a carbon rod to be plated is placed in a cylindrical container having at least a portion that will serve as an anode, and the distance between the anode and the cathode to be plated is in the range of 1 to 10 mm. The electrode rods are held at approximately equal intervals and configured to circulate the plating liquid between a plating liquid inlet provided on one side of the container and a plating liquid drain port provided on the other side, and one of the electrode rods A plurality of plating units in which the middle of the convex portion on one side and the inside of the concave portion on the other side are plugged are mechanically connected in series or in parallel so that the plating liquid is circulated in series or in parallel, and the plating units are is electrically connected in series with the power supply, with a current density of 0.5
〜450A/ dm2 , and the flow rate of plating liquid is 1cm〜
The carbon rod was circulated at a rate of 30 m/sec, and the current was controlled in accordance with the flow rate of the plating liquid, leaving only the tip of the convex part of the carbon rod inserted in the plating unit and the inner part of the concave part. The plating film applied to the root part of the convex part and the peripheral edge part of the concave part of the carbon rod is plated so that a slight taper is formed from the base toward the tip or inward. A method for partially electroplating a connected carbon electrode rod. 11 Circulating the current density at 30 to 450 A/dm 2 and the plating solution flow rate at 60 cm to 30 m/sec,
The electricity according to claim 10, wherein the current density and the flow rate of the plating solution are set in correspondence so that the plating time is 25 to 3 minutes, and the thickness error of the plating film is controlled within the range of ±0.05 mm. Metsuki method. 12 The thickness of the plating film on the outer peripheral surface of the carbon rod body and the thickness error of the base of the tapered plating film on the root part of the convex part and the peripheral edge part of the concave part are controlled to be within the range of ±0.05 mm. The electroplating method according to claim 10, wherein a plating film is applied. 13 A container having an anode with a shape almost similar to that of a carbon rod, and this container has at least an opening for taking in and out the carbon rod which is the object to be plated, an inlet for the plating liquid at one end, and an inlet for the plating liquid at the other end. A plurality of containers are connected in series or in parallel, and the plating solution is connected in series or in parallel at a predetermined rate in the range of 1 cm to 30 m/sec. The carbon rod, which is the object to be plated, is electrically connected in series to a power source so that the current density is 0.5 to 450 A/ dm2 . Electric rod plating device. 14 Set the current density to 30 to 450 A/dm 2 , and configure the plating liquid to circulate at a flow rate of 60 cm to 30 m/sec. Set the plating liquid flow rate and current density as high as possible to reduce the thickness error of the plating film. Range is ±
The plating device according to claim 13, wherein the plating device is configured to be within a range of 0.05 mm. 15. A patent claim characterized in that the distance between the container, which is at least an anode, and the carbon rod, which is a cathode and which is an object to be plated, is maintained at approximately equal distances within a range of 1 to 10 mm in each part. The plating device according to item 13.
JP13653982A 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod Granted JPS5928597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13653982A JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13653982A JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Publications (2)

Publication Number Publication Date
JPS5928597A JPS5928597A (en) 1984-02-15
JPH0241598B2 true JPH0241598B2 (en) 1990-09-18

Family

ID=15177551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13653982A Granted JPS5928597A (en) 1982-08-05 1982-08-05 Method and apparatus for electroplating carbon electrode rod and carbon electrode rod

Country Status (1)

Country Link
JP (1) JPS5928597A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689491B2 (en) * 1988-06-14 1997-12-10 ヤマハ株式会社 High speed plating equipment
JPH0238473U (en) * 1988-08-31 1990-03-14
DE19736351C1 (en) * 1997-08-21 1998-10-01 Atotech Deutschland Gmbh Precision galvanising of workpieces
US6652657B2 (en) 2000-07-31 2003-11-25 United Technologies Corporation Method for electrochemically treating articles and apparatus and method for cleaning articles
US8062496B2 (en) * 2008-04-18 2011-11-22 Integran Technologies Inc. Electroplating method and apparatus
JP5795965B2 (en) 2011-05-30 2015-10-14 株式会社荏原製作所 Plating equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513034U (en) * 1978-07-13 1980-01-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513034U (en) * 1978-07-13 1980-01-28

Also Published As

Publication number Publication date
JPS5928597A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
US2500206A (en) Apparatus for plating
US5620581A (en) Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
EP0887441B1 (en) Compound electrode for electrolysis
US5228965A (en) Method and apparatus for applying surface treatment to metal foil
CN100378252C (en) Partial plating method and its apparatus
US9745665B2 (en) Method and apparatus for electrolytically depositing a deposition metal on a workpiece
US5015340A (en) Method of continuous coating of electrically conductive substrates
US5393396A (en) Apparatus for electrodepositing metal
KR102254554B1 (en) Electroplating divice for copper foil manufacturing
JPH0241598B2 (en)
JPH0693490A (en) Manufacture of electrolytic metallic foil
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
US4294670A (en) Precision electroplating of metal objects
JPH0723553B2 (en) Method for plating three-dimensional network structure
JPH03285097A (en) Anode for electroplating and electroplating method
BR0311374B1 (en) process for the galvanic coating of a continuous casting mold.
JP2012527524A (en) Method and apparatus for controlled electrolysis of thin layers
US7722745B2 (en) Device for plating contacts in hermetic connector assemblies
RU2681239C1 (en) Device for electrolyte-plasma treatment of metal products
JPH04504444A (en) Equipment for electrodepositing metal on one or both sides of a strip
US3751354A (en) Electroplating cell including magnetic means to couple concave workpieces to a plating rack
JP2002004095A (en) Insoluble anode and power feeding method for the same
KR20190138489A (en) suction plating device
US4507190A (en) Horizontal-pass electrotreating cell
CN213680938U (en) Processing device for improving uniformity of electroplating film layer